We prove the existence for small times of weak solutions for a class of non-local systems in one space dimension, arising in traffic modeling. We approximate the problem by a Godunov type numerical scheme and we provide uniform
Citation: Felisia Angela Chiarello, Paola Goatin. Non-local multi-class traffic flow models[J]. Networks and Heterogeneous Media, 2019, 14(2): 371-387. doi: 10.3934/nhm.2019015
We prove the existence for small times of weak solutions for a class of non-local systems in one space dimension, arising in traffic modeling. We approximate the problem by a Godunov type numerical scheme and we provide uniform
| [1] |
Nonlocal systems of conservation laws in several space dimensions. SIAM J. Numer. Anal. (2015) 53: 963-983.
|
| [2] |
On the numerical integration of scalar nonlocal conservation laws. ESAIM M2AN (2015) 49: 19-37.
|
| [3] |
A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916–938 (electronic), URL http://dx.doi.org/10.1137/S0036139997332099. doi: 10.1137/S0036139997332099
|
| [4] |
S. Benzoni-Gavage and R. M. Colombo, An $n$-populations model for traffic flow, European J. Appl. Math., 14 (2003), 587–612, URL https://doi.org/10.1017/S0956792503005266. doi: 10.1017/S0956792503005266
|
| [5] |
S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., 132 (2016), 217–241, URL http://dx.doi.org/10.1007/s00211-015-0717-6. doi: 10.1007/s00211-015-0717-6
|
| [6] |
Minimising stop and go waves to optimise traffic flow. Appl. Math. Lett. (2004) 17: 697-701.
|
| [7] |
F. A. Chiarello and P. Goatin, Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, ESAIM: M2AN, 52 (2018), 163–180, URL https://doi.org/10.1051/m2an/2017066. doi: 10.1051/m2an/2017066
|
| [8] | J. Friedrich, O. Kolb and S. Göttlich, A Godunov type scheme for a class of scalar conservation laws with non-local flux, Netw. Heterog. Media, 13 (2018), 531–547, URL http://dx.doi.org/10.3934/nhm.2018024. |
| [9] |
P. Goatin and S. Scialanga, Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media, 11 (2016), 107–121, URL http://dx.doi.org/10.3934/nhm.2016.11.107. doi: 10.3934/nhm.2016.11.107
|
| [10] |
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied
Mathematics, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511791253
|
| [11] |
On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London. Ser. A. (1955) 229: 317-345.
|
| [12] | H. Payne, Models of Freeway Traffic and Control, Simulation Councils, Incorporated, 1971. |
| [13] |
Shock waves on the highway. Operations Res. (1956) 4: 42-51.
|
| [14] |
A. Sopasakis and M. A. Katsoulakis, Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics, SIAM J. Appl. Math., 66 (2006), 921–944 (electronic). doi: 10.1137/040617790
|
| [15] | G. Whitham, Linear and Nonlinear Waves, Pure and applied mathematics, Wiley, 1974. |
| [16] |
H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275–290, URL http://www.sciencedirect.com/science/article/pii/S0191261500000503. doi: 10.1016/S0191-2615(00)00050-3
|