Research article

A dissipative third-order boundary value problem with distributional potentials and eigenparameter-dependent boundary conditions

  • Published: 29 May 2025
  • This paper investigates a class of dissipative boundary value problems arising from a third-order differential equation with distributional potentials and eigenparameter-dependent boundary conditions. Initially, we transform the boundary value problem into the corresponding operator problem. We then demonstrate that the operator is dissipative and examine certain eigenvalue properties of the operator. Furthermore, by applying Krein's theorem, we establish the completeness theorems for both the boundary value problem and the corresponding operator.

    Citation: Fei-fan Li, Ji-jun Ao. A dissipative third-order boundary value problem with distributional potentials and eigenparameter-dependent boundary conditions[J]. Electronic Research Archive, 2025, 33(5): 3378-3393. doi: 10.3934/era.2025149

    Related Papers:

  • This paper investigates a class of dissipative boundary value problems arising from a third-order differential equation with distributional potentials and eigenparameter-dependent boundary conditions. Initially, we transform the boundary value problem into the corresponding operator problem. We then demonstrate that the operator is dissipative and examine certain eigenvalue properties of the operator. Furthermore, by applying Krein's theorem, we establish the completeness theorems for both the boundary value problem and the corresponding operator.



    加载中


    [1] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Second Edition, AMS Chelsea Publ., Providence, RI, 2005.
    [2] P. Kurasov, On the Coulomb potential in one dimension, J. Phys. A Math. Gen., 29 (1996), 1767. https://doi.org/10.1088/0305-4470/29/8/023 doi: 10.1088/0305-4470/29/8/023
    [3] N. J. Guliyev, Schrödinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter, J. Math. Phys., 60 (2019), 063501. https://doi.org/10.1063/1.5048692 doi: 10.1063/1.5048692
    [4] J. Yan, G. L. Shi, Inequalities among eigenvalues of Sturm-Liouville problems with distribution potentials, J. Math. Anal. Appl., 409 (2014), 509–520. https://doi.org/10.1016/j.jmaa.2013.07.024 doi: 10.1016/j.jmaa.2013.07.024
    [5] H. Y. Zhang, J. J. Ao, F. Z. Bo, Eigenvalues of fourth-order boundary value problems with distributional potentials, AIMS Math., 7 (2022), 7294–7317. https://doi.org/10.3934/math.2022407 doi: 10.3934/math.2022407
    [6] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, Inverse spectral theory for Sturm-Liouville operators with distributional potentials, J. London Math. Soc. Second Ser., 88 (2013), 801–828. https://doi.org/10.1112/jlms/jdt041 doi: 10.1112/jlms/jdt041
    [7] E. L. Korotyaev, Resonances of third order differential operators, J. Math. Anal. Appl., 478 (2019), 82–107. https://doi.org/10.1016/j.jmaa.2019.05.007 doi: 10.1016/j.jmaa.2019.05.007
    [8] A. Badanin, E. L. Korotyaev, Third-order operators with three-point conditions associated with Boussinesqs equation, Appl. Anal., 100 (2021), 527–560. https://doi.org/10.1080/00036811.2019.1610941 doi: 10.1080/00036811.2019.1610941
    [9] H. Y. Zhang, J. J. Ao, Some eigenvalue properties of third-order boundary value problems with distributional potentials, Acta Math. Appl. Sin. Engl. Ser., 41 (2025), 179–199. https://doi.org/10.1007/s10255-023-1064-5 doi: 10.1007/s10255-023-1064-5
    [10] N. P. Bondarenko, Inverse spectral problem for the third-order differential equation, Results Math., 78 (2023), 179. https://doi.org/10.1007/s00025-023-01955-x doi: 10.1007/s00025-023-01955-x
    [11] M. Gregus, Third Order Linear Differential Equations, Mathematics and Its Applications, Reidel, Dordrecht, 1987.
    [12] F. Bernis, L. A. Peletier, Two problems from draining flows involving third-order ordinary differential equations, SIAM J. Math. Anal., 27 (1996), 515–527. https://doi.org/10.1137/S0036141093260847 doi: 10.1137/S0036141093260847
    [13] E. O. Tuck, L. W. Schwartz, A numerical and asymptotic study of some third-order ordinary differential equations relevant to draining and coating flows, SIAM Rev., 32 (1990), 453–469. https://doi.org/10.1137/1032079 doi: 10.1137/1032079
    [14] C. Tretter, Boundary eigenvalue problems with differential equations $N\eta=\lambda P\eta$ with $\lambda$-polynomial boundