Research article

Convergence analysis of a three-term extended RMIL CGP-based algorithm for constrained nonlinear equations and image denoising applications

  • Received: 27 February 2025 Revised: 20 May 2025 Accepted: 04 June 2025 Published: 11 June 2025
  • With a focus on image denoising applications, this paper proposed a three-term extended Rivaie-Mustafa-Ismail-Leong (RMIL) conjugate gradient projection (CGP)-based algorithm for solving constrained nonlinear equations. Unlike traditional methods, the proposed algorithm relied only on the continuity and monotonicity properties of the nonlinear equations, and did not require the more restrictive Lipschitz continuity condition. A rigorous convergence analysis was established under these relaxed assumptions. At the algorithmic level, a novel three-term search direction was constructed by extending previous two-term schemes through the introduction of a carefully designed scale factor, which effectively eliminates the need for a line search procedure. Comprehensive numerical experiments on standard benchmark problems demonstrated the algorithm's efficiency and competitiveness, consistently outperforming comparable three-term algorithms in terms of running time in seconds, number of iterations, and function evaluations. Furthermore, the proposed algorithm has been successfully applied to image denosing problems.

    Citation: Dandan Li, Songhua Wang, Yan Xia, Xuejie Ma. Convergence analysis of a three-term extended RMIL CGP-based algorithm for constrained nonlinear equations and image denoising applications[J]. Electronic Research Archive, 2025, 33(6): 3584-3612. doi: 10.3934/era.2025160

    Related Papers:

    [1] Yan Xia, Songhua Wang . Global convergence in a modified RMIL-type conjugate gradient algorithm for nonlinear systems of equations and signal recovery. Electronic Research Archive, 2024, 32(11): 6153-6174. doi: 10.3934/era.2024286
    [2] Gonglin Yuan, Minjie Huang . An efficient modified HS conjugate gradient algorithm in machine learning. Electronic Research Archive, 2024, 32(11): 6175-6199. doi: 10.3934/era.2024287
    [3] Asma Maiza, Raouf Ziadi, Mohammed A. Saleh, Abdulgader Z. Almaymuni . An improved conjugate gradient algorithm by adapting a new line search technique. Electronic Research Archive, 2025, 33(4): 2148-2171. doi: 10.3934/era.2025094
    [4] Huimin Qu, Haiyan Xie, Qianying Wang . Multi-convolutional neural network brain image denoising study based on feature distillation learning and dense residual attention. Electronic Research Archive, 2025, 33(3): 1231-1266. doi: 10.3934/era.2025055
    [5] Jingshi Li, Jiachuan Zhang, Guoliang Ju, Juntao You . A multi-mode expansion method for boundary optimal control problems constrained by random Poisson equations. Electronic Research Archive, 2020, 28(2): 977-1000. doi: 10.3934/era.2020052
    [6] Youjun Deng, Hongyu Liu, Xianchao Wang, Dong Wei, Liyan Zhu . Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements. Electronic Research Archive, 2021, 29(5): 3081-3096. doi: 10.3934/era.2021027
    [7] Cheng Wang . Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, 2021, 29(5): 2915-2944. doi: 10.3934/era.2021019
    [8] Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu . Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28(4): 1459-1486. doi: 10.3934/era.2020077
    [9] Chang Hou, Hu Chen . Stability and pointwise-in-time convergence analysis of a finite difference scheme for a 2D nonlinear multi-term subdiffusion equation. Electronic Research Archive, 2025, 33(3): 1476-1489. doi: 10.3934/era.2025069
    [10] Yantong Guo, Quansheng Wu, Xiaofeng Wang . An extension of high-order Kou's method for solving nonlinear systems and its stability analysis. Electronic Research Archive, 2025, 33(3): 1566-1588. doi: 10.3934/era.2025074
  • With a focus on image denoising applications, this paper proposed a three-term extended Rivaie-Mustafa-Ismail-Leong (RMIL) conjugate gradient projection (CGP)-based algorithm for solving constrained nonlinear equations. Unlike traditional methods, the proposed algorithm relied only on the continuity and monotonicity properties of the nonlinear equations, and did not require the more restrictive Lipschitz continuity condition. A rigorous convergence analysis was established under these relaxed assumptions. At the algorithmic level, a novel three-term search direction was constructed by extending previous two-term schemes through the introduction of a carefully designed scale factor, which effectively eliminates the need for a line search procedure. Comprehensive numerical experiments on standard benchmark problems demonstrated the algorithm's efficiency and competitiveness, consistently outperforming comparable three-term algorithms in terms of running time in seconds, number of iterations, and function evaluations. Furthermore, the proposed algorithm has been successfully applied to image denosing problems.



    Nonlinear equations are integral to various practical applications, such as image segmentation [1], financial forecasting [2], compressed sensing [3,4], machine learning [5], neural networks [6], Lyapunov matrix equations [7], and traffic assignment [8]. In this paper, we specifically address the study of such equations, focusing on their formulation and properties. A typical form of these nonlinear equations with convex constraints is defined as follows:

    F(a)=0,aΓ. (1.1)

    Here, the function F:ΓRn is both monotonic and continuous, and Γ represents a closed convex subset of Rn. The monotonicity condition, in particular, implies that for any a,bΓ, the following inequations hold:

    (F(a)F(b))T(ab)0. (1.2)

    There are numerous iterative methods designed to solve nonlinear equations with convex constraints, which can be broadly categorized into two major classes. The first class involves utilizing the Jacobian matrix or its approximations, such as Newton's methods [9], quasi-Newton methods [10], and Levenberg-Marquardt methods [11]. These methods are well-known for their rapid local convergence, with the key advantage being their quadratic convergence rate near the solution. However, a significant drawback arises from the computation and storage requirements of the Jacobian matrix or its approximation. Specifically, the need to explicitly compute and store the Jacobian, or even to approximate it iteratively, can result in high computational costs and memory demands. In contrast, the second class involves utilizing first-order gradient-based information, such as spectral gradient methods and conjugate gradient methods (e.g., [12,13,14,15,16,17]). These methods are favored for their simpler structure and significantly lower storage requirements, making them well-suited for solving large-scale nonlinear equations. Unlike the first class, first-order gradient-based methods do not require the computation or storage of the full Jacobian, thereby drastically reducing the computational burden. However, a critical limitation of these methods is that they usually require the function to satisfy the Lipschitz continuity condition. This constraint has motivated the development of the new methods that operate under weaker theoretical assumptions.

    Recently, some researchers have turned their attention to exploring novel methods that do not require Lipschitz continuity. This is driven by the limitations of traditional optimization algorithms that heavily rely on this condition for global convergence. For example, Jian et al. [18] proposed an inertial derivative-free projection method that ensures global convergence without requiring Lipschitz continuity. Their numerical experiments of this method demonstrate that it has promising results on test problems and compressed sensing problems. Similarly, Liu et al. [19] introduced a new three-term conjugate gradient projection (CGP) method with an adaptive line search strategy for solving large-scale nonlinear monotone equations with convex constraints, while guaranteeing global convergence without Lipschitz continuity. Liu et al. [20] also developed an efficient algorithm for solving convex constrained equations, while emphasizing its global convergence without the need for Lipschitz continuity. Li et al. [21] improved the three-term conjugate gradient algorithm for solving nonlinear equations with convex constraints. The authors established global convergence without Lipschitz continuity and demonstrated its effectiveness in benchmark problems and image denoising. In parallel, other researchers have focused on extending classical conjugate gradient methods for unconstrained optimization, aiming to enhance their applicability and performance in a wider range of problems. For example, Ibrahim et al. [22] introduced a derivative-free method that extends the three-term Polak-Ribière-Polyak (PRP) and the three-term Hestenes-Stiefel (HS) methods. Zheng et al. [23] enhanced the Fletcher-Reeves (FR) conjugate coefficient by incorporating a shrinkage multiplier, which leads to a derivative-free two-term search direction and its extended spectral version. Similarly, Wu et al. [24] extended the conjugate coefficient with a derivative-free projection technique to solve nonlinear monotone equations, proving global convergence without Lipschitz continuity.

    Motivated by these methods [25,26,27] and the projection technique, this paper extends these methods and proposed a three-term extended Rivaie-Mustafa-Ismail-Leong (RMIL) conjugate gradient-based projection algorithm for solving the problem (1.1). In this algorithm, the global convergence is proven without requiring the Lipschitz continuity condition. The structure of this paper is as follows. In Section 2, we provide a detailed formulation of the search direction. Section 3 outlines the illustration of the proposed algorithm and establishes the global convergence of the proposed algorithm. Sections 4 and 5 present the numerical results and performance profiles on benchmark problems and image denoising problems. Finally, the conclusion is given in Section 6. For notational clarity, we use to denote the Euclidean vector norm throughout the paper.

    Before presenting the construction of our search direction, we begin by reviewing several known different conjugate coefficients commonly used in unconstrained optimization min{f(a)aRn}. Among these, one of the most efficient and widely recognized methods is the PRP-type conjugate coefficient, which is defined as:

    βPRPk=gTkyk1gk12,

    where gk:=f(ak) represents the gradient, and yk=gkgk1 is the difference between successive gradients. From a computational efficiency standpoint, the PRP method has been shown to outperform many other conjugate gradient methods. In an effort to further enhance the performance of this coefficient, Rivaie et al. [25] proposed a modification by replacing the denominator gk12 with dk12, resulting in the RMIL conjugate coefficient:

    βRMILk=gTkyk1dk12,

    where dk1 denotes the previous search direction. The resulting coefficient is not only simple in form but also easy to implement in practice. Moreover, theoretical analysis has shown that the conjugate gradient method employing this coefficient enjoys global convergence with a linear rate. While this adjustment aims to improve convergence properties, it raises a concern regarding the nonnegativity of βRMILk, which is essential for ensuring global convergence under certain conditions. To mitigate this issue, Dai et al. [26] introduced a safeguard mechanism and proposed the RMIL variant:

    βRMIL+k={gTkyk1dk12,if0gTkgk1gk2,0,otherwise.

    This modification guarantees nonnegativity. However, when the condition fails, it comes at the cost of potentially degenerating the search direction to the steepest descent. This can significantly slow down convergence in practice. In response to this limitation, Xia et al. [27] recently proposed a more robust conjugate coefficient that not only preserves nonnegativity but also avoids degeneration to solve the problem (1.1). For convenient writing, let Fk and wk1 denote F(ak) and FkFk1, respectively. Then, their coefficient is defined as:

    βk=min{|FTkwk1|,Fk2}μ1(Fk2+dk12)+dk12, (2.1)

    where μ1>1 is a positive parameter that enhances numerical stability. Utilizing this idea, we explore the efficient variant of conjugate gradient methods known as the three-term conjugate gradient method. In this approach, the search direction is given by:

    d0=F0,dk=Fk+βkdk1+θkwk1,k1, (2.2)

    where βk and θk are conjugate and scale coefficients, respectively. Based on this structure, we extend the conjugate coefficient βk defined in (2.1) to propose a novel three-term RMIL-type CGP algorithm designed to solve the problem (1.1). To ensure the sufficient descent property of the search direction and the trust-region feature of the search direction, we further define the scale coefficient θk as:

    θk=FTkdk1μ2(wk12+dk12)+dk12, (2.3)

    where μ2>1.

    The following lemma shows that the proposed search direction possesses the sufficient descent property and trust-region feature without the need for any line search approaches.

    Lemma 1. If the search direction sequence {dk} is generated by (2.1), (2.2) and (2.3), then the following conclusions hold:

    FTkdk(112μ112μ2)Fk2, (2.4)
    (112μ112μ2)Fkdk(1+1μ1+1μ2)Fk. (2.5)

    Proof. For k=0, it is easy to deduce that (2.4) holds. For k1, utilizing the Cauchy-Schwartz inequality, and applying the definitions of (2.1) and (2.3), we obtain the following relationships for βk and θk:

    |βk|Fk22μ1Fkdk1=Fk2μ1dk1, (2.6)
    |θk|Fkdk12μ2wk1dk1Fk2μ2wk1. (2.7)

    Multiplying both sides of (2.2) by FTk and substituting the bounds from (2.6) and (2.7), we obtain:

    FTkdk=FTk(Fk+βkdk1+θkwk1)Fk2+Fk2μ1dk1Fkdk1+Fk2μ2wk1Fkwk1=(112μ112μ2)Fk2,

    which proves that the search direction dk satisfies sufficient descent (2.4).

    To establish the trust-region feature, we further apply the Cauchy-Schwartz inequality and (2.4) to derive:

    FkdkFTkdk(112μ112μ2)Fk2,

    which simplifies to: dk(112μ112μ2)Fk. Together with (2.6) and (2.7), we can further refine (2.2) as follows:

    dk=Fk+βkdk1+θkwk1Fk+|βk|dk1+|θk|wk1Fk+Fk2μ1+Fk2μ2=(1+1μ1+1μ2)Fk.

    Thus, the search direction dk satisfies the trust-region feature (2.5). Therefore, the proof is complete.

    In this section, we propose a novel three-term RMIL CGP algorithm (abbreviated as TTRMIL algorithm) for solving constrained nonlinear equations. Before presenting the algorithm, we first define the line search approach and the projection operator, which are essential to ensuring the stability of the algorithm. The line search approach is crucial for maintaining the algorithm's stability, and we employ the following condition to guide the search direction [28]:

    F(ak+tkdk)TdkκtkF(ak+tkdk)dk2, (3.1)

    where κ>0, and tk:=max{ξρi|i=0,1,2,} with ξ>0 and ρ(0,1). This ensures that the algorithm maintains stability while avoiding excessively small step sizes that would slow down convergence. To ensure that each iterative point remains feasible in the problem's constraints, we define the projection operator [14,16] as follows:

    TΓ[a]=argminb{ab,bΓ},aRn. (3.2)

    This projection operator possesses a well-known non-expansive property, i.e.,

    TΓ[a]TΓ[b]ab,a,bRn. (3.3)

    With these foundational concepts established, we now proceed to present the detailed steps of the TTRMIL algorithm, which is summarized in Algorithm 1.

    Algorithm 1 A novel three-term RMIL (TTRMIL) CGP algorithm
    1: Initialization: Initial point: a0Rn. Parameters: l(0,2), δ,κ,ξ>0, ρ(0,1), μ1,μ2>1, and d0=F0. Set k:=0.
    2: while Fk>δ do
    3:     Calculate the conjugate and scale coefficients by (2.1) and (2.3).
    4:     Calculate the search direction by (2.2).
    5:     Choose the step-size tk by (3.1) and compute the trial point bk=ak+tkdk.
    6:     if bkΓ and ||F(bk)||δ then
    7:         Break.
    8:     else
    9:         Calculate the next iterative point ak+1 by the following equation:
    ak+1=TΓ[aklϖkF(bk)],ϖk=F(bk)T(akbk)F(bk)2.(3.4)
    10:     end if
    11:     Set k:=k+1.
    12: end while

    Remark 1. The parameter l in (3.4) serves as a relaxation factor, which is introduced to potentially enhance the convergence speed of the algorithm. In practical applications, choosing a relatively larger relaxation l[1,2) has been observed to yield better empirical performance in terms of convergence speed.

    In the following, we analyze the global convergence of the TTRMIL algorithm. We assume that the sequences {ak}, {bk} and {dk} generated by the TTRMIL algorithm are infinite; otherwise, the final iterations will yield the optimal solution to the problem described in (1.1). To facilitate the following analysis, we provide the following general assumptions:

    (H1) The solution set Γ of the problem described in (1.1) is nonempty. (H2) The function F() is continuous and monotone on Rn.

    Lemma 2. There exists a positive integer ik such that tk=ξρik satisfies the condition (3.1) for any k0.

    Proof. The existence of such an integer ik follows from a standard backtracking line search approach. In particular, the structure of the condition (3.1) and the properties of the parameter sequence align closely with those analyzed in Lemma 2 of [28]. As the proof involves routine analysis and follows similar steps, we omit the detailed derivation here for brevity.

    Lemma 3. Suppose that Assumptions (H1) and (H2) are satisfied. For a solution aΓ, the sequence {aka} converges, and the sequence {ak} is bounded, where {ak} is generated by the TTRMIL algorithm.

    Proof. We begin by applying the monotone property from (1.2) with a=bk and b=a. This yields the inequality F(bk)T(bka)0, which can be rewritten as:

    F(bk)T(aka)F(bk)T(akbk). (3.5)

    Next, using the projection operator defined in (3.2) and the non-expansive property defined in (3.3), we obtain the following inequality:

    ak+1a2=TΓ[aklϖkF(bk)]TΓ[a]2aklϖkF(bk)a2=aka22lϖkF(bk)T(aka)+l2ϖ2kF(bk)2.

    Substituting (3.5) into this inequality and applying the definition of ϖk, we derive:

    ak+1a2aka22lϖkF(bk)T(akbk)+l2ϖ2kF(bk)2=aka22lF(bk)T(akbk)F(bk)2F(bk)T(akbk)+l2(F(bk)T(akbk)F(bk)2)2F(bk)2aka2l(2l)(F(bk)T(akbk))2F(bk)2, (3.6)

    which yields that ak+1aaka with l(0,2). Therefore, the sequence {aka} is convergent. Since the norm sequence converges, it follows that the sequence {ak} is bounded. Therefore, the proof is complete.

    Lemma 4. Suppose that Assumptions (H1) and (H2) are satisfied. Then, the following relationship holds:

    limktkdk=0, (3.7)

    where the sequences {tk} and {dk} are generated by the TTRMIL algorithm.

    Proof. We begin by recalling the definition of bk and multiplying both sides of (3.1) by tk, which leads to the following inequality:

    F(bk)T(akbk)κt2kF(bk)dk2=κF(bk)akbk2.

    Substituting this result into (3.6), we get:

    ak+1a2aka2l(2l)(κF(bk)akbk2)2F(bk)2=aka2l(2l)κ2akbk4.

    This can be rewritten as:

    l(2l)κ2akbk4aka2ak+1a2.

    To further summarize this result over all iterations, we sum the inequalities for k from 0 to , yielding:

    l(2l)κ2k=0akbk4k=0(aka2ak+1a2)a0a2.

    Thus, we conclude that limkakbk=0. From the definition of bk, this implies limktkdk=0. Therefore, the proof is complete.

    Theorem 1. Suppose that Assumptions (H1) and (H2) are satisfied. Then, the following conclusion holds:

    limkinfF(ak)=0, (3.8)

    where the sequence {ak} is generated by the TTRMIL algorithm.

    Proof. We proceed by contradiction. Assume that (3.8) is not true, meaning there exists a constant δ0>0 such that F(ak)>δ0 for all k0. From (2.5), we deduce that:

    dk(112μ112μ2)F(ak)>(112μ112μ2)δ0. (3.9)

    Additionally, since F() is continuous and the sequence {ak} is bounded, it follows that the sequence {F(ak)} is also bounded. Therefore, there exists a constant δ1>0 such that F(ak)<δ1 for all k0. From (2.5), we also deduce that:

    dk(1+12μ1+12μ2)F(ak)<(1+12μ1+12μ2)δ1. (3.10)

    Together with (3.9) and (3.10), we conclude that the sequence {dk} is bounded. Therefore, we can apply the result from (3.7), which gives us:

    limktk=0.

    Given that {ak} and {dk} are both bounded, there exists an infinite index set Ω such that

    limn,nΩakn=˘alimn,nΩdkn=˘d.

    Now, observe that for tkn, the line search approach defined in (3.1) is violated:

    F(akn+ρ1tkndkn)Tdkn<κρ1tknF(akn+ρ1tkndkn)dkn2.

    Taking the limit as n, we find:

    F(˘a)T˘d0. (3.11)

    In addition, together with (2.4), we have:

    F(akn)Tdkn(112μ112μ2)F(akn)2,

    which leads to:

    F(˘a)T˘d<0. (3.12)

    Thus, (3.11) is contradicts with (3.12). Therefore, the proof is complete.

    In this section, we evaluate the numerical performance of the TTRMIL, self-adaptive three-term conjugate gradient method (SATTCGM) [29], modified spectral conjugate gradient (MSCG) [30], and modified RMIL (MRMIL) [27] algorithms in solving large-scale constrained nonlinear equations. All experiments are performed on a Lenovo PC with an Intel (R) Core(TM) i7-12700F processor (2.10 GHz), 16 GB of RAM, and Windows 11 operation system. The parameters for the TTRMIL algorithm are chosen as follows:

    l=1.4,δ=106,κ=104,ξ=1,ρ=0.74,μ1=2,μ2=4.

    For the SATTCGP, MSCG, and MRMIL algorithms, the parameters remain consistent with those presented in their original literatures. The algorithms stopped when either of the following conditions is met: (ⅰ) Fkδ or (ⅱ) NI >10,000. Here, NI denotes the number of iterations. The benchmark problems are solved by eight different initial points, as detailed in Table 1, and the problem dimensions are selected from the set: [1000, 5000, 10,000, 50,000,100,000]. The benchmark problems include the following:

    Table 1.  Initial points used for benchmark problems.
    a1=(1,1,,1) a2=(13,132,,13n) a3=(12,122,,12n) a4=(0,1n,,n1n)
    a5=(1,12,,1n) a6=(1n,2n,,nn) a7=(n1n,n2n,,nnn) a8=rand(n,1)

     | Show Table
    DownLoad: CSV

    Problem 1 [30]:

    F1(a)=exp(a1)1,Fi(a)=exp(ai)+ai1,fori=2,3,,n,

    and Γ=Rn+.

    Problem 2 [30]:

    Fi(a)=exp(ai)1,fori=1,2,,n,

    and Γ=Rn+.

    Problem 3 [30]:

    Fi(a)=ln(ai+1)ain,fori=1,2,,n,

    and Γ=[1,+).

    Problem 4 [28]:

    Fi(a)=exp(ai)2+3sin(ai)cos(ai)1,fori=1,2,,n,

    and Γ=Rn+.

    Problem 5 [28]:

    F1(a)=2a1+sin(a1)1,Fi(a)=2ai1+2ai+sin(ai)1,fori=2,3,,n1,Fn(a)=2an+sin(an)1,

    and Γ=Rn+.

    Problem 6 [30]:

    Fi(a)=aisin(|ai1|),fori=1,2,,n,

    and Γ=Rn+.

    Problem 7 [28]:

    Fi(a)=2aisin(|ai|),fori=1,2,,n,

    and Γ=Rn+.

    Problem 8 [30]:

    F1(a)=a1exp(cos(a1+a22)),Fi(a)=aiexp(cos(ai1+ai+ai+1i)),fori=2,3,,n1,Fn(a)=anexp(cos(an1+ann)),

    and Γ=Rn+.

    Problem 9. [31]:

    Fi(a)=2c(ai1)+4(ˉa0.25)ai,fori=1,2,,n,

    and Γ=Rn+,ˉa=ni=1a2i,c=105.

    Problem 10 [31]:

    F1(a)=2a1a2+exp(a1)1,Fi(a)=ai1+2aiai+1+exp(ai)1,fori=2,3,,n1,Fn(a)=an1+2an+exp(an)1,

    and Γ=Rn+.

    Problem 11 [32]:

    F(a)=(0.50000.50000.5)(a1a2an)+(100010001)(am1am2amn)(4444),

    and m=0.3, Γ=Rn+.

    The experimental results are compared and presented in Tables 212, where the following notations are used: "Init" refers to the initial points; "n" refers to the problem dimensions, multiplied by 1000; "CPUT" refers to the central processing unit (CPU) time in seconds; "NF" refers to the number of function evaluations; "NI" refers to the number of iterations; "NORM" refers to the norm of Fk at the final iteration. To clearly illustrate the numerical performance, we employ the performance profiles developed by Dolan and Morè [33] for comparing the performance in terms of CPUT, NF and NI. The performance profiles used in our evaluation are defined as follows:

    ρ(τ)=1|Ωp||{ωpΩplog2(ωp,qmin{ωp,qqΠ})τ}|.
    Table 2.  Numerical results for Problem 1.
    Inti(n) TTRMIL SATTCGM MSCG MRMIL
    CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM
    a1(1) 7.69×103/7/1/0.00×100 1.85×103/5/1/0.00×100 3.23×103/57/14/4.33×107 2.07×103/7/1/0.00×100
    a2(1) 7.30×104/4/1/0.00×100 5.95×104/25/8/2.07×107 1.04×103/43/14/5.70×107 8.80×105/4/1/0.00×100
    a3(1) 4.81×104/24/5/1.33×1015 2.09×103/61/17/2.85×107 1.32×103/65/16/7.33×107 6.69×104/39/9/6.21×108
    a4(1) 4.67×104/17/3/0.00×100 1.19×103/45/11/2.26×107 4.08×103/181/45/7.54×107 1.12×103/62/12/9.82×107
    a5(1) 5.03×104/25/5/0.00×100 1.69×103/68/19/2.50×107 2.84×103/105/26/9.12×107 6.76×104/36/7/7.26×107
    a6(1) 3.42×104/17/3/0.00×100 1.02×103/48/12/2.26×107 3.61×103/181/45/7.65×107 1.15×103/62/12/3.65×107
    a7(1) 3.38×104/17/3/0.00×100 1.35×103/63/17/2.32×107 3.60×103/181/45/7.47×107 1.20×103/62/12/7.57×107
    a8(1) 3.98×104/17/3/0.00×100 1.40×103/60/16/2.31×107 3.56×103/177/44/9.92×107 1.10×103/57/11/9.60×107
    a1(5) 9.89×104/7/1/0.00×100 7.02×104/5/1/0.00×100 8.52×103/57/14/3.75×107 9.10×104/7/1/0.00×100
    a2(5) 3.98×104/4/1/0.00×100 3.86×103/25/8/2.07×107 6.03×103/43/14/5.70×107 4.24×104/4/1/0.00×100
    a3(5) 4.87×104/4/1/0.00×100 6.02×104/4/1/0.00×100 6.29×103/43/14/6.46×107 4.26×104/4/1/0.00×100
    a4(5) 2.05×103/17/3/0.00×100 5.06×103/45/11/5.06×107 1.84×102/189/47/7.64×107 7.03×103/67/13/1.39×107
    a5(5) 2.58×103/25/5/0.00×100 7.91×103/68/19/2.50×107 1.05×102/105/26/9.15×107 3.64×103/36/7/6.78×107
    a6(5) 1.81×103/17/3/0.00×100 5.04×103/45/11/5.06×107 1.88×102/189/47/7.66×107 5.61×103/62/12/7.41×107
    a7(5) 1.54×103/17/3/0.00×100 7.56×103/60/16/5.10×107 1.97×102/189/47/7.63×107 6.49×103/67/13/1.18×107
    a8(5) 1.98×103/17/3/0.00×100 6.45×103/54/14/5.13×107 1.94×102/189/47/7.61×107 6.65×103/67/13/8.03×107
    a1(10) 1.02×103/7/1/0.00×100 8.04×104/5/1/0.00×100 8.87×103/57/14/4.04×107 8.81×104/7/1/0.00×100
    a2(10) 6.46×104/4/1/0.00×100 4.72×103/25/8/2.07×107 7.35×103/43/14/5.70×107 8.08×104/4/1/0.00×100
    a3(10) 6.36×104/4/1/0.00×100 5.84×104/4/1/0.00×100 8.00×103/43/14/6.46×107 7.88×104/4/1/0.00×100
    a4(10) 2.65×103/17/3/0.00×100 6.78×103/45/11/7.15×107 2.91×102/193/48/7.26×107 1.02×102/67/13/1.61×107
    a5(10) 3.65×103/25/5/0.00×100 1.22×102/68/19/2.50×107 1.84×102/105/26/9.16×107 5.08×103/36/7/6.73×107
    a6(10) 2.38×103/17/3/0.00×100 7.24×103/45/11/7.16×107 3.12×102/193/48/7.27×107 9.88×103/67/13/1.02×107
    a7(10) 3.07×103/17/3/0.00×100 1.05×102/60/16/7.19×107 3.00×102/193/48/7.25×107 9.56×103/67/13/1.48×107
    a8(10) 2.96×103/17/3/0.00×100 8.91×103/54/14/7.23×107 3.04×102/193/48/7.11×107 1.16×102/72/14/5.95×107
    a1(50) 4.66×103/7/1/0.00×100 2.92×103/5/1/0.00×100 3.80×102/57/14/6.71×107 3.91×103/7/1/0.00×100
    a2(50) 2.21×103/4/1/0.00×100 1.57×102/25/8/2.07×107 2.75×102/43/14/5.70×107 2.86×103/4/1/0.00×100
    a3(50) 2.09×103/4/1/0.00×100 2.15×103/4/1/0.00×100 2.80×102/43/14/6.46×107 1.97×103/4/1/0.00×100
    a4(50) 9.77×103/17/3/0.00×100 3.20×102/49/12/3.20×107 1.31×101/201/50/7.32×107 3.96×102/67/13/3.04×107
    a5(50) 1.60×102/25/5/0.00×100 4.60×102/68/19/2.50×107 6.83×102/105/26/9.16×107 2.15×102/36/7/6.69×107
    a6(50) 1.01×102/17/3/0.00×100 3.33×102/49/12/3.20×107 1.30×101/201/50/7.32×107 4.01×102/67/13/2.78×107
    a7(50) 9.99×103/17/3/0.00×100 4.15×102/61/16/3.21×107 1.28×101/201/50/7.32×107 4.05×102/67/13/2.99×107
    a8(50) 1.14×102/17/3/0.00×100 3.88×102/55/14/3.21×107 1.32×101/201/50/7.26×107 4.87×102/72/14/3.42×107
    a1(100) 8.87×103/7/1/0.00×100 6.95×103/5/1/0.00×100 7.94×102/57/14/9.06×107 8.31×103/7/1/0.00×100
    a2(100) 5.48×103/4/1/0.00×100 3.38×102/25/8/2.07×107 5.76×102/43/14/5.70×107 4.33×103/4/1/0.00×100
    a3(100) 5.53×103/4/1/0.00×100 4.95×103/4/1/0.00×100 6.17×102/43/14/6.46×107 4.00×103/4/1/0.00×100
    a4(100) 1.90×102/17/3/0.00×100 6.41×102/49/12/4.53×107 2.48×101/205/51/6.95×107 8.03×102/67/13/4.21×107
    a5(100) 3.55×102/25/5/0.00×100 9.10×102/68/19/2.50×107 1.28×101/105/26/9.16×107 4.16×102/36/7/6.68×107
    a6(100) 2.38×102/17/3/0.00×100 6.45×102/49/12/4.53×107 2.41×101/205/51/6.95×107 7.49×102/67/13/4.02×107
    a7(100) 2.11×102/17/3/0.00×100 7.95×102/61/16/4.53×107 2.44×101/205/51/6.95×107 7.62×102/67/13/4.17×107
    a8(100) 2.16×102/17/3/0.00×100 7.97×102/55/14/4.53×107 2.45×101/205/51/6.92×107 8.66×102/67/13/7.00×107

