Homogenization approach to filtration through a fibrous medium

  • Received: 01 May 2007 Revised: 01 June 2007
  • 76M50, 76S05, 74Q15, 35B27.

  • We study the flow through fibrous media using homogenization techniques. The fibre network under study is the one already used by M. Briane in the context of heat conduction of biological tissues. We derive and justify the effective Darcy equation and the permeability tensor for such fibrous media. The theoretical results on the permeability are illustrated by some numerical simulations. Finally, the low solid fraction limit is considered. Applying results by G. Allaire to our setting, we justify rigorously the leading order term in the empirical formulas for the effective permeability used in engineering. The results are also confirmed by a direct numerical calculation of the permeability, in which the small diameter of the fibres requires high accuracy approximations.

    Citation: Mohamed Belhadj, Eric Cancès, Jean-Frédéric Gerbeau, Andro Mikelić. Homogenization approach to filtration through a fibrous medium[J]. Networks and Heterogeneous Media, 2007, 2(3): 529-550. doi: 10.3934/nhm.2007.2.529

    Related Papers:

    [1] Mohamed Belhadj, Eric Cancès, Jean-Frédéric Gerbeau, Andro Mikelić . Homogenization approach to filtration through a fibrous medium. Networks and Heterogeneous Media, 2007, 2(3): 529-550. doi: 10.3934/nhm.2007.2.529
    [2] Alexei Heintz, Andrey Piatnitski . Osmosis for non-electrolyte solvents in permeable periodic porous media. Networks and Heterogeneous Media, 2016, 11(3): 471-499. doi: 10.3934/nhm.2016005
    [3] Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709
    [4] Jinhu Zhao . Natural convection flow and heat transfer of generalized Maxwell fluid with distributed order time fractional derivatives embedded in the porous medium. Networks and Heterogeneous Media, 2024, 19(2): 753-770. doi: 10.3934/nhm.2024034
    [5] Xavier Blanc, Claude Le Bris . Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1
    [6] María Anguiano, Renata Bunoiu . Homogenization of Bingham flow in thin porous media. Networks and Heterogeneous Media, 2020, 15(1): 87-110. doi: 10.3934/nhm.2020004
    [7] Leda Bucciantini, Angiolo Farina, Antonio Fasano . Flows in porous media with erosion of the solid matrix. Networks and Heterogeneous Media, 2010, 5(1): 63-95. doi: 10.3934/nhm.2010.5.63
    [8] Junlong Chen, Yanbin Tang . Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure. Networks and Heterogeneous Media, 2023, 18(3): 1118-1177. doi: 10.3934/nhm.2023049
    [9] Maksym Berezhnyi, Evgen Khruslov . Non-standard dynamics of elastic composites. Networks and Heterogeneous Media, 2011, 6(1): 89-109. doi: 10.3934/nhm.2011.6.89
    [10] Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025
  • We study the flow through fibrous media using homogenization techniques. The fibre network under study is the one already used by M. Briane in the context of heat conduction of biological tissues. We derive and justify the effective Darcy equation and the permeability tensor for such fibrous media. The theoretical results on the permeability are illustrated by some numerical simulations. Finally, the low solid fraction limit is considered. Applying results by G. Allaire to our setting, we justify rigorously the leading order term in the empirical formulas for the effective permeability used in engineering. The results are also confirmed by a direct numerical calculation of the permeability, in which the small diameter of the fibres requires high accuracy approximations.


  • This article has been cited by:

    1. M. Griebel, M. Klitz, Homogenization and Numerical Simulation of Flow in Geometries with Textile Microstructures, 2010, 8, 1540-3459, 1439, 10.1137/09077059X
    2. Ľubomír Baňas, Hari Shankar Mahato, Homogenization of evolutionary Stokes–Cahn–Hilliard equations for two-phase porous media flow, 2017, 105, 18758576, 77, 10.3233/ASY-171436
    3. Mariya Ptashnyk, Locally Periodic Unfolding Method and Two-Scale Convergence on Surfaces of Locally Periodic Microstructures, 2015, 13, 1540-3459, 1061, 10.1137/140978405
    4. Tomislav Fratrović, Eduard Marušić-Paloka, Low-volume-fraction limit for polymer fluids, 2011, 373, 0022247X, 399, 10.1016/j.jmaa.2010.07.043
    5. R. Bunoiu, G. Cardone, R. Kengne, J. L. Woukeng, Homogenization of 2D Cahn–Hilliard–Navier–Stokes system, 2020, 6, 2296-9020, 377, 10.1007/s41808-020-00074-w
    6. Mariya Ptashnyk, Two-Scale Convergence for Locally Periodic Microstructures and Homogenization of Plywood Structures, 2013, 11, 1540-3459, 92, 10.1137/120862338
    7. Zhongwei Shen, Darcy’s Law for Porous Media with Multiple Microstructures, 2023, 2, 2730-9657, 438, 10.1007/s44007-023-00052-3
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4343) PDF downloads(211) Cited by(7)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog