Citation: Natalia L. Komarova. Mathematical modeling of cyclic treatments of chronic myeloid leukemia[J]. Mathematical Biosciences and Engineering, 2011, 8(2): 289-306. doi: 10.3934/mbe.2011.8.289
[1] | Pedro José Gutiérrez-Diez, Jose Russo . Design of personalized cancer treatments by use of optimal control problems: The case of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2020, 17(5): 4773-4800. doi: 10.3934/mbe.2020261 |
[2] | R. A. Everett, Y. Zhao, K. B. Flores, Yang Kuang . Data and implication based comparison of two chronic myeloid leukemia models. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1501-1518. doi: 10.3934/mbe.2013.10.1501 |
[3] | Cristian Tomasetti, Doron Levy . An elementary approach to modeling drug resistance in cancer. Mathematical Biosciences and Engineering, 2010, 7(4): 905-918. doi: 10.3934/mbe.2010.7.905 |
[4] | Rafael Martínez-Fonseca, Cruz Vargas-De-León, Ramón Reyes-Carreto, Flaviano Godínez-Jaimes . Bayesian analysis of the effect of exosomes in a mouse xenograft model of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2023, 20(11): 19504-19526. doi: 10.3934/mbe.2023864 |
[5] | Dana Paquin, Lizzy Gross, Avery Stewart, Giovani Thai . Numerical analysis of critical parameter values for remission during imatinib treatment of chronic myelogenous leukemia. Mathematical Biosciences and Engineering, 2025, 22(6): 1551-1571. doi: 10.3934/mbe.2025057 |
[6] | Kangbo Bao . An elementary mathematical modeling of drug resistance in cancer. Mathematical Biosciences and Engineering, 2021, 18(1): 339-353. doi: 10.3934/mbe.2021018 |
[7] | Katrine O. Bangsgaard, Morten Andersen, Vibe Skov, Lasse Kjær, Hans C. Hasselbalch, Johnny T. Ottesen . Dynamics of competing heterogeneous clones in blood cancers explains multiple observations - a mathematical modeling approach. Mathematical Biosciences and Engineering, 2020, 17(6): 7645-7670. doi: 10.3934/mbe.2020389 |
[8] | Avner Friedman, Najat Ziyadi, Khalid Boushaba . A model of drug resistance with infection by health care workers. Mathematical Biosciences and Engineering, 2010, 7(4): 779-792. doi: 10.3934/mbe.2010.7.779 |
[9] | Xiaxia Kang, Jie Yan, Fan Huang, Ling Yang . On the mechanism of antibiotic resistance and fecal microbiota transplantation. Mathematical Biosciences and Engineering, 2019, 16(6): 7057-7084. doi: 10.3934/mbe.2019354 |
[10] | Silvia Martorano Raimundo, Hyun Mo Yang, Ezio Venturino . Theoretical assessment of the relative incidences of sensitive andresistant tuberculosis epidemic in presence of drug treatment. Mathematical Biosciences and Engineering, 2014, 11(4): 971-993. doi: 10.3934/mbe.2014.11.971 |
1. | Benjamin Werner, David Lutz, Tim H. Brümmendorf, Arne Traulsen, Stefan Balabanov, Mikhail V. Blagosklonny, Dynamics of Resistance Development to Imatinib under Increasing Selection Pressure: A Combination of Mathematical Models and In Vitro Data, 2011, 6, 1932-6203, e28955, 10.1371/journal.pone.0028955 | |
2. | Mst. Shanta Khatun, Md. Haider Ali Biswas, Mathematical analysis and optimal control applied to the treatment of leukemia, 2020, 64, 1598-5865, 331, 10.1007/s12190-020-01357-0 | |
3. | Tor Flå, Florian Rupp, Clemens Woywod, Bifurcation patterns in generalized models for the dynamics of normal and leukemic stem cells with signaling, 2015, 38, 01704214, 3392, 10.1002/mma.3345 | |
4. | Helen Moore, How to mathematically optimize drug regimens using optimal control, 2018, 45, 1567-567X, 127, 10.1007/s10928-018-9568-y | |
5. | Tor Flå, Florian Rupp, Clemens Woywod, 2013, Chapter 11, 978-3-0348-0450-9, 221, 10.1007/978-3-0348-0451-6_11 | |
6. | Antonio Fasano, Adélia Sequeira, 2017, Chapter 8, 978-3-319-60512-8, 295, 10.1007/978-3-319-60513-5_8 | |
7. | Mst. Shanta Khatun, Md. Haider Ali Biswas, Modeling the effect of adoptive T cell therapy for the treatment of leukemia, 2020, 2, 2577-7408, 10.1002/cmm4.1069 | |
8. | Helen Moore, Lewis Strauss, Urszula Ledzewicz, Optimization of combination therapy for chronic myeloid leukemia with dosing constraints, 2018, 77, 0303-6812, 1533, 10.1007/s00285-018-1262-6 | |
9. | Lorand Gabriel Parajdi, Radu Precup, Eduard Alexandru Bonci, Ciprian Tomuleasa, A Mathematical Model of the Transition from Normal Hematopoiesis to the Chronic and Accelerated-Acute Stages in Myeloid Leukemia, 2020, 8, 2227-7390, 376, 10.3390/math8030376 | |
10. | Amin Noori, Alireza Alfi, Ghazaleh Noori, An intelligent control strategy for cancer cells reduction in patients with chronic myelogenous leukaemia using the reinforcement learning and considering side effects of the drug, 2020, 0266-4720, 10.1111/exsy.12655 | |
11. | S. Chulián, Á. Martínez-Rubio, M. Rosa, V. M. Pérez-García, Mathematical models of leukaemia and its treatment: a review, 2022, 79, 2254-3902, 441, 10.1007/s40324-022-00296-z | |
12. | H. Jonathan G. Lindström, Ran Friedman, Rotating between ponatinib and imatinib temporarily increases the efficacy of imatinib as shown in a chronic myeloid leukaemia model, 2022, 12, 2045-2322, 10.1038/s41598-022-09048-5 | |
13. | Henry Fenekansi Kiwumulo, Haruna Muwonge, Charles Ibingira, John Baptist Kirabira, Robert Tamale. Ssekitoleko, A systematic review of modeling and simulation approaches in designing targeted treatment technologies for Leukemia Cancer in low and middle income countries, 2021, 18, 1551-0018, 8149, 10.3934/mbe.2021404 |