     | Show Table
    DownLoad: CSV
    Table 3.  Numerical results for Problem 2.
    Inti(n) TTRMIL SATTCGM MSCG MRMIL
    CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM
    a1(1) 1.23×104/5/1/0.00×100 1.04×104/4/1/0.00×100 1.03×103/59/19/4.90×107 8.70×105/5/1/0.00×100
    a2(1) 7.02×105/4/1/0.00×100 4.09×104/25/8/2.07×107 6.61×104/43/14/5.70×107 5.52×105/4/1/0.00×100
    a3(1) 1.12×104/7/2/2.22×1016 4.00×104/25/8/3.54×107 6.83×104/46/15/4.95×107 3.05×104/22/7/1.26×107
    a4(1) 3.86×104/22/7/0.00×100 5.67×104/31/10/7.72×107 1.24×103/74/24/6.67×107 4.27×104/27/8/3.16×108
    a5(1) 1.43×104/9/2/0.00×100 4.61×104/28/9/2.95×107 9.86×104/59/19/7.01×107 4.13×104/27/8/1.51×107
    a6(1) 3.83×104/22/7/0.00×100 5.54×104/31/10/7.74×107 1.26×103/74/24/7.34×107 4.23×104/27/8/3.38×108
    a7(1) 3.83×104/22/7/0.00×100 5.56×104/31/10/7.72×107 1.32×103/74/24/6.67×107 4.28×104/27/8/3.16×108
    a8(1) 4.21×104/22/7/0.00×100 6.06×104/31/10/7.33×107 1.37×103/77/25/6.92×107 4.74×104/27/8/8.59×108
    a1(5) 4.79×104/5/1/0.00×100 3.68×104/4/1/0.00×100 5.64×103/62/20/4.38×107 3.61×104/5/1/0.00×100
    a2(5) 3.13×104/4/1/0.00×100 2.91×103/25/8/2.07×107 4.30×103/43/14/5.70×107 3.38×104/4/1/0.00×100
    a3(5) 3.65×104/4/1/0.00×100 3.66×104/4/1/0.00×100 4.18×103/43/14/6.46×107 3.31×104/4/1/0.00×100
    a4(5) 2.22×103/22/7/0.00×100 3.05×103/34/11/3.46×107 6.67×103/77/25/6.32×107 2.42×103/27/8/7.27×108
    a5(5) 6.95×104/9/2/0.00×100 3.02×103/28/9/2.95×107 5.10×103/59/19/7.01×107 2.79×103/27/8/1.79×107
    a6(5) 2.36×103/22/7/0.00×100 3.08×103/34/11/3.46×107 6.77×103/77/25/6.44×107 2.70×103/27/8/7.36×108
    a7(5) 2.28×103/22/7/0.00×100 3.78×103/34/11/3.46×107 6.72×103/77/25/6.32×107 2.47×103/27/8/7.27×108
    a8(5) 2.51×103/22/7/0.00×100 3.09×103/34/11/3.40×107 6.78×103/77/25/6.16×107 2.52×103/27/8/5.01×108
    a1(10) 6.73×104/5/1/0.00×100 6.96×104/4/1/0.00×100 7.78×103/62/20/6.20×107 4.89×104/5/1/0.00×100
    a2(10) 4.53×104/4/1/0.00×100 3.70×103/25/8/2.07×107 6.50×103/43/14/5.70×107 3.89×104/4/1/0.00×100
    a3(10) 4.15×104/4/1/0.00×100 4.62×104/4/1/0.00×100 5.63×103/43/14/6.46×107 3.93×104/4/1/0.00×100
    a4(10) 3.32×103/22/7/0.00×100 4.40×103/34/11/4.89×107 1.03×102/77/25/8.99×107 3.79×103/27/8/1.03×107
    a5(10) 1.01×103/9/2/0.00×100 3.76×103/28/9/2.96×107 7.41×103/59/19/7.01×107 3.82×103/27/8/1.83×107
    a6(10) 3.62×103/22/7/0.00×100 5.07×103/34/11/4.89×107 1.01×102/77/25/9.07×107 3.20×103/27/8/1.04×107
    a7(10) 2.90×103/22/7/0.00×100 4.75×103/34/11/4.89×107 1.12×102/77/25/8.99×107 3.58×103/27/8/1.03×107
    a8(10) 3.63×103/22/7/0.00×100 4.76×103/34/11/4.81×107 9.75×103/77/25/8.07×107 4.02×103/27/8/1.24×107
    a1(50) 1.91×103/5/1/0.00×100 1.56×103/4/1/0.00×100 2.97×102/65/21/5.54×107 1.93×103/5/1/0.00×100
    a2(50) 1.46×103/4/1/0.00×100 1.02×102/25/8/2.07×107 1.69×102/43/14/5.70×107 1.35×103/4/1/0.00×100
    a3(50) 1.35×103/4/1/0.00×100 1.33×103/4/1/0.00×100 1.73×102/43/14/6.46×107 1.31×103/4/1/0.00×100
    a4(50) 1.16×102/22/7/0.00×100 2.04×102/37/12/2.19×107 3.67×102/80/26/8.21×107 1.21×102/27/8/2.31×107
    a5(50) 3.80×103/9/2/0.00×100 1.21×102/28/9/2.96×107 2.72×102/59/19/7.01×107 1.33×102/27/8/1.86×107
    a6(50) 1.04×102/22/7/0.00×100 1.97×102/37/12/2.19×107 3.71×102/80/26/8.22×107 1.19×102/27/8/2.31×107
    a7(50) 1.11×102/22/7/0.00×100 2.05×102/37/12/2.19×107 3.76×102/80/26/8.21×107 1.21×102/27/8/2.31×107
    a8(50) 1.36×102/22/7/0.00×100 2.16×102/37/12/2.18×107 3.87×102/80/26/7.89×107 1.60×102/27/8/2.45×107
    a1(100) 4.34×103/5/1/0.00×100 2.54×103/4/1/0.00×100 4.99×102/65/21/7.84×107 2.88×103/5/1/0.00×100
    a2(100) 2.53×103/4/1/0.00×100 1.61×102/25/8/2.07×107 2.67×102/43/14/5.70×107 2.18×103/4/1/0.00×100
    a3(100) 2.33×103/4/1/0.00×100 2.53×103/4/1/0.00×100 2.58×102/43/14/6.46×107 1.89×103/4/1/0.00×100
    a4(100) 1.77×102/22/7/0.00×100 3.06×102/37/12/3.10×107 6.46×102/83/27/4.72×107 2.15×102/27/8/3.27×107
    a5(100) 6.05×103/9/2/0.00×100 1.82×102/28/9/2.96×107 4.44×102/59/19/7.01×107 2.12×102/27/8/1.87×107
    a6(100) 1.85×102/22/7/0.00×100 3.16×102/37/12/3.10×107 6.44×102/83/27/4.72×107 2.18×102/27/8/3.27×107
    a7(100) 1.78×102/22/7/0.00×100 3.16×102/37/12/3.10×107 6.59×102/83/27/4.72×107 2.04×102/27/8/3.27×107
    a8(100) 2.15×102/22/7/0.00×100 3.51×102/37/12/3.09×107 6.80×102/83/27/4.63×107 2.92×102/27/8/3.23×107

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical results for Problem 3.
    Inti(n) TTRMIL SATTCGM MSCG MRMIL
    CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM
    a1(1) 8.87×104/19/9/5.20×107 2.00×103/52/24/7.04×107 4.83×104/11/5/3.60×108 1.03×103/25/12/6.83×107
    a2(1) 4.80×104/17/8/1.82×107 1.04×103/38/17/8.94×107 2.45×104/9/4/1.65×109 5.32×104/21/10/5.62×107
    a3(1) 1.26×103/38/15/1.01×107 1.46×103/40/18/9.58×107 1.31×103/48/17/7.73×107 1.03×103/34/14/1.85×107
    a4(1) 1.60×103/41/16/6.27×107 1.94×103/51/23/7.66×107 2.48×103/66/23/7.45×107 1.25×103/33/13/4.02×107
    a5(1) 1.59×103/40/16/1.23×107 1.59×103/43/19/7.69×107 2.37×103/59/22/9.17×107 1.33×103/38/15/4.74×107
    a6(1) 1.47×103/37/14/4.48×107 1.95×103/51/23/7.67×107 2.47×103/66/23/7.47×107 1.24×103/33/13/3.92×107
    a7(1) 1.59×103/41/16/6.27×107 1.96×103/51/23/7.66×107 2.48×103/66/23/7.45×107 1.31×103/33/13/4.02×107
    a8(1) 1.89×103/49/20/2.00×107 1.96×103/51/23/7.80×107 2.49×103/66/23/7.20×107 1.31×103/34/14/6.59×107
    a1(5) 4.48×103/21/10/1.85×107 7.54×103/51/23/9.11×107 1.65×103/11/5/6.26×109 4.33×103/27/13/4.08×107
    a2(5) 2.29×103/17/8/1.88×107 4.39×103/35/15/8.45×107 8.53×104/7/3/7.28×107 2.54×103/21/10/5.78×107
    a3(5) 2.14×103/17/8/2.02×107 3.91×103/35/15/9.14×107 1.10×103/9/4/2.00×109 2.33×103/21/10/5.99×107
    a4(5) 5.86×103/38/14/2.10×107 6.61×103/50/22/9.98×107 9.08×103/69/24/6.62×107 5.05×103/39/15/4.58×108
    a5(5) 4.45×103/34/13/9.35×107 5.69×103/40/17/7.28×107 8.76×103/65/24/9.96×107 3.54×103/28/11/7.22×107
    a6(5) 6.36×103/38/14/1.05×107 7.26×103/50/22/9.99×107 9.78×103/69/24/6.63×107 4.76×103/36/14/9.96×107
    a7(5) 5.13×103/38/14/2.10×107 7.32×103/50/22/9.98×107 8.92×103/69/24/6.62×107 5.42×103/39/15/4.58×108
    a8(5) 5.19×103/37/14/4.74×107 6.87×103/50/22/9.97×107 1.02×102/69/24/6.54×107 5.51×103/36/14/1.31×107
    a1(10) 4.61×103/21/10/2.61×107 4.89×103/33/11/8.21×107 1.78×103/11/5/3.62×109 4.71×103/27/13/5.76×107
    a2(10) 2.78×103/17/8/1.89×107 3.85×103/27/9/2.25×107 1.35×103/7/3/6.19×107 3.27×103/21/10/5.80×107
    a3(10) 2.54×103/17/8/2.02×107 3.43×103/27/9/2.43×107 1.16×103/9/4/9.73×1010 3.34×103/21/10/6.01×107
    a4(10) 6.20×103/37/14/9.23×107 5.60×103/36/12/3.14×107 1.12×102/69/24/9.33×107 6.49×103/39/15/7.30×108
    a5(10) 6.22×103/34/13/8.34×107 4.19×103/30/10/3.05×107 1.09×102/68/25/4.59×107 4.17×103/28/11/7.23×107
    a6(10) 7.21×103/40/15/3.18×107 5.57×103/36/12/3.14×107 1.05×102/69/24/9.33×107 5.84×103/39/15/7.23×108
    a7(10) 6.12×103/37/14/9.23×107 6.00×103/36/12/3.14×107 1.03×102/69/24/9.33×107 6.60×103/39/15/7.30×108
    a8(10) 6.79×103/40/15/1.56×107 5.91×103/36/12/3.13×107 9.97×103/69/24/9.15×107 5.75×103/37/14/3.32×107
    a1(50) 1.79×102/21/10/5.83×107 2.33×102/36/12/3.66×107 1.45×102/24/9/6.80×107 2.21×102/29/14/3.46×107
    a2(50) 1.01×102/17/8/1.89×107 1.33×102/27/9/2.24×107 4.42×103/7/3/5.33×107 1.11×102/21/10/5.82×107
    a3(50) 9.59×103/17/8/2.03×107 1.33×102/27/9/2.42×107 8.66×103/16/6/5.71×107 1.07×102/21/10/6.03×107
    a4(50) 2.75×102/35/13/9.09×107 2.26×102/36/12/7.01×107 4.44×102/72/25/8.44×107 2.49×102/37/14/8.36×107
    a5(50) 2.46×102/34/13/4.91×107 1.84×102/30/10/3.05×107 4.08×102/68/25/4.91×107 1.72×102/28/11/7.23×107
    a6(50) 2.40×102/35/13/9.01×107 2.25×102/36/12/7.01×107 4.52×102/72/25/8.44×107 2.50×102/37/14/8.34×107
    a7(50) 2.43×102/35/13/9.09×107 2.11×102/36/12/7.01×107 4.40×102/72/25/8.44×107 2.37×102/37/14/8.36×107
    a8(50) 2.71×102/40/15/3.41×107 2.35×102/36/12/6.98×107 4.40×102/72/25/8.37×107 2.67×102/40/16/7.01×107
    a1(100) 2.77×102/21/10/8.25×107 3.82×102/36/12/5.18×107 2.47×102/24/9/9.36×107 3.48×102/29/14/4.90×107
    a2(100) 1.52×102/17/8/1.90×107 2.14×102/27/9/2.24×107 6.75×103/7/3/5.22×107 1.66×102/21/10/5.82×107
    a3(100) 1.56×102/17/8/2.03×107 2.08×102/27/9/2.42×107 1.35×102/16/6/5.67×107 1.72×102/21/10/6.03×107
    a4(100) 4.68×102/38/14/4.10×107 4.15×102/36/12/9.91×107 7.56×102/75/26/4.84×107 4.33×102/40/15/1.85×107
    a5(100) 3.85×102/34/13/4.44×107 3.07×102/30/10/3.04×107 7.01×102/68/25/4.94×107 2.95×102/28/11/7.23×107
    a6(100) 4.62×102/38/14/4.13×107 4.07×102/36/12/9.91×107 7.88×102/75/26/4.84×107 4.58×102/40/15/1.85×107
    a7(100) 4.61×102/38/14/4.10×107 3.83×102/36/12/9.91×107 7.87×102/75/26/4.84×107 4.29×102/40/15/1.85×107
    a8(100) 4.78×102/40/15/5.69×107 4.08×102/36/12/9.89×107 7.63×102/75/26/4.81×107 4.76×102/42/16/3.68×108

