In this paper, we establish the existence of two positive solutions for a discrete mean curvature problem with Dirichlet boundary value conditions. The approach is based on a two-critical-point theorem. Our main result extends an existing conclusion in the literature. Moreover, three examples are presented to illustrate the validity and feasibility.
Citation: Liqun Jiang, Lin Zou, Xiaoyan Chen. Two positive solutions of a second order nonlinear difference equation involving the mean curvature operator[J]. Electronic Research Archive, 2025, 33(6): 3699-3715. doi: 10.3934/era.2025164
[1] | Robert E. Beardmore, Rafael Peña-Miller . Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits. Mathematical Biosciences and Engineering, 2010, 7(4): 923-933. doi: 10.3934/mbe.2010.7.923 |
[2] | Robert E. Beardmore, Rafael Peña-Miller . Rotating antibiotics selects optimally against antibiotic resistance, in theory. Mathematical Biosciences and Engineering, 2010, 7(3): 527-552. doi: 10.3934/mbe.2010.7.527 |
[3] | Xiaxia Kang, Jie Yan, Fan Huang, Ling Yang . On the mechanism of antibiotic resistance and fecal microbiota transplantation. Mathematical Biosciences and Engineering, 2019, 16(6): 7057-7084. doi: 10.3934/mbe.2019354 |
[4] | Jing Jia, Yanfeng Zhao, Zhong Zhao, Bing Liu, Xinyu Song, Yuanxian Hui . Dynamics of a within-host drug resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(2): 2219-2231. doi: 10.3934/mbe.2023103 |
[5] | Michele L. Joyner, Cammey C. Manning, Brandi N. Canter . Modeling the effects of introducing a new antibiotic in a hospital setting: A case study. Mathematical Biosciences and Engineering, 2012, 9(3): 601-625. doi: 10.3934/mbe.2012.9.601 |
[6] | Avner Friedman, Najat Ziyadi, Khalid Boushaba . A model of drug resistance with infection by health care workers. Mathematical Biosciences and Engineering, 2010, 7(4): 779-792. doi: 10.3934/mbe.2010.7.779 |
[7] | Xiaoxiao Yan, Zhong Zhao, Yuanxian Hui, Jingen Yang . Dynamic analysis of a bacterial resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(12): 20422-20436. doi: 10.3934/mbe.2023903 |
[8] | Natalia L. Komarova . Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2011, 8(2): 289-306. doi: 10.3934/mbe.2011.8.289 |
[9] | Qimin Huang, Mary Ann Horn, Shigui Ruan . Modeling the effect of antibiotic exposure on the transmission of methicillin-resistant Staphylococcus aureus in hospitals with environmental contamination. Mathematical Biosciences and Engineering, 2019, 16(5): 3641-3673. doi: 10.3934/mbe.2019181 |
[10] | Hermann Mena, Lena-Maria Pfurtscheller, Jhoana P. Romero-Leiton . Random perturbations in a mathematical model of bacterial resistance: Analysis and optimal control. Mathematical Biosciences and Engineering, 2020, 17(5): 4477-4499. doi: 10.3934/mbe.2020247 |
In this paper, we establish the existence of two positive solutions for a discrete mean curvature problem with Dirichlet boundary value conditions. The approach is based on a two-critical-point theorem. Our main result extends an existing conclusion in the literature. Moreover, three examples are presented to illustrate the validity and feasibility.
[1] |
D. Li, Y. Long, Existence and nonexistence of periodic solutions for a class of fourth-order partial difference equations, J. Math., 2025 (2025), 2982321. https://doi.org/10.1155/jom/2982321 doi: 10.1155/jom/2982321
![]() |
[2] |
J. Yu, J. Li, Discrete-time models for interactive wild and transgenic sterile mosquitoes, J. Differ. Equations Appl., 30 (2024), 1590–1609. https://doi.org/10.1080/10236198.2024.2325485 doi: 10.1080/10236198.2024.2325485
![]() |
[3] |
J. Mawhin, Periodic solutions of second order nonlinear difference systems with ϕ-Laplacian: A variational approach, Nonlinear Anal., 75 (2012), 4672–4687. https://doi.org/10.1016/j.na.2011.11.018 doi: 10.1016/j.na.2011.11.018
![]() |
[4] |
S. Cano-Casanova, J. López-Gómez, K. Takimoto, A quasilinear parabolic perturbation of the linear heat equation, J. Differ. Equations, 252 (2012), 323–343. https://doi.org/10.1016/j.jde.2011.09.018 doi: 10.1016/j.jde.2011.09.018
![]() |
[5] |
D. Bonheure, P. Habets, F. Obersnel, P. Omari, Classical and non-classical solutions of a prescribed curvature equation, J. Differ. Equations, 243 (2007), 208–237. https://doi.org/10.1016/j.jde.2007.05.031 doi: 10.1016/j.jde.2007.05.031
![]() |
[6] |
Y. Lu, R. Ma, Existence and multiplicity of positive solutions for one-dimensional prescribled mean curvature equations, Boundary Value Probl., 2014 (2014), 120. https://doi.org/10.1186/1687-2770-2014-120 doi: 10.1186/1687-2770-2014-120
![]() |
[7] |
R. P. Agarwal, K. Perera, D. O'Regan, Multiple positive solutions of singular and nonsingular discrete problems via variational methods, Nonlinear Anal., 58 (2004), 69–73. https://doi.org/10.1016/j.na.2003.11.012 doi: 10.1016/j.na.2003.11.012
![]() |
[8] |
G. Bonanno, P. Candito, G. D'Aguì, Variational methods on finite dimensional Banach spaces and discrete problems, Adv. Nonlinear Stud., 14 (2014), 915–939. https://doi.org/10.1515/ans-2014-0406 doi: 10.1515/ans-2014-0406
![]() |
[9] |
G. Bonanno, P. Jebelean, C. Serban. Surperlinear discrete problems, Appl. Math. Lett., 52 (2016), 162–168. https://doi.org/10.1016/j.aml.2015.09.005 doi: 10.1016/j.aml.2015.09.005
![]() |
[10] |
Z. Zhou, J. Ling, Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with ϕc-Laplacian, Appl. Math. Lett., 91 (2019), 28–34. https://doi.org/10.1016/j.aml.2018.11.016 doi: 10.1016/j.aml.2018.11.016
![]() |
[11] |
J. Ling, Z. Zhou, Positive solutions of the discrete Dirichlet problem involving the mean curature operator, Open Math., 17 (2019), 1055–1064. https://doi.org/10.1515/math-2019-0081 doi: 10.1515/math-2019-0081
![]() |
[12] |
Y. Chen, Z. Zhou, Existence of three solutions for a nonlinear discrete boundary value problem with ϕc-Laplacian, Symmetry, 12 (2020), 1839. https://doi.org/10.3390/sym12111839 doi: 10.3390/sym12111839
![]() |
[13] |
G. Bonanno, G. D'Aguì, Two non-zero solutions for elliptic Dirichlet problems, Z. Anal. Anwend., 35 (2016), 449–464. https://doi.org/10.4171/ZAA/1573 doi: 10.4171/ZAA/1573
![]() |
[14] |
G. D'Aguì, J. Mawhin, A. Sciammetta, Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian, J. Math. Anal. Appl., 447 (2017), 383–397. https://doi.org/10.1016/j.jmaa.2016.10.023 doi: 10.1016/j.jmaa.2016.10.023
![]() |
[15] |
G. D'Aguì, A. Sciammetta, E. Tornatore, Two non-zero solutions for Sturm–Liouville equations with mixed boundary conditions, Nonlinear Anal., 47 (2019), 324–331. https://doi.org/10.1016/j.nonrwa.2018.11.002 doi: 10.1016/j.nonrwa.2018.11.002
![]() |
[16] |
P. Candito, G. D'Aguì, R. Livrea, Two positive solutions for a nonlinear parameter-depending algebraic system, Dolomites Res. Notes Approximation, 14 (2021), 10–17. https://doi.org/10.14658/pupj-drna-2021-2-3 doi: 10.14658/pupj-drna-2021-2-3
![]() |
[17] | Z. M. Guo, J. S. Yu, Periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Math., 46 (2003), 506–515. |
[18] |
X. H. Tang, Non-Nehari manifold method for periodic discrete superlinear Schrödinger equation, Acta Math. Sin., 32 (2016), 463–473. https://doi.org/10.1007/s10114-016-4262-8 doi: 10.1007/s10114-016-4262-8
![]() |
[19] |
H. P. Shi, Periodic and subharmonic solutions for second-order nonlinear difference equations, J. Appl. Math. Comput., 48 (2015), 157–171. https://doi.org/10.1007/s12190-014-0796-z doi: 10.1007/s12190-014-0796-z
![]() |
[20] |
G. H. Lin, Z. Zhou, Homoclinic solutions of discrete ϕ-Laplacian equations with mixed nonlinearities, Commun. Pur. Appl. Anal., 17 (2018), 1723–1747. https://doi.org/10.3934/cpaa.2018082 doi: 10.3934/cpaa.2018082
![]() |
[21] | R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods, and Applications, 1st edition, CRC Press, Boca Raton, 2000. https://doi.org/10.1201/9781420027020 |
[22] | W. G. Kelly, A. C. Peterson, Difference Equations: An Introduction with Applications, 2nd edition, Academic Press, San Diego, 2001. |
[23] |
L. Jiang, Z. Zhou, Three solutions to Dirichlet boundary value problems for p-Laplacian difference equations, Adv. Differ. Equations, 2008 (2007), 345916. https://doi.org/10.1155/2008/345916 doi: 10.1155/2008/345916
![]() |
1. | Pleun J van Duijn, Marc JM Bonten, Antibiotic rotation strategies to reduce antimicrobial resistance in Gram-negative bacteria in European intensive care units: study protocol for a cluster-randomized crossover controlled trial, 2014, 15, 1745-6215, 10.1186/1745-6215-15-277 | |
2. | Hildegard Uecker, Sebastian Bonhoeffer, Modeling antimicrobial cycling and mixing: Differences arising from an individual-based versus a population-based perspective, 2017, 294, 00255564, 85, 10.1016/j.mbs.2017.09.002 | |
3. | Nicolas Houy, Julien Flaig, Optimal dynamic empirical therapy in a health care facility: A Monte-Carlo look-ahead method, 2021, 198, 01692607, 105767, 10.1016/j.cmpb.2020.105767 | |
4. | Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits, 2010, 7, 1551-0018, 923, 10.3934/mbe.2010.7.923 | |
5. | Nicolas Houy, Julien Flaig, Hospital-wide surveillance-based antimicrobial treatments: a Monte-Carlo look-ahead method, 2021, 01692607, 106050, 10.1016/j.cmpb.2021.106050 | |
6. | Daniel Nichol, Peter Jeavons, Alexander G. Fletcher, Robert A. Bonomo, Philip K. Maini, Jerome L. Paul, Robert A. Gatenby, Alexander R.A. Anderson, Jacob G. Scott, Rustom Antia, Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance, 2015, 11, 1553-7358, e1004493, 10.1371/journal.pcbi.1004493 | |
7. | François Blanquart, Evolutionary epidemiology models to predict the dynamics of antibiotic resistance, 2019, 12, 1752-4571, 365, 10.1111/eva.12753 | |
8. | Nienke L Plantinga, Bastiaan HJ Wittekamp, Pleun J van Duijn, Marc JM Bonten, Fighting antibiotic resistance in the intensive care unit using antibiotics, 2015, 10, 1746-0913, 391, 10.2217/fmb.14.146 | |
9. | Roger D. Kouyos, Pia Abel zur Wiesch, Sebastian Bonhoeffer, Christophe Fraser, Informed Switching Strongly Decreases the Prevalence of Antibiotic Resistance in Hospital Wards, 2011, 7, 1553-7358, e1001094, 10.1371/journal.pcbi.1001094 | |
10. | Roderich Roemhild, Hinrich Schulenburg, Evolutionary ecology meets the antibiotic crisis, 2019, 2019, 2050-6201, 37, 10.1093/emph/eoz008 | |
11. | Antonio L. C. Gomes, James E. Galagan, Daniel Segrè, James M. McCaw, Resource Competition May Lead to Effective Treatment of Antibiotic Resistant Infections, 2013, 8, 1932-6203, e80775, 10.1371/journal.pone.0080775 | |
12. | Gabriel G. Perron, Sergey Kryazhimskiy, Daniel P. Rice, Angus Buckling, Multidrug Therapy and Evolution of Antibiotic Resistance: When Order Matters, 2012, 78, 0099-2240, 6137, 10.1128/AEM.01078-12 | |
13. | D. E. Ramsay, J. Invik, S. L. Checkley, S. P. Gow, N. D. Osgood, C. L. Waldner, Application of dynamic modelling techniques to the problem of antibacterial use and resistance: a scoping review, 2018, 146, 0950-2688, 2014, 10.1017/S0950268818002091 | |
14. | Xiao‐Jin Li, Yong Liu, Liang Du, Yan Kang, The Effect of Antibiotic‐Cycling Strategy on Antibiotic‐Resistant Bacterial Infections or Colonization in Intensive Care Units: A Systematic Review and Meta‐Analysis, 2020, 17, 1545-102X, 319, 10.1111/wvn.12454 | |
15. | Hildegard Uecker, Sebastian Bonhoeffer, Antibiotic treatment protocols revisited: the challenges of a conclusive assessment by mathematical modelling, 2021, 18, 1742-5662, 20210308, 10.1098/rsif.2021.0308 |