     | Show Table
    DownLoad: CSV
    Table 5.  Numerical results for Problem 4.
    Inti(n) TTRMIL SATTCGM MSCG MRMIL
    CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM
    a1(1) 2.32×104/6/1/0.00×100 1.88×104/6/1/0.00×100 2.16×103/110/18/7.95×107 1.94×104/6/1/0.00×100
    a2(1) 1.44×104/9/1/0.00×100 1.10×104/6/1/0.00×100 1.33×103/85/14/5.20×107 1.59×104/9/1/0.00×100
    a3(1) 2.65×104/17/2/2.22×1016 1.07×104/6/1/3.14×1016 1.50×103/97/16/6.40×107 3.54×104/25/3/9.68×1016
    a4(1) 6.82×104/35/4/0.00×100 5.47×104/26/5/0.00×100 3.39×103/181/30/7.16×107 1.07×103/59/7/1.88×107
    a5(1) 2.70×104/14/2/0.00×100 4.92×104/24/5/0.00×100 2.71×103/152/25/7.75×107 2.37×103/139/17/7.23×107
    a6(1) 6.79×104/35/4/0.00×100 5.58×104/26/5/0.00×100 3.43×103/181/30/7.46×107 1.20×103/67/8/1.65×107
    a7(1) 6.74×104/35/4/0.00×100 5.44×104/26/5/0.00×100 3.39×103/181/30/7.16×107 1.07×103/59/7/1.88×107
    a8(1) 8.23×104/35/4/0.00×100 6.45×104/26/5/0.00×100 3.94×103/181/30/6.10×107 2.25×103/107/13/5.10×107
    a1(5) 7.31×104/6/1/0.00×100 6.16×104/6/1/0.00×100 9.27×103/116/19/6.26×107 8.34×104/6/1/0.00×100
    a2(5) 5.84×104/9/1/0.00×100 6.69×104/6/1/0.00×100 6.51×103/85/14/5.20×107 1.02×103/9/1/0.00×100
    a3(5) 2.93×104/3/1/0.00×100 2.65×104/3/1/0.00×100 2.52×104/3/1/0.00×100 2.52×104/3/1/0.00×100
    a4(5) 3.05×103/35/4/0.00×100 2.46×103/26/5/0.00×100 1.61×102/187/31/8.05×107 5.13×103/59/7/9.50×107
    a5(5) 1.17×103/14/2/0.00×100 1.99×103/24/5/0.00×100 1.16×102/152/25/7.75×107 8.28×103/115/14/4.02×107
    a6(5) 2.69×103/35/4/0.00×100 2.59×103/26/5/0.00×100 1.54×102/187/31/8.11×107 6.44×103/67/8/1.84×107
    a7(5) 2.73×103/35/4/0.00×100 2.13×103/26/5/0.00×100 1.52×102/187/31/8.05×107 4.90×103/59/7/9.50×107
    a8(5) 3.37×103/35/4/0.00×100 2.49×103/26/5/0.00×100 1.63×102/187/31/8.31×107 7.02×103/75/9/8.32×107
    a1(10) 8.65×104/6/1/0.00×100 7.26×104/6/1/0.00×100 1.28×102/116/19/8.85×107 7.31×104/6/1/0.00×100
    a2(10) 7.02×104/9/1/0.00×100 5.43×104/6/1/0.00×100 7.63×103/85/14/5.20×107 7.33×104/9/1/0.00×100
    a3(10) 4.13×104/3/1/0.00×100 3.60×104/3/1/0.00×100 3.73×104/3/1/0.00×100 3.06×104/3/1/0.00×100
    a4(10) 3.48×103/35/4/0.00×100 2.65×103/26/5/0.00×100 1.97×102/193/32/5.64×107 6.84×103/67/8/1.92×107
    a5(10) 1.42×103/14/2/0.00×100 2.52×103/24/5/0.00×100 1.49×102/152/25/7.75×107 1.14×102/123/15/9.27×107
    a6(10) 3.41×103/35/4/0.00×100 2.70×103/26/5/0.00×100 1.86×102/193/32/5.66×107 6.64×103/67/8/2.35×107
    a7(10) 3.27×103/35/4/0.00×100 2.68×103/26/5/0.00×100 1.85×102/193/32/5.64×107 6.14×103/67/8/1.92×107
    a8(10) 4.11×103/35/4/0.00×100 3.12×103/26/5/0.00×100 2.00×102/193/32/5.65×107 9.83×103/91/11/8.78×107
    a1(50) 2.96×103/6/1/0.00×100 2.97×103/6/1/0.00×100 4.62×102/122/20/6.97×107 2.79×103/6/1/0.00×100
    a2(50) 2.74×103/9/1/0.00×100 1.95×103/6/1/0.00×100 2.74×102/85/14/5.20×107 2.71×103/9/1/0.00×100
    a3(50) 1.29×103/3/1/0.00×100 1.45×103/3/1/0.00×100 1.37×103/3/1/0.00×100 1.37×103/3/1/0.00×100
    a4(50) 1.44×102/35/4/0.00×100 1.07×102/26/5/0.00×100 7.70×102/199/33/6.25×107 2.59×102/67/8/4.66×107
    a5(50) 5.64×103/14/2/0.00×100 9.63×103/24/5/0.00×100 5.69×102/152/25/7.75×107 5.33×102/139/17/5.54×107
    a6(50) 1.43×102/35/4/0.00×100 1.09×102/26/5/0.00×100 7.82×102/199/33/6.25×107 2.56×102/67/8/4.85×107
    a7(50) 1.31×102/35/4/0.00×100 1.07×102/26/5/0.00×100 7.58×102/199/33/6.25×107 2.54×102/67/8/4.66×107
    a8(50) 1.59×102/35/4/0.00×100 1.34×102/26/5/0.00×100 7.97×102/199/33/6.23×107 3.60×102/83/10/5.01×107
    a1(100) 5.26×103/6/1/0.00×100 4.84×103/6/1/0.00×100 7.86×102/122/20/9.85×107 5.61×103/6/1/0.00×100
    a2(100) 4.13×103/9/1/0.00×100 3.13×103/6/1/0.00×100 4.24×102/85/14/5.20×107 3.97×103/9/1/0.00×100
    a3(100) 2.17×103/3/1/0.00×100 2.08×103/3/1/0.00×100 2.61×103/3/1/0.00×100 2.59×103/3/1/0.00×100
    a4(100) 2.56×102/35/4/0.00×100 1.80×102/26/5/0.00×100 1.32×101/199/33/8.84×107 4.37×102/67/8/6.65×107
    a5(100) 9.32×103/14/2/0.00×100 1.68×102/24/5/0.00×100 9.30×102/152/25/7.75×107 8.82×102/139/17/6.00×107
    a6(100) 2.52×102/35/4/0.00×100 1.85×102/26/5/0.00×100 1.28×101/199/33/8.84×107 4.54×102/67/8/6.79×107
    a7(100) 2.34×102/35/4/0.00×100 1.73×102/26/5/0.00×100 1.30×101/199/33/8.84×107 4.43×102/67/8/6.65×107
    a8(100) 2.91×102/35/4/0.00×100 2.53×102/26/5/0.00×100 1.37×101/199/33/8.82×107 6.25×102/75/9/5.82×107

     | Show Table
    DownLoad: CSV
    Table 6.  Numerical results for Problem 5.
    Inti(n) TTRMIL SATTCGM MSCG MRMIL
    CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM
    a1(1) 1.97×102/98/21/9.74×107 1.26×102/99/28/4.57×107 1.55×102/133/34/8.44×107 1.15×102/93/20/7.23×107
    a2(1) 1.17×102/113/24/7.08×107 1.12×102/103/29/9.88×107 1.43×102/137/35/7.24×107 1.24×102/127/27/4.59×107
    a3(1) 1.04×102/106/22/6.74×107 1.11×102/103/29/9.24×107 1.42×102/137/35/7.89×107 1.04×102/104/22/8.93×107
    a4(1) 1.09×102/106/22/6.63×107 1.14×102/103/29/8.47×107 1.35×102/133/34/9.77×107 1.14×102/112/24/3.98×107
    a5(1) 8.46×103/87/18/6.83×107 1.06×102/100/28/7.21×107 1.43×102/137/35/9.89×107 1.14×102/108/23/4.61×107
    a6(1) 1.18×102/115/24/2.96×107 1.12×102/103/29/8.48×107 1.39×102/133/34/9.80×107 1.10×102/113/24/8.25×107
    a7(1) 1.09×102/104/22/6.62×107 1.09×102/96/27/9.33×107 1.18×102/113/29/8.92×107 1.19×102/113/24/7.79×107
    a8(1) 1.25×102/119/25/6.41×107 1.17×102/103/29/7.25×107 1.41×102/137/35/9.74×107 9.82×103/99/21/8.01×107
    a1(5) 6.19×102/119/25/5.07×107 4.77×102/93/26/3.35×107 7.91×102/152/39/8.21×107 5.23×102/108/23/1.50×107
    a2(5) 6.22×102/124/26/9.50×107 5.30×102/103/29/8.80×107 7.74×102/156/40/7.02×107 6.59×102/137/30/2.69×107
    a3(5) 5.55×102/115/24/6.02×107 5.39×102/103/29/8.77×107 7.77×102/156/40/7.02×107 6.40×102/134/29/3.31×107
    a4(5) 5.55×102/115/24/2.00×107 5.37×102/103/29/9.22×107 7.91×102/160/41/9.02×107 4.60×102/94/20/2.86×107
    a5(5) 5.50×102/116/24/5.44×107 5.38×102/103/29/7.56×107 7.86×102/156/40/7.98×107 5.62×102/111/24/9.38×107
    a6(5) 5.61×102/115/24/1.86×107 5.37×102/103/29/9.22×107 8.00×102/160/41/9.03×107 5.25×102/109/23/6.97×107
    a7(5) 5.33×102/109/23/5.74×107 4.93×102/96/27/2.85×107 7.93×102/160/41/7.01×107 6.79×102/143/30/7.72×107
    a8(5) 5.22×102/105/22/8.66×107 5.40×102/103/29/8.12×107 7.92×102/160/41/9.98×107 5.91×102/123/27/6.60×107
    a1(10) 1.24×101/131/27/5.12×107 9.55×102/96/27/2.80×107 1.53×101/156/40/7.72×107 1.20×101/126/27/9.11×107
    a2(10) 1.57×101/165/35/3.25×107 1.04×101/103/29/8.19×107 1.53×101/155/40/7.06×107 9.33×102/99/21/9.01×107
    a3(10) 1.48×101/156/33/2.02×107 1.02×101/103/29/8.17×107 1.52×101/155/40/7.06×107 9.84×102/105/22/6.70×107
    a4(10) 1.39×101/146/30/8.10×107 1.03×101/103/29/8.46×107 1.54×101/156/40/6.95×107 1.18×101/126/26/6.82×107
    a5(10) 1.65×101/173/37/5.81×107 1.04×101/103/29/7.16×107 1.53×101/155/40/6.80×107 1.15×101/120/26/3.95×107
    a6(10) 1.35×101/141/29/9.53×107 1.03×101/103/29/8.46×107 1.54×101/156/40/6.95×107 1.15×101/123/26/9.00×107
    a7(10) 1.37×101/144/30/9.22×107 9.37×102/93/26/2.88×107 1.49×101/151/39/9.94×107 1.12×101/119/25/9.44×107
    a8(10) 1.22×101/124/26/6.07×107 1.05×101/103/29/7.60×107 1.52×101/156/40/7.61×107 1.14×101/122/25/5.04×107
    a1(50) 5.94×101/117/25/6.74×107 5.03×101/93/26/5.46×107 7.76×101/147/38/9.00×107 6.94×101/137/29/1.37×107
    a2(50) 6.19×101/122/26/8.18×107 7.21×101/132/39/5.53×107 8.36×101/158/41/7.14×107 6.75×101/132/28/4.08×107
    a3(50) 6.42×101/126/27/8.79×107 7.30×101/132/39/5.53×107 8.41×101/158/41/7.14×107 7.73×101/149/33/3.87×107
    a4(50) 5.87×101/116/25/5.10×107 6.40×101/117/34/6.27×107 7.42×101/139/36/9.32×107 7.39×101/146/31/9.39×107
    a5(50) 6.11×101/119/26/6.11×107 7.64×101/138/41/5.12×107 8.39×101/158/41/7.06×107 6.77×101/134/29/6.95×107
    a6(50) 5.95×101/116/25/5.10×107 6.36×101/117/34/6.27×107 7.37×101/139/36/9.32×107 6.78×101/133/28/5.48×107
    a7(50) 5.38×101/107/23/8.73×107 5.44×101/100/28/4.49×107 7.56×101/143/37/9.68×107 6.28×101/123/26/4.06×107
    a8(50) 4.92×101/96/21/7.04×107 6.12×101/111/32/6.28×107 7.42×101/139/36/7.56×107 6.02×101/119/25/5.12×107
    a1(100) 1.56×100/158/34/4.25×107 1.51×100/141/42/6.98×107 1.53×100/147/38/7.18×107 1.61×100/163/35/3.20×107
    a2(100) 1.18×100/118/26/4.50×107 1.08×100/103/29/7.91×107 1.80×100/174/45/7.51×107 1.44×100/145/31/6.75×107
    a3(100) 1.21×100/122/27/9.47×107 1.08×100/103/29/7.91×107 1.80×100/174/45/7.52×107 1.40×100/142/30/6.07×107
    a4(100) 1.14×100/115/25/7.43×107 1.15×100/109/31/5.07×107 1.64×100/158/41/9.14×107 1.15×100/118/25/5.21×107
    a5(100) 1.15×100/115/25/3.92×107 1.09×100/103/29/7.47×107 1.87×100/178/46/8.19×107 1.53×100/154/34/8.28×107
    a6(100) 1.14×100/115/25/7.43×107 1.17×100/109/31/5.07×107 1.73×100/158/41/9.13×107 1.21×100/118/25/5.12×107
    a7(100) 1.22×100/117/26/4.15×107 1.14×100/106/30/7.55×107 1.72×100/158/41/8.97×107 1.17×100/114/24/7.39×107
    a8(100) 1.20×100/120/26/6.56×107 1.16×100/109/31/4.61×107 1.74×100/158/41/9.23×107 1.08×100/106/23/4.08×107

     | Show Table
    DownLoad: CSV
    Table 7.  Numerical results for Problem 6.
    Inti(n) TTRMIL SATTCGM MSCG MRMIL
    CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM
    a1(1) 4.73×103/247/32/6.48×107 3.32×103/155/34/6.80×107 8.37×103/425/80/8.18×107 4.22×103/234/30/5.87×107
    a2(1) 3.28×103/176/22/7.35×107 3.38×103/159/35/8.25×107 8.04×103/419/79/7.76×107 4.06×103/227/29/6.16×107
    a3(1) 3.28×103/176/22/9.20×107 3.36×103/159/35/8.48×107 8.05×103/419/79/8.66×107 4.95×103/276/36/7.05×107
    a4(1) 3.44×103/184/23/5.03×107 3.49×103/164/36/8.66×107 9.40×103/491/93/5.36×107 3.92×103/220/28/9.30×107
    a5(1) 3.44×103/184/23/5.21×107 3.36×103/159/35/9.02×107 9.55×103/485/92/6.92×107 4.52×103/248/32/7.76×107
    a6(1) 3.41×103/184/23/5.02×107 3.69×103/164/36/8.65×107 9.53×103/491/93/5.36×107 4.05×103/228/29/3.49×107
    a7(1) 3.63×103/184/23/5.42×107 3.25×103/155/34/7.30×107 8.35×103/445/84/6.56×107 5.10×103/262/34/6.12×107
    a8(1) 3.71×103/200/25/9.80×107 4.59×103/220/48/6.34×107 1.31×102/679/130/5.45×107 4.21×103/240/30/7.86×107
    a1(5) 2.62×102/191/24/9.42×107 2.10×102/155/34/6.56×107 4.71×102/411/77/5.86×107 2.74×102/263/34/7.07×107
    a2(5) 2.97×102/261/34/5.02×107 1.91×102/155/34/8.46×107 4.91×102/425/80/5.40×107 3.02×102/268/35/5.53×107
    a3(5) 2.35×102/205/26/5.95×107 1.85×102/150/33/9.99×107 4.49×102/399/75/9.46×107 3.77×102/337/45/7.32×107
    a4(5) 2.40×102/212/27/8.45×107 2.00×102/164/36/9.79×107 5.06×102/451/85/7.64×107 2.56×102/234/30/7.05×107
    a5(5) 2.10×102/184/23/7.49×107 1.99×102/159/35/8.15×107 5.07×102/440/83/8.84×107 2.76×102/256/33/7.78×107
    a6(5) 2.35×102/212/27/8.45×107 2.02×102/164/36/9.79×107 5.12×102/451/85/7.64×107 2.45×102/234/30/7.06×107
    a7(5) 2.33×102/205/26/9.99×107 2.02×102/155/34/7.33×107 4.79×102/400/75/8.50×107 2.32×102/221/28/5.92×107
    a8(5) 2.44×102/209/26/5.94×107 2.76×102/235/51/7.36×107 8.10×102/705/135/7.17×107 2.79×102/255/32/5.51×107
    a1(10) 3.27×102/191/24/7.23×107 2.89×102/155/34/6.80×107 7.15×102/411/77/6.38×107 4.08×102/249/32/7.36×107
    a2(10) 4.84×102/268/35/5.68×107 3.12×102/155/34/8.68×107 7.25×102/405/76/6.31×107 3.82×102/227/29/4.84×107
    a3(10) 3.55×102/205/26/7.08×107 3.08×102/159/35/5.26×107 6.86×102/400/75/5.51×107 4.66×102/276/36/6.23×107
    a4(10) 3.71×102/213/27/5.46×107 3.61×102/177/39/5.90×107 8.36×102/451/85/8.40×107 3.74×102/220/28/8.57×107
    a5(10) 3.27×102/192/24/5.36×107 3.27×102/159/35/8.19×107 7.88×102/445/84/9.92×107 5.36×102/324/43/8.37×107
    a6(10) 3.69×102/213/27/5.46×107 3.52×102/177/39/5.90×107 8.03×102/451/85/8.40×107 3.77×102/220/28/8.51×107
    a7(10) 3.38×102/199/25/7.01×107 2.98×102/155/34/8.11×107 7.16×102/405/76/9.58×107 3.60×102/221/28/9.38×107
    a8(10) 3.40×102/209/26/8.68×107 4.47×102/240/52/8.21×107 1.29×101/731/140/5.34×107 4.17×102/255/32/8.59×107
    a1(50) 1.53×101/220/28/5.42×107 1.17×101/155/34/8.75×107 2.55×101/371/69/8.78×107 1.85×101/276/36/7.13×107
    a2(50) 1.31×101/191/24/8.11×107 1.20×101/155/34/8.77×107 2.70×101/385/72/8.29×107 1.44×101/221/28/6.41×107
    a3(50) 1.31×101/191/24/9.90×107 1.18×101/155/34/6.54×107 2.62×101/385/72/7.35×107 1.58×101/239/31/9.71×107
    a4(50) 1.40×101/199/25/7.36×107 1.30×101/169/37/5.50×107 3.14×101/457/86/5.94×107 1.63×101/242/31/6.76×107
    a5(50) 1.35×101/199/25/9.26×107 1.19×101/159/35/9.27×107 2.94×101/431/81/7.15×107 1.66×101/248/32/8.57×107
    a6(50) 1.35×101/199/25/7.36×107 1.25×101/169/37/5.50×107 3.15×101/457/86/5.94×107 1.59×101/242/31/6.77×107
    a7(50) 1.37×101/199/25/8.02×107 1.17×101/151/33/9.07×107 2.80×101/391/73/6.93×107 1.56×101/236/30/8.30×107
    a8(50) 1.54×101/225/28/5.22×107 1.92×101/255/55/9.67×107 5.24×101/757/145/6.42×107 1.77×101/271/34/6.48×107
    a1(100) 5.02×101/290/38/5.79×107 2.73×101/151/33/9.81×107 4.76×101/371/69/9.56×107 3.79×101/242/31/7.17×107
    a2(100) 3.56×101/212/27/9.46×107 2.22×101/155/34/8.19×107 6.59×101/385/72/9.17×107 4.17×101/262/34/6.67×107
    a3(100) 3.23×101/191/24/9.51×107 2.24×101/155/34/6.81×107 6.15×101/365/68/8.56×107 4.26×101/270/35/7.46×107
    a4(100) 3.66×101/220/28/7.40×107 2.27×101/160/35/9.64×107 7.45×101/437/82/6.88×107 3.76×101/242/31/4.98×107
    a5(100) 3.38×101/199/25/7.72×107 2.31×101/155/34/9.98×107 7.37×101/431/81/7.73×107 3.88×101/228/29/9.05×107
    a6(100) 3.80×101/220/28/7.40×107 2.36×101/160/35/9.64×107 7.59×101/437/82/6.88×107 4.08×101/242/31/4.98×107
    a7(100) 3.32×101/199/25/9.41×107 2.17×101/151/33/8.39×107 6.81×101/391/73/7.51×107 3.55×101/214/27/8.66×107
    a8(100) 3.82×101/225/28/7.34×107 5.80×101/269/58/5.57×107 1.98×100/757/145/9.04×107 6.45×101/271/34/9.38×107

     | Show Table
    DownLoad: CSV
    Table 8.  Numerical results for Problem 7.
    Inti(n) TTRMIL SATTCGM MSCG MRMIL
    CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM
    a1(1) 1.20×102/113/15/8.62×107 3.06×103/82/20/9.48×107 3.47×103/81/13/3.64×107 3.09×103/89/9/4.83×107
    a2(1) 1.05×100/2044/506/9.34×107 1.11×101/6023/2002/9.15×107 1.71×101/10029/3184/9.83×107 1.30×100/31380/7446/9.47×107
    a3(1) 1.63×101/313/382/9.64×107 1.48×101/7902/2625/9.61×107 1.60×101/9642/3053/9.94×107 1.14×101/2249/590/9.15×107
    a4(1) 1.14×100/2197/544/9.58×107 1.29×101/6918/2295/7.05×107 1.88×101/11253/3570/9.51×107 1.73×100/35972/8330/9.80×107
    a5(1) 1.72×101/1281/814/9.67×107 1.47×101/7861/2610/9.70×107 1.69×101/10005/3176/9.26×107 1.15×101/2683/598/9.35×107
    a6(1) 1.24×100/2431/2028/9.71×107 1.23×101/6591/2211/9.12×107 1.88×101/11223/3560/9.44×107 1.81×100/33002/8339/9.73×107
    a7(1) 1.15×100/2197/3446/9.58×107 1.28×101/6918/2295/7.05×107 1.87×101/11253/3570/9.51×107 1.92×100/36556/8651/9.80×107
    a8(1) 1.34×101/3448/844/9.32×107 1.37×101/7332/2432/7.94×107 1.89×101/11257/3572/9.31×107 1.67×101/2543/691/9.93×107
    a1(5) 6.55×103/137/16/3.04×107 4.53×103/84/21/7.16×107 3.68×103/89/12/8.00×107 3.67×103/95/8/2.39×107
    a2(5) 1.09×100/20440/5062/9.54×107 1.80×101/3167/1049/7.18×107 2.31×101/4388/1396/9.90×107 1.50×100/31580/7846/9.77×107
    a3(5) 1.68×101/3134/782/9.68×107 1.78×101/3164/1049/7.29×107 2.71×101/5203/1648/9.86×107 1.10×101/2279/570/9.11×107
    a4(5) 1.17×100/21979/5446/9.68×107 2.47×101/4406/1460/9.81×107 2.65×101/5042/1583/9.62×107 1.73×100/35972/8930/9.60×107
    a5(5) 1.77×101/3281/814/9.67×107 2.33×101/4167/1379/9.89×107 2.52×101/5007/1581/9.76×107 1.10×101/2283/568/9.05×107
    a6(5) 1.29×100/24313/6028/9.61×107 1.91×101/3431/1141/7.30×107 2.86×101/5431/1710/9.90×107 1.71×100/36002/8939/9.93×107
    a7(5) 1.18×100/21979/5446/9.68×107 2.46×101/4406/1460/9.81×107 2.58×101/5042/1583/9.62×107 1.72×100/36056/8951/9.60×107
    a8(5) 1.84×101/3448/844/9.62×107 2.42×101/4384/1451/9.80×107 3.16×101/6161/1951/9.95×107 1.17×101/2533/621/9.03×107
    a1(10) 9.40×103/119/17/2.78×107 6.30×103/76/19/7.93×107 5.47×103/85/12/5.16×107 7.91×103/122/14/9.24×107
    a2(10) 5.99×101/6443/1567/9.62×107 2.23×101/2364/781/7.83×107 2.98×101/3405/1081/9.94×107 1.93×100/23557/5846/9.97×107
    a3(10) 1.51×101/1579/395/4.35×107 2.33×101/2361/781/7.78×107 3.71×101/4194/1327/9.92×107 1.35×101/1647/412/5.52×107
    a4(10) 6.21×101/6752/1621/9.58×107 2.43×101/2556/843/7.92×107 3.34×101/3812/1188/9.90×107 1.45×101/1795/431/5.61×107
    a5(10) 5.84×101/6168/1503/9.79×107 3.70×101/3264/1078/7.37×107 3.52×101/3311/1049/9.92×107 2.33×100/24394/6058/9.79×107
    a6(10) 1.78×101/1673/400/4.29×107 2.59×101/2337/764/7.84×107 4.17×101/4045/1267/9.78×107 2.20×100/22957/5689/1.00×106
    a7(10) 7.36×101/6939/1669/9.63×107 2.84×101/2556/843/7.92×107 3.96×101/3812/1188/9.90×107 1.67×101/1795/431/5.61×107
    a8(10) 6.79×101/6553/1570/9.77×107 2.41×101/2208/720/7.81×107 3.76×101/3618/1138/9.92×107 2.49×100/25652/6352/9.91×107
    a1(50) 5.40×102/126/9/2.96×107 3.32×102/74/11/1.00×107 4.58×102/103/17/5.64×107 6.56×102/148/13/5.16×107
    a2(50) 4.40×101/733/182/4.58×107 7.80×101/1173/383/9.31×107 8.24×101/1284/387/9.82×107 4.85×101/779/193/1.01×107
    a3(50) 4.89×101/740/185/4.72×107 8.07×101/1168/382/9.56×107 9.31×101/1487/456/9.78×107 4.47×101/787/196/1.19×107
    a4(50) 8.78×101/1564/326/9.79×107 8.15×101/1225/391/9.60×107 8.20×101/1363/400/9.74×107 5.30×101/965/220/1.01×107
    a5(50) 9.32×101/1633/363/9.42×107 1.12×100/1668/546/7.20×107 8.72×101/1370/402/9.67×107 2.11×100/3668/882/9.99×107
    a6(50) 5.72×101/961/217/4.44×107 1.15×100/1741/562/7.18×107 9.17×101/1363/400/9.68×107 1.29×100/2347/539/9.43×107
    a7(50) 8.95×101/1564/326/9.79×107 8.02×101/1225/391/9.60×107 8.55×101/1363/400/9.74×107 6.07×101/965/220/1.01×107
    a8(50) 8.65×101/1541/321/9.79×107 1.11×100/1695/543/8.59×107 8.02×101/1382/392/9.83×107 1.56×100/2767/644/9.44×107
    a1(100) 1.47×101/156/13/5.68×108 5.69×102/66/8/9.24×107 8.18×102/101/10/3.15×107 1.54×101/179/15/4.55×107
    a2(100) 7.14×101/534/132/5.52×107 1.15×100/872/282/9.53×107 1.32×100/1104/331/9.94×107 6.73×101/576/142/3.20×107
    a3(100) 7.11×101/535/133/6.13×107 1.16×100/867/281/9.19×107 1.83×100/1433/425/9.10×107 7.52×101/601/151/3.18×107
    a4(100) 1.16×100/932/175/7.45×107 1.30×100/948/298/8.99×107 1.42×100/1237/341/9.21×107 5.61×101/560/96/9.79×107
    a5(100) 1.48×100/1185/251/9.66×107 1.57×100/1161/375/7.33×107 1.25×100/1127/332/9.85×107 8.55×101/792/160/9.41×107
    a6(100) 4.79×101/441/75/9.81×107 1.25×100/948/298/9.00×107 1.42×100/1268/344/9.44×107 8.81×101/829/151/9.57×107
    a7(100) 1.10×100/932/175/7.64×107 1.25×100/948/298/8.99×107 1.34×100/1237/341/9.21×107 5.88×101/560/96/9.79×107
    a8(100) 8.33×101/719/132/5.89×107 1.32×100/1023/319/7.34×107 1.40×100/1359/375/9.63×107 5.27×101/492/87/1.32×107

     | Show Table
    DownLoad: CSV
    Table 9.  Numerical results for Problem 8.
    Inti(n) TTRMIL SATTCGM MSCG MRMIL
    CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM
    a1(1) 3.63×103/42/10/7.08×107 1.44×103/76/25/8.17×107 1.01×103/65/16/4.21×107 8.68×104/58/14/4.29×107
    a2(1) 1.22×103/77/17/1.13×107 1.41×103/76/25/6.07×107 9.85×104/65/16/5.96×107 7.47×104/52/11/8.41×107
    a3(1) 9.87×104/62/13/2.51×107 1.45×103/76/25/6.08×107 9.98×104/65/16/5.96×107 7.43×104/51/11/1.92×107
    a4(1) 8.53×104/56/11/2.96×107 1.48×103/79/26/9.89×107 1.24×103/81/20/6.56×107 7.19×104/51/10/5.77×107
    a5(1) 8.26×104/54/11/8.50×107 1.48×103/79/26/5.01×107 9.88×104/65/16/6.13×107 6.69×104/47/10/4.52×107
    a6(1) 8.50×104/56/11/2.96×107 1.51×103/82/27/5.65×107 1.32×103/81/20/6.57×107 9.58×104/51/10/5.74×107
    a7(1) 9.08×104/56/11/2.96×107 1.50×103/79/26/9.89×107 1.23×103/81/20/6.56×107 7.27×104/51/10/5.77×107
    a8(1) 8.79×104/56/11/2.69×107 1.48×103/79/26/6.44×107 1.23×103/81/20/5.97×107 7.15×104/51/10/5.17×107
    a1(5) 5.22×103/46/11/2.83×107 9.53×103/79/26/9.10×107 5.76×103/65/16/9.42×107 5.68×103/58/14/9.59×107
    a2(5) 5.37×103/61/13/5.32×107 8.10×103/79/26/6.73×107 6.36×103/69/17/4.34×107 4.27×103/54/12/8.50×108
    a3(5) 5.51×103/60/13/9.73×107 7.44×103/79/26/6.72×107 5.55×103/69/17/4.34×107 5.53×103/61/13/5.14×107
    a4(5) 4.57×103/56/11/6.62×107 7.84×103/85/28/6.36×107 7.57×103/85/21/8.35×107 4.11×103/56/11/2.77×107
    a5(5) 5.88×103/66/14/2.94×107 8.89×103/79/26/5.36×107 5.48×103/69/17/4.38×107 5.13×103/59/12/8.03×107
    a6(5) 4.96×103/56/11/6.62×107 8.29×103/85/28/6.65×107 7.44×103/85/21/8.35×107 4.06×103/56/11/2.76×107
    a7(5) 4.72×103/56/11/6.62×107 8.41×103/85/28/6.36×107 7.23×103/85/21/8.35×107 4.68×103/56/11/2.77×107
    a8(5) 4.50×103/56/11/6.52×107 8.49×103/85/28/5.45×107 7.53×103/85/21/8.18×107 4.03×103/56/11/2.67×107
    a1(10) 6.53×103/46/11/4.00×107 1.31×102/82/27/6.40×107 9.34×103/69/17/4.34×107 8.26×103/62/15/3.95×107
    a2(10) 8.09×103/60/13/8.25×107 1.35×102/79/26/9.51×107 9.42×103/69/17/6.14×107 7.54×103/50/11/9.99×107
    a3(10) 8.03×103/60/13/2.70×107 1.17×102/79/26/9.51×107 9.25×103/69/17/6.14×107 6.56×103/51/11/1.19×107
    a4(10) 8.67×103/56/11/9.36×107 1.19×102/85/28/9.23×107 1.22×102/89/22/6.72×107 6.43×103/56/11/3.91×107
    a5(10) 9.02×103/62/13/6.72×107 1.18×102/76/25/8.22×107 9.98×103/69/17/6.17×107 6.96×103/58/12/8.01×107
    a6(10) 8.36×103/56/11/9.36×107 1.31×102/85/28/9.45×107 1.28×102/89/22/6.72×107 6.35×103/56/11/3.91×107
    a7(10) 7.55×103/56/11/9.36×107 1.39×102/85/28/9.23×107 1.16×102/89/22/6.72×107 5.90×103/56/11/3.91×107
    a8(10) 7.22×103/56/11/9.18×107 1.34×102/85/28/9.00×107 1.13×102/89/22/6.60×107 7.09×103/56/11/3.87×107
    a1(50) 2.35×102/46/11/8.95×107 4.82×102/85/28/7.13×107 2.94×102/69/17/9.71×107 2.95×102/62/15/8.82×107
    a2(50) 3.39×102/72/16/6.53×107 4.70×102/85/28/5.27×107 3.16×102/73/18/4.48×107 2.58×102/59/13/1.02×107
    a3(50) 3.14×102/68/15/3.19×107 4.76×102/85/28/5.27×107 3.04×102/73/18/4.48×107 2.39×102/54/12/2.80×107
    a4(50) 2.96×102/61/12/4.28×107 5.13×102/91/30/5.15×107 4.09×102/93/23/8.55×107 2.40×102/56/11/8.74×107
    a5(50) 2.92×102/66/14/3.92×107 4.82×102/89/29/5.86×107 3.25×102/73/18/4.48×107 2.69×102/62/13/2.06×107
    a6(50) 2.72×102/61/12/4.28×107 4.92×102/91/30/5.17×107 3.94×102/93/23/8.55×107 2.43×102/56/11/8.74×107
    a7(50) 2.72×102/61/12/4.28×107 4.89×102/91/30/5.15×107 3.97×102/93/23/8.55×107 2.40×102/56/11/8.74×107
    a8(50) 2.76×102/61/12/4.26×107 4.73×102/88/29/8.87×107 3.91×102/93/23/8.53×107 2.32×102/56/11/8.77×107
    a1(100) 4.08×102/50/12/2.26×107 8.05×102/88/29/5.02×107 4.90×102/73/18/4.48×107 4.92×102/66/16/3.63×107
    a2(100) 5.39×102/69/15/2.36×107 8.02×102/85/28/7.45×107 5.32×102/73/18/6.33×107 4.88×102/64/14/2.46×107
    a3(100) 5.06×102/65/14/3.76×107 7.69×102/85/28/7.45×107 5.15×102/73/18/6.33×107 4.73×102/63/14/1.59×107
    a4(100) 4.60×102/61/12/6.06×107 8.01×102/91/30/7.28×107 6.61×102/97/24/6.89×107 4.42×102/61/12/2.72×107
    a5(100) 5.18×102/67/14/2.45×107 7.73×102/83/27/9.18×107 5.07×102/73/18/6.34×107 3.68×102/52/11/2.20×107
    a6(100) 4.61×102/61/12/6.06×107 8.19×102/91/30/7.29×107 6.48×102/97/24/6.89×107 4.27×102/61/12/2.72×107
    a7(100) 4.76×102/61/12/6.06×107 8.52×102/91/30/7.28×107 6.39×102/97/24/6.89×107 4.41×102/61/12/2.72×107
    a8(100) 4.69×102/61/12/6.04×107 8.22×102/91/30/5.92×107 6.82×102/97/24/6.88×107 4.30×102/61/12/2.72×107

     | Show Table
    DownLoad: CSV
    Table 10.  Numerical results for Problem 9.
    Inti(n) TTRMIL SATTCGM MSCG MRMIL
    CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM
    a1(1) 1.17×104/4/1/0.00×100 6.64×104/34/11/2.36×107 1.04×103/58/19/6.44×107 7.35×105/4/1/0.00×100
    a2(1) 6.78×105/4/1/0.00×100 4.32×104/25/8/7.88×107 6.88×104/43/14/8.66×107 5.76×105/4/1/0.00×100
    a3(1) 8.14×105/4/1/0.00×100 5.97×104/28/9/2.56×107 8.74×104/46/15/5.86×107 6.43×105/4/1/0.00×100
    a4(1) 2.71×104/14/5/0.00×100 6.10×104/34/11/2.52×107 1.01×103/58/19/4.35×107 4.15×104/25/8/2.86×107
    a5(1) 1.72×104/9/3/0.00×100 4.76×104/28/9/4.86×107 8.29×104/49/16/4.99×107 2.12×104/13/4/0.00×100
    a6(1) 3.01×104/14/5/0.00×100 6.75×104/34/11/2.52×107 1.05×103/58/19/4.35×107 4.33×104/25/8/3.18×107
    a7(1) 2.79×104/14/5/0.00×100 6.19×104/34/11/2.52×107 9.93×104/58/19/4.35×107 4.18×104/25/8/2.86×107
    a8(1) 3.00×104/14/5/0.00×100 6.73×104/34/11/2.50×107 1.03×103/58/19/4.23×107 5.05×104/28/9/1.18×107
    a1(5) 4.87×104/4/1/0.00×100 4.87×103/34/11/5.28×107 6.54×103/61/20/5.76×107 3.74×104/4/1/0.00×100
    a2(5) 2.96×104/4/1/0.00×100 2.91×103/25/8/7.88×107 4.37×103/43/14/8.66×107 2.69×104/4/1/0.00×100
    a3(5) 3.30×104/4/1/0.00×100 2.79×103/28/9/2.13×107 6.07×103/46/15/4.98×107 2.88×104/4/1/0.00×100
    a4(5) 1.58×103/14/5/0.00×100 3.79×103/34/11/5.63×107 5.58×103/58/19/9.73×107 3.08×103/25/8/6.67×107
    a5(5) 1.08×103/9/3/0.00×100 3.01×103/28/9/4.86×107 4.92×103/49/16/4.99×107 1.22×103/13/4/0.00×100
    a6(5) 1.42×103/14/5/0.00×100 4.97×103/34/11/5.63×107 5.82×103/58/19/9.73×107 2.72×103/25/8/6.82×107
    a7(5) 1.52×103/14/5/0.00×100 4.24×103/34/11/5.63×107 6.54×103/58/19/9.73×107 2.18×103/25/8/6.67×107
    a8(5) 1.41×103/14/5/0.00×100 4.02×103/34/11/5.65×107 5.81×103/58/19/9.72×107 2.70×103/28/9/7.99×107
    a1(10) 5.79×104/4/1/0.00×100 4.92×103/34/11/7.47×107 9.70×103/61/20/8.15×107 4.30×104/4/1/0.00×100
    a2(10) 4.12×104/4/1/0.00×100 3.29×103/25/8/7.88×107 6.41×103/43/14/8.66×107 4.01×104/4/1/0.00×100
    a3(10) 6.06×104/4/1/0.00×100 3.93×103/28/9/2.13×107 7.17×103/46/15/4.98×107 3.93×104/4/1/0.00×100
    a4(10) 2.67×103/14/5/0.00×100 5.37×103/34/11/7.96×107 8.49×103/61/20/5.50×107 4.89×103/25/8/9.49×107
    a5(10) 1.32×103/9/3/0.00×100 4.99×103/28/9/4.86×107 7.40×103/49/16/4.99×107 1.87×103/13/4/0.00×100
    a6(10) 2.25×103/14/5/0.00×100 5.46×103/34/11/7.97×107 9.45×103/61/20/5.50×107 3.10×103/25/8/9.60×107
    a7(10) 2.42×103/14/5/0.00×100 4.71×103/34/11/7.96×107 8.93×103/61/20/5.50×107 3.88×103/25/8/9.49×107
    a8(10) 2.36×103/14/5/0.00×100 5.80×103/34/11/7.98×107 8.90×103/61/20/5.48×107 4.56×103/31/10/0.00×100
    a1(50) 1.70×103/4/1/0.00×100 2.07×102/37/12/3.34×107 3.40×102/64/21/7.29×107 1.72×103/4/1/0.00×100
    a2(50) 1.46×103/4/1/0.00×100 1.06×102/25/8/7.88×107 1.74×102/43/14/8.66×107 1.23×103/4/1/0.00×100
    a3(50) 1.29×103/4/1/0.00×100 1.18×102/28/9/2.13×107 1.89×102/46/15/4.98×107 1.23×103/4/1/0.00×100
    a4(50) 7.20×103/14/5/0.00×100 1.92×102/37/12/3.56×107 3.12×102/64/21/4.92×107 1.52×102/28/9/5.61×107
    a5(50) 4.78×103/9/3/0.00×100 1.21×102/28/9/4.86×107 2.31×102/49/16/4.99×107 5.97×103/13/4/0.00×100
    a6(50) 8.07×103/14/5/0.00×100 1.90×102/37/12/3.56×107 3.01×102/64/21/4.92×107 1.49×102/28/9/5.63×107
    a7(50) 9.35×103/14/5/0.00×100 1.82×102/37/12/3.56×107 2.95×102/64/21/4.92×107 1.41×102/28/9/5.61×107
    a8(50) 7.97×103/14/5/0.00×100 1.99×102/37/12/3.56×107 3.06×102/64/21/4.92×107 1.45×102/28/9/7.61×107
    a1(100) 2.93×103/4/1/0.00×100 3.27×102/37/12/4.72×107 5.09×102/67/22/4.12×107 2.56×103/4/1/0.00×100
    a2(100) 2.18×103/4/1/0.00×100 1.55×102/25/8/7.88×107 2.69×102/43/14/8.66×107 1.97×103/4/1/0.00×100
    a3(100) 2.22×103/4/1/0.00×100 1.77×102/28/9/2.13×107 2.87×102/46/15/4.98×107 1.97×103/4/1/0.00×100
    a4(100) 1.26×102/14/5/0.00×100 3.05×102/37/12/5.04×107 4.82×102/64/21/6.96×107 2.36×102/28/9/7.95×107
    a5(100) 7.24×103/9/3/0.00×100 1.90×102/28/9/4.86×107 3.65×102/49/16/4.99×107 9.41×103/13/4/0.00×100
    a6(100) 1.21×102/14/5/0.00×100 3.16×102/37/12/5.04×107 4.72×102/64/21/6.96×107 2.12×102/28/9/7.96×107
    a7(100) 1.19×102/14/5/0.00×100 2.98×102/37/12/5.04×107 5.03×102/64/21/6.96×107 2.26×102/28/9/7.95×107
    a8(100) 1.34×102/14/5/0.00×100 3.19×102/37/12/5.04×107 5.02×102/64/21/6.96×107 2.48×102/28/9/9.71×107

     | Show Table
    DownLoad: CSV
    Table 11.  Numerical results for Problem 10.
    Inti(n) TTRMIL SATTCGM MSCG MRMIL
    CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM
    a1(1) 2.59×102/239/21/4.78×107 1.58×102/181/38/5.42×107 8.71×102/1078/213/8.13×107 3.11×102/388/44/6.17×107
    a2(1) 4.13×102/546/76/3.23×107 1.38×102/189/43/6.08×107 6.99×102/939/185/6.30×107 8.30×103/120/15/6.76×107
    a3(1) 3.56×102/482/67/9.42×107 1.55×102/190/43/4.90×107 6.45×102/887/176/8.92×107 4.55×102/673/94/5.47×107
    a4(1) 1.35×102/189/21/6.42×107 3.06×102/380/89/4.99×107 9.24×102/1171/223/7.74×107 3.82×102/535/69/5.44×107
    a5(1) 3.24×102/436/60/5.36×107 1.64×102/205/46/8.28×107 5.40×102/722/142/7.69×107 4.06×102/577/80/7.28×107
    a6(1) 4.44×102/600/78/7.10×107 2.89×102/372/87/5.34×107 8.65×102/1167/223/7.61×107 2.14×102/288/35/6.30×107
    a7(1) 1.34×102/189/21/6.42×107 2.97×102/380/89/4.99×107 8.90×102/1171/223/7.74×107 3.84×102/535/69/5.44×107
    a8(1) 1.26×102/168/21/4.74×107 1.97×102/253/55/5.79×107 5.43×102/717/138/7.15×107 1.43×102/206/26/7.70×107
    a1(5) 7.61×102/238/19/9.14×107 6.92×102/187/39/8.25×107 4.42×101/1239/237/6.25×107 7.93×102/262/22/4.68×107
    a2(5) 1.70×101/546/76/3.23×107 6.49×102/189/43/6.08×107 3.10×101/939/185/6.30×107 3.84×102/120/15/6.76×107
    a3(5) 1.61×101/518/72/5.29×107 6.58×102/197/45/8.55×107 4.76×101/1450/288/5.57×107 3.84×102/128/16/4.50×107
    a4(5) 2.58×101/796/85/9.80×107 2.35×101/647/154/6.60×107 7.36×101/2153/311/8.27×107 3.55×101/1101/135/8.35×107
    a5(5) 1.55×101/436/60/5.35×107 7.33×102/205/46/8.29×107 2.48×101/722/142/7.68×107 1.96×101/577/80/7.28×107
    a6(5) 1.21×101/384/31/8.79×107 2.33×101/642/153/6.88×107 7.40×101/2151/322/8.02×107 1.28×101/399/33/4.81×107
    a7(5) 2.60×101/796/85/9.80×107 2.36×101/647/154/6.60×107 7.35×101/2153/311/8.27×107 3.54×101/1101/135/8.35×107
    a8(5) 6.36×102/176/22/4.04×107 1.01×101/273/59/6.06×107 2.70×101/749/144/5.57×107 7.34×102/214/27/9.82×107
    a1(10) 9.78×102/165/4/0.00×100 1.42×101/198/41/5.13×107 9.92×101/1435/268/9.92×107 9.83×102/165/4/0.00×100
    a2(10) 3.41×101/546/76/3.23×107 1.26×101/189/43/6.08×107 6.05×101/939/185/6.30×107 7.33×102/120/15/6.76×107
    a3(10) 3.20×101/518/72/5.29×107 1.30×101/197/45/8.55×107 9.32×101/1450/288/5.57×107 7.62×102/128/16/4.50×107
    a4(10) 5.21×101/796/89/6.79×107 4.65×101/647/154/7.97×107 1.20×100/1789/283/5.45×107 2.02×101/319/30/9.47×107
    a5(10) 2.93×101/436/60/5.35×107 1.46×101/205/46/8.29×107 4.83×101/722/142/7.68×107 3.82×101/577/80/7.28×107
    a6(10) 4.84×101/769/92/5.27×107 4.76×101/662/157/9.82×107 1.26×100/1874/301/5.79×107 5.86×101/918/112/6.51×107
    a7(10) 5.21×101/796/89/6.79×107 4.71×101/647/154/7.97×107 1.21×100/1789/283/5.45×107 2.07×101/319/30/9.47×107
    a8(10) 1.20×101/176/22/5.83×107 2.03×101/278/60/7.05×107 5.28×101/749/144/7.78×107 1.50×101/222/28/6.11×107
    a1(50) 2.72×101/86/3/0.00×100 6.09×101/174/36/9.72×107 3.64×101/10811/685/8.71×107 2.71×101/86/3/0.00×100
    a2(50) 1.78×100/546/76/3.23×107 6.88×101/189/43/6.08×107 3.81×100/939/185/6.30×107 3.90×101/120/15/6.76×107
    a3(50) 1.79×100/518/72/5.29×107 7.32×101/197/45/8.55×107 5.17×100/1450/288/5.57×107 4.05×101/128/16/4.50×107
    a4(50) 6.27×100/1850/152/6.60×107 3.14×100/827/189/7.00×107 2.91×101/8314/846/6.21×107 5.82×100/1740/113/8.91×107
    a5(50) 1.55×100/436/60/5.35×107 7.88×101/205/46/8.29×107 2.57×100/722/142/7.68×107 2.06×100/577/80/7.28×107
    a6(50) 6.56×100/1962/154/9.26×107 3.14×100/827/189/6.81×107 2.89×101/7893/801/8.11×107 4.53×100/1328/89/8.66×107
    a7(50) 6.36×100/1857/153/6.44×107 3.21×100/827/189/7.00×107 3.07×101/8314/846/6.22×107 5.88×100/1740/113/9.61×107
    a8(50) 6.62×101/184/23/4.58×107 1.17×100/298/64/7.16×107 2.96×100/770/148/9.63×107 8.47×101/230/29/7.45×107
    a1(100) 5.37×101/86/3/0.00×100 1.18×100/174/36/9.79×107 9.55×100/1316/231/9.51×107 5.34×101/86/3/0.00×100
    a2(100) 3.41×100/546/76/3.23×107 1.29×100/189/43/6.08×107 6.28×100/939/185/6.30×107 7.44×101/120/15/6.76×107
    a3(100) 3.23×100/518/72/5.29×107 1.36×100/197/45/8.55×107 9.70×100/1450/288/5.57×107 7.78×101/128/16/4.50×107
    a4(100) 3.25×101/4950/308/6.48×107 6.58×100/888/200/6.00×107 4.19×101/68/4/0.00×100 2.89×101/4436/251/5.67×107
    a5(100) 3.02×100/436/60/5.35×107 1.50×100/205/46/8.29×107 4.98×100/722/142/7.68×107 4.00×100/577/80/7.28×107
    a6(100) 2.80×101/4286/241/8.22×107 6.53×100/884/199/5.97×107 4.34×101/68/4/0.00×100 2.77×101/4246/236/9.77×107
    a7(100) 3.21×101/4950/308/5.00×107 6.46×100/888/200/6.00×107 4.20×101/68/4/0.00×100 3.27×101/5045/338/7.35×107
    a8(100) 1.30×100/184/23/6.51×107 2.38×100/308/66/6.79×107 6.12×100/796/153/6.95×107 1.67×100/238/30/4.83×107

     | Show Table
    DownLoad: CSV
    Table 12.  Numerical results for Problem 11.
    Inti(n) TTRMIL SATTCGM MSCG MRMIL
    CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM CPUT/NF/NI/NORM
    a1(1) 1.18×102/25/12/4.62×107 2.98×103/43/21/4.91×107 2.54×103/19/9/1.66×107 2.73×103/23/11/1.81×107
    a2(1) 1.31×103/26/12/3.70×107 1.26×103/40/19/7.78×107 3.22×103/106/52/9.78×107 8.69×104/32/15/4.75×107
    a3(1) 7.80×104/26/12/3.87×107 1.21×103/40/19/7.85×107 3.14×103/112/55/8.02×107 8.94×104/34/16/7.45×107
    a4(1) 7.64×104/26/12/4.51×107 1.24×103/42/20/8.09×107 3.52×103/126/62/7.72×107 1.13×103/40/19/9.19×107
    a5(1) 7.73×104/26/12/3.61×107 1.19×103/40/19/9.05×107 3.45×103/122/60/8.88×107 1.13×103/42/20/1.00×106
    a6(1) 7.64×104/26/12/4.42×107 1.24×103/42/20/8.06×107 3.49×103/126/62/8.40×107 1.21×103/46/22/2.20×107
    a7(1) 8.60×104/26/12/4.51×107 1.44×103/42/20/8.09×107 3.69×103/126/62/7.72×107 1.08×103/40/19/9.19×107
    a8(1) 7.73×104/26/12/4.46×107 1.25×103/42/20/8.01×107 3.51×103/126/62/9.12×107 1.12×103/42/20/9.45×107
    a1(5) 6.69×103/27/13/2.06×107 9.25×103/45/22/4.42×107 2.32×103/19/9/3.70×107 3.16×103/23/11/4.05×107
    a2(5) 3.74×103/26/12/8.03×107 5.41×103/42/20/6.99×107 1.32×102/102/50/8.79×107 3.99×103/32/15/9.77×107
    a3(5) 3.28×103/26/12/8.07×107 6.09×103/42/20/6.99×107 1.26×102/104/51/9.49×107 3.59×103/30/14/4.01×107
    a4(5) 3.68×103/26/12/1.00×106 5.31×103/44/21/7.28×107 1.69×102/134/66/7.58×107 7.56×103/46/22/3.76×107
    a5(5) 3.45×103/26/12/8.00×107 5.74×103/42/20/7.49×107 1.60×102/120/59/9.81×107 5.87×103/44/21/6.32×107
    a6(5) 3.07×103/26/12/9.96×107 5.45×103/44/21/7.27×107 1.65×102/134/66/7.48×107 5.75×103/44/21/6.70×107
    a7(5) 2.98×103/26/12/1.00×106 5.48×103/44/21/7.28×107 1.69×102/134/66/7.58×107 5.91×103/46/22/3.76×107
    a8(5) 3.55×103/26/12/9.86×107 5.74×103/44/21/7.26×107 1.70×102/134/66/8.16×107 6.21×103/48/23/3.88×107
    a1(10) 5.20×103/27/13/2.92×107 7.55×103/45/22/6.26×107 3.37×103/19/9/5.24×107 4.08×103/23/11/5.72×107
    a2(10) 4.71×103/28/13/2.26×107 8.58×103/42/20/9.88×107 1.70×102/102/50/9.02×107 5.76×103/34/16/5.27×107
    a3(10) 5.27×103/28/13/2.26×107 7.14×103/42/20/9.88×107 1.71×102/102/50/8.69×107 4.70×103/30/14/8.91×107
    a4(10) 5.08×103/28/13/2.82×107 8.31×103/46/22/4.14×107 2.33×102/138/68/6.32×107 9.09×103/50/24/3.17×107
    a5(10) 5.34×103/28/13/2.25×107 8.72×103/44/21/4.18×107 2.02×102/120/59/8.63×107 6.47×103/40/19/8.86×107
    a6(10) 5.96×103/28/13/2.82×107 7.91×103/46/22/4.14×107 2.33×102/136/67/9.67×107 7.15×103/44/21/8.60×107
    a7(10) 4.88×103/28/13/2.82×107 8.50×103/46/22/4.14×107 2.37×102/138/68/6.32×107 8.83×103/50/24/3.17×107
    a8(10) 5.53×103/28/13/2.84×107 8.39×103/46/22/4.14×107 2.38×102/138/68/6.16×107 8.83×103/48/23/6.24×107
    a1(50) 1.98×102/27/13/6.52×107 3.52×102/47/23/5.63×107 1.40×102/21/10/1.44×107 1.72×102/25/12/2.04×107
    a2(50) 2.04×102/28/13/5.03×107 3.14×102/44/21/8.89×107 6.69×102/100/49/6.24×107 2.25×102/32/15/4.42×107
    a3(50) 2.00×102/28/13/5.03×107 3.21×102/44/21/8.89×107 6.70×102/100/49/8.18×107 1.94×102/30/14/3.08×107
    a4(50) 2.15×102/28/13/6.31×107 3.31×102/46/22/9.26×107 9.26×102/142/70/7.78×107 3.01×102/46/22/6.30×107
    a5(50) 2.06×102/28/13/5.00×107 3.29×102/44/21/9.09×107 8.71×102/126/62/7.61×107 2.55×102/38/18/7.48×107
    a6(50) 1.97×102/28/13/6.31×107 3.44×102/46/22/9.26×107 9.46×102/142/70/9.31×107 3.17×102/46/22/3.49×107
    a7(50) 2.15×102/28/13/6.31×107 3.37×102/46/22/9.26×107 9.88×102/142/70/7.78×107 3.00×102/46/22/6.30×107
    a8(50) 1.96×102/28/13/6.33×107 3.06×102/46/22/9.27×107 9.31×102/144/71/9.68×107 3.06×102/46/22/7.52×107
    a1(100) 3.64×102/27/13/9.22×107 6.18×102/47/23/7.97×107 2.40×102/21/10/2.04×107 2.74×102/25/12/2.89×107
    a2(100) 3.42×102/28/13/7.11×107 6.01×102/46/22/5.06×107 1.05×101/96/47/8.78×107 3.38×102/30/14/6.07×107
    a3(100) 3.39×102/28/13/7.11×107 5.69×102/46/22/5.06×107 1.12×101/100/49/7.59×107 3.40×102/30/14/8.87×107
    a4(100) 3.35×102/28/13/8.92×107 5.60×102/46/22/9.44×107 1.56×101/146/72/6.85×107 5.26×102/48/23/7.11×107
    a5(100) 3.41×102/28/13/7.07×107 6.24×102/46/22/5.14×107 1.42×101/122/60/5.79×107 4.32×102/38/18/8.47×107
    a6(100) 3.44×102/28/13/8.92×107 5.61×102/46/22/9.44×107 1.63×101/146/72/8.40×107 5.32×102/48/23/8.26×107
    a7(100) 3.55×102/28/13/8.92×107 5.64×102/46/22/9.44×107 1.61×101/146/72/6.85×107 5.25×102/48/23/7.11×107
    a8(100) 3.29×102/28/13/8.93×107 5.75×102/46/22/9.44×107 1.61×101/146/72/7.88×107 5.82×102/52/25/2.59×107

     | Show Table
    DownLoad: CSV

    In this expression, Ωp denotes the test set, and |Ωp| denotes the total number of test problems. The set Π includes all candidate solvers, while ωp,q represents the performance indicator of solver qΠ on problem instance ωpΩp. From Tables 212 and Figures 13, we can draw the following conclusions: (1) As shown in Tables 212, all benchmark problems are solved successfully by the TTRMIL, SATTCGM, MSCG, and MRMIL algorithms, demonstrating their effectiveness. (2) Figure 1 illustrates that the TTRMIL algorithm solves 37.73% of the benchmark problems in the least amount of CPU time, outperforming the SATTCGM, MSCG and MRMIL algorithms, which solve 28.64%, 6.14%, and 28.41%, respectively, in the same time. (3) Figure 2 highlights that the TTRMIL algorithm achieves a lower number of function evaluations for 50.23% of the benchmark problems, surpassing the SATTCGM, MSCG, and MRMIL algorithms, which solve 34.09%, 6.14%, and 27.27%, respectively, with fewer evaluations. (4) Figure 3 demonstrates that the TTRMIL algorithm requires fewer iterations to solve 70.68% of the benchmark problems, outperforming the SATTCGM, MSCG, and MRMIL algorithms, which solve 14.55%, 6.36%, and 35.68%, respectively, with fewer iterations. Moreover, to further highlight the robustness of the TTRMIL algorithm, we examine its performance on a particularly challenging class of problems, involving non-Lipschitz functions. In particular, Problem 11 serves as a representative case. As illustrated in Table 12, the TTRMIL algorithm solves 77.5% of the 40 cases with the least CPU time, and achieves the lowest number of function evaluations and iteration counts in 87.5% of the cases for each metric.

    Figure 1.  Performance profiles on CPUT.
    Figure 2.  Performance profiles on NF.
    Figure 3.  Performance profiles on NI.

    These results consistently highlight the efficiency and convergence strength of the TTRMIL algorithm across multiple metrics. Notably, the enhanced performance can be attributed to the computational contribution of the third term in its search direction, which effectively accelerates convergence and reduces overall resource consumption.

    Image denoising is a prominent inverse problem in compressive sensing, where various sources of noise complicate the process, including defective pixels in camera sensors, hardware storage errors, and interference during transmission through noisy channels. Among these, salt-and-pepper noise poses a particular challenge, as it can obscure vital image details and edges, which are crucial for applications in fields such as medical imaging, remote sensing, and object recognition. To tackle this issue, earlier studies (e.g., [34,35]) proposed a robust two-phase approach designed specifically to detect and remove salt-and-pepper noise. In the following, we provide a comprehensive explanation of this approach, which has proven effective in addressing these challenges.

    Let an original image x have dimensions m×n, where xi,j denotes the grayscale value at pixel location (i,j)I={1,2,,m}×{1,2,,n}. For the purposes of image processing, we define the neighborhood of each pixel (i,j), denoted by Mi,j={(i,j1),(i,j+1),(i1,j),(i+1,j)}. When the image x is corrupted by the salt-and-pepper noise, the resulting noisy image is represented by o. The two-phase approach begins with the application of an adaptive median filter to the noisy image o, resulting in an intermediate image ˜o. In the first phase, noise candidates are identified based on the difference between o and ˜o. The set of noise candidates is defined as:

    N={(i,j)I:˜oi,joi,j and (oi,j=smin or smax)}.

    The second phase focuses on recovering the noisy pixels in the set N. For each pixel (i,j)N, if it is determined to be non-noisy, its value is retained as ui,j=oi,j. For noisy pixels, their values are recovered by considering the values of their non-noisy neighbors. Specifically, non-noisy neighboring pixels are preserved as um,n=om,n for (m,n)Mi,jN, while the values of noisy neighbors, (m,n)Mi,jN, are also recovered. To achieve the restoration, the following objective function is minimized:

    minuf(u)=(i,j)N{(m,n)Mi,jN2ϕα(ui,jom,n)+(m,n)Mi,jNϕα(ui,jum,n)}.

    Here, ϕα is an edge-preserving potential function with a coefficient α. According to Corolly 1 in [35], if ϕα is convex and first order Lipschitz continuous, then f(u) is also Lipschitz continuous, where f(u) is the gradient of the function f(u). Furthermore, Proposition 6 in the same work states that if ϕα is convex, then f(u) is monotone. To satisfy these conditions, we adopt the well-known Huber function as the form of ϕα, defined as:

    ϕα(t)={t22α,|t|α,|t|α2otherwise.

    It is straightforward to verify that the Huber function is both convex and Lipschitz continuous. As a result, the proposed algorithm is well-suited to solve the underlying optimization problem with both theoretical soundness and numerical stability.

    We utilize several well-known test images: Boat (512 × 512), Clown (512 × 512), Couple (512 × 512), Crowd (512 × 512), Tank (512 × 512), Trucks (512 × 512), Woman (512 × 512), Zelda (512 × 512), which can be found in https://hlevkin.com/. Each of these images is corrupted by 30% salt-and-pepper noise. The experiments are repeated 10 times with different noise samples to ensure robustness. The noisy images, along with their recovered versions using TTRMIL, SATTCGM, and MSCG algorithms, are presented in Figures 4 and 5. From these figures, it is evident that all images affected by 30% salt-and-pepper are successfully recovered by TTRMIL, SATTCGM, and MSCG algorithms. In addition, the corresponding numerical results, shown in Table 13, include the average number of iterations (¯NI), the average CPU time in seconds (¯CPUT), the average peak signal-to-noise-ratio (¯PSNR), and the average structural similarly index (¯SSIM), respectively. The table highlights that, despite achieving similar average structural similarity indices, the TTRMIL algorithm outperforms the SATTCGM and MSCG algorithms by requiring fewer CPU time, and fewer iterations. These finding suggest that the TTRMIL algorithm is not only efficient but also highly competitive in the domain of image denoising.

    Figure 4.  The first column: noise images for Boat, Clown, Couple, and Crowd with 30% salt and pepper noise; The second column: recovered images by TTRMIL algorithm; The third column: recovered images by SATTCGM algorithm; The forth column: recovered images by MSCG algorithm.
    Figure 5.  The first column: noise images for Tank, Trucks, Woman, and Zelda with 30% salt and pepper noise; The second column: recovered images by TTRMIL algorithm; The third column: recovered images by SATTCGM algorithm; The forth column: recovered images by MSCG algorithm.
    Table 13.  Efficiency comparison for different algorithms.
    Image TTRMIL SATTCGM MSCG
    ¯NI/¯CPUT/¯PSNR/¯SSIM ¯NI/¯CPUT/¯PSNR/¯SSIM ¯NI/¯CPUT/¯PSNR/¯SSIM
    Boat 63.9/14.56/34.52/0.98 233.4/85.07/33.93/0.98 65.7/14.84/34.41/0.98
    Clown 57.0/13.12/37.31/0.99 229.5/84.04/36.58/0.99 73.8/17.24/37.30/0.99
    Couple 55.9/16.15/34.76/0.99 232.4/112.16/34.31/0.99 72.2/20.58/34.76/0.99
    Crowd 49.4/14.37/36.38/0.99 197.4/92.69/36.02/0.99 63.5/18.20/36.38/0.99
    Tank 27.3/7.65/35.05/0.98 178.5/101.12/34.97/0.98 34.4/9.45/35.05/0.98
    Trucks 34.9/10.05/34.14/0.98 181.3/94.43/34.00/0.98 50.3/14.37/34.14/0.98
    Woman 23.4/6.90/44.59/1.00 31.5/22.85/42.72/1.00 38.1/11.11/44.63/1.00
    Zelda 27.3/7.18/41.63/0.99 167.4/80.88/41.25/0.99 38.9/9.64/41.64/0.99

     | Show Table
    DownLoad: CSV

    In this paper, we propose a three-term extended RMIL CGP-based algorithm designed to solve nonlinear equations with convex constraints. The key contribution of this work lies in the extension of the traditional two-term search direction to a more robust three-term direction. By carefully designing the scale coefficient, we ensure both the sufficient descent property and the trust-region feature, thereby obviating the need for computationally expensive line search techniques. Importantly, we establish the global convergence of the proposed algorithm under weaker assumptions without relying on the Lipschitz continuity condition commonly required in optimization literature. To validate the practical effectiveness of the proposed algorithm, we conducted comprehensive numerical experiments on eleven benchmark problems, including Lipschitz and non-Lipschitz functions. The results reveal that the proposed algorithm not only demonstrates superior performance but also consistently outperforms other comparable three-term methods in terms of computational efficiency. Notably, its robustness in handling large-scale problems and non-Lipschitz functions highlights its practical relevance and competitiveness in real-world applications. In the future work, we will integrate the inertial-relax scheme into the proposed algorithm for accelerating the convergent speed, and apply the proposed algorithm to specific application domains, such as machine learning, signal processing, or control systems.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research was funded by the Natural Science Foundation in Guangxi Province, PR China (grant number 2024GXNSFAA010478), the Special projects in key areas of ordinary universities in Guangdong Province, PR China (grant number 2023ZDZX4069), the Research Team Project of Guangzhou Huashang College (grant number 2021HSKT01), and the Guangzhou Huashang College Daoshi Project (grant number 2024HSDS15, 2024HSDS28)

    The authors declare there is no conflicts of interest.



    [1] Y. Zheng, B. Jeon, D. Xu, Q. Wu, H. Zhang, Image segmentation by generalized hierarchical fuzzy C-means algorithm, J. Intell. Fuzzy Syst., 28 (2015), 961–973. https://doi.org/10.3233/IFS-141378 doi: 10.3233/IFS-141378
    [2] Z. Dai, H. Zhou, F. Wen, S. He, Efficient predictability of stock return volatility: The role of stock market implied volatility, North Am. J. Econ. Financ., 52 (2020), 101174. https://doi.org/10.1016/j.najef.2020.101174 doi: 10.1016/j.najef.2020.101174
    [3] M. Figueiredo, R. Nowak, S. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE J. Sel. Top. Signal Process., 1 (2007), 586–597. https://doi.org/10.1109/JSTSP.2007.910281 doi: 10.1109/JSTSP.2007.910281
    [4] P. Liu, H. Shao, Z. Yuan, X. Wu, T. Zheng, A family of three-term conjugate gradient projection methods with a restart procedure and their relaxed-inertial extensions for the constrained nonlinear pseudo-monotone equations with applications, Numer. Algorithms, 94 (2023), 1055–1083. https://doi.org/10.1007/s11075-023-01527-8 doi: 10.1007/s11075-023-01527-8
    [5] W. Xue, P. Wan, Q. Li, An online conjugate gradient algorithm for large-scale data analysis in machine learning, AIMS Math., 6 (2021), 1515–1537. https://doi.org/10.3934/math.2021092 doi: 10.3934/math.2021092
    [6] J. Chorowsk, J. Zurada, Learning understandable neural networks with nonnegative weight constraints, IEEE Trans. Neural Networks Learn. Syst., 26 (2015), 62–69. https://doi.org/10.1109/TNNLS.2014.2310059 doi: 10.1109/TNNLS.2014.2310059
    [7] M. Dehghan, G. Karamali, A. Shirilord, An iterative scheme for a class of generalized Sylvester matrix equations, AUT J. Math. Comput., 6 (2024), 1–20. http://dx.doi.org/10.22060/AJMC.2024.22444.1159 doi: 10.22060/AJMC.2024.22444.1159
    [8] P. Liu, L. Li, H. Shao, M. Liu, J. Fan, An inertial-type CG projection method with restart for pseudo-monotone costs with application to traffic assignment, Networks Spat. Econ., 25 (2025), 147–172. https://doi.org/10.1007/s11067-024-09653-z doi: 10.1007/s11067-024-09653-z
    [9] X. Tong, S. Zhou, A smoothing projected Newton-type method for semismooth equations with bound constraints, J. Ind. Manage. Optim., 1 (2005), 235–250. https://doi.org/10.3934/jimo.2005.1.235 doi: 10.3934/jimo.2005.1.235
    [10] M. Dehghan, M. Hajarian, Fourth-order variants of Newton's method without second derivatives for solving non-linear equations, Eng. Comput., 29 (2012), 356–365. https://doi.org/10.1108/02644401211227590 doi: 10.1108/02644401211227590
    [11] J. Yin, J. Jian, G. Ma, A modified inexact Levenberg-Marquardt method with the descent property for solving nonlinear equations, Comput. Optim. Appl., 87 (2024), 289–322. https://doi.org/10.1007/s10589-023-00513-z doi: 10.1007/s10589-023-00513-z
    [12] A. Ibrahim, M. Alshahrani, S. Al-Homidan, Two classes of spectral three-term derivative-free method for solving nonlinear equations with application, Numer. Algorithms, 96 (2024), 1625–1645. https://doi.org/10.1007/s11075-023-01679-7 doi: 10.1007/s11075-023-01679-7
    [13] D. Li, J. Wu, Y. Li, S. Wang, A modified spectral gradient projection-based algorithm for large-scale constrained nonlinear equations with applications in compressive sensing, J. Comput. Appl. Math., 424 (2023), 115006. https://doi.org/10.1016/j.cam.2022.115006 doi: 10.1016/j.cam.2022.115006
    [14] X. Jiang, Z. Huang, An accelerated relaxed-inertial strategy based CGP algorithm with restart technique for constrained nonlinear pseudo-monotone equations to image de-blurring problems, J. Comput. Appl. Math., 447 (2024), 115887. https://doi.org/10.1016/j.cam.2024.115887 doi: 10.1016/j.cam.2024.115887
    [15] J. Liu, Y. Duan, Two spectral gradient projection methods for constrained equations and their linear convergence rate, J. Inequalities Appl., 2015 (2015), 1–13. https://doi.org/10.1186/s13660-014-0525-z doi: 10.1186/s13660-014-0525-z
    [16] J. Yin, J. Jian, X. Jiang, A generalized hybrid CGPM-based algorithm for solving large-scale convex constrained equations with applications to image restoration, J. Comput. Appl. Math., 391 (2021), 113423. https://doi.org/10.1016/j.cam.2021.113423 doi: 10.1016/j.cam.2021.113423
    [17] E. Ali, S. Mahdi, Adaptive hybrid mixed two-point step size gradient algorithm for solving non-linear systems, Mathematics, 11 (2023), 2102. https://doi.org/10.3390/math11092102 doi: 10.3390/math11092102
    [18] J. Jian, J. Jin, G. Ma, An IDFPM-based algorithm without Lipschitz continuity to constrained nonlinear equations for sparse signal and blurred image restoration problems, J. Comput. Appl. Math., 456 (2025), 116234. https://doi.org/10.1016/j.cam.2024.116234 doi: 10.1016/j.cam.2024.116234
    [19] P. Liu, H. Shao, Y. Wang, X. Wu, A three-term CGPM-based algorithm without Lipschitz continuity for constrained nonlinear monotone equations with applications, Appl. Numer. Math., 175 (2022), 98–107. https://doi.org/10.1016/j.apnum.2022.02.001 doi: 10.1016/j.apnum.2022.02.001
    [20] J. Liu, Z. Lu, J. Xu, S. Wu, W. Tu, An efficient projection-based algorithm without Lipschitz continuity for large-scale nonlinear pseudo-monotone equations, J. Comput. Appl. Math., 403 (2022), 113822. https://doi.org/10.1016/j.cam.2021.113822 doi: 10.1016/j.cam.2021.113822
    [21] D. Li, Y. Li, S. Wang, An improved three-term conjugate gradient algorithm for constrained nonlinear equations under non-lipschitz conditions and its applications, Mathematics, 12 (2024), 2556. https://doi.org/10.3390/math12162556 doi: 10.3390/math12162556
    [22] A. Ibrahim, P. Kumam, W. Kumam, A family of derivative-free conjugate gradient methods for constrained nonlinear equations and image restoration, IEEE Access, 8 (2020), 162714–162729. https://doi.org/10.1109/ACCESS.2020.3020969 doi: 10.1109/ACCESS.2020.3020969
    [23] H. Zheng, J. Li, P. Liu, X. Rong, An inertial Fletcher-Reeves-type conjugate gradient projection-based method and its spectral extension for constrained nonlinear equations, J. Appl. Math. Comput., 70 (2024), 2427–2452. https://doi.org/10.1007/s12190-024-02062-y doi: 10.1007/s12190-024-02062-y
    [24] X. Wu, H. Shao, P. Liu, Y. Zhang, Y. Zhou, An efficient conjugate gradient-based algorithm for unconstrained optimization and its projection extension to large-scale constrained nonlinear equations with applications in signal recovery and image denoising problems, J. Comput. Appl. Math., 422 (2023), 114879. https://doi.org/10.1016/j.cam.2022.114879 doi: 10.1016/j.cam.2022.114879
    [25] M. Rivaie, M. Mamat, L. June, I. Mohd, A new class of nonlinear conjugate gradient coefficients with global convergence properties, Appl. Math. Comput., 218 (2012), 11323–11332. https://doi.org/10.1016/j.amc.2012.05.030 doi: 10.1016/j.amc.2012.05.030
    [26] Z. Dai, Comments on a new class of nonlinear conjugate gradient coefficients with global convergence properties, Appl. Math. Comput., 276 (2016), 297–300. https://doi.org/10.1016/j.amc.2015.11.085 doi: 10.1016/j.amc.2015.11.085
    [27] Y. Xia, S. Wang, Global convergence in a modified RMIL-type conjugate gradient algorithm for nonlinear systems of equations and signal recovery, Electron. Res. Arch., 32 (2024), 6153–6174. https://doi.org/10.3934/era.2024286 doi: 10.3934/era.2024286
    [28] D. Li, S. Wang, Y. Li, J. Wu, A convergence analysis of hybrid gradient projection algorithm for constrained nonlinear equations with applications in compressed sensing, Numer. Algorithms, 95 (2024), 1325–1345. https://doi.org/10.1007/s11075-023-01610-0 doi: 10.1007/s11075-023-01610-0
    [29] X. Wang, S. Li, X. Kou, A self-adaptive three-term conjugate gradient method for monotone nonlinear equations with convex constraints, Calcolo, 53 (2016), 133–145. https://doi.org/10.1007/s10092-015-0140-5 doi: 10.1007/s10092-015-0140-5
    [30] A. Abubakar, P. Kumam, A. Awwal, P. Thounthong, A modified self-adaptive conjugate gradient method for solving convex constrained monotone nonlinear equations for signal recovery problems, Mathematics, 7 (2019), 693. https://doi.org/10.3390/math7080693 doi: 10.3390/math7080693
    [31] A. Awwal, P. Kumam, L. Wang, S. Huang, Inertial-based derivative-free method for system of monotone nonlinear equations and application, IEEE Access, 8 (2020), 226921–226930. https://doi.org/10.1109/ACCESS.2020.3045493 doi: 10.1109/ACCESS.2020.3045493
    [32] S. Rui, J. Zhang, An inexact algorithm for a class of CP with non-Lipschitzian function, J. Huaibei Norm. Univ. Nat. Sci., 33 (2012), 16–18.
    [33] E. Dolan, J. Jorge, Benchmarking optimization software with performance profiles, Math. Program., 91 (2001), 201–213. https://doi.org/10.1007/s101070100263 doi: 10.1007/s101070100263
    [34] R. Chan, C. Ho, M. Nikolova, Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization, IEEE Trans. Image Process., 14 (2005), 1479–1485. https://doi.org/10.1109/TIP.2005.852196 doi: 10.1109/TIP.2005.852196
    [35] J. Cai, R. Chan, D. Fiore, Minimization of a detail-preserving regularization functional for impulse noise removal, J. Math. Imaging Vision, 29 (2007), 79–91. https://doi.org/10.1007/s10851-007-0027-4 doi: 10.1007/s10851-007-0027-4
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(182) PDF downloads(13) Cited by(0)

Figures and Tables

Figures(5)  /  Tables(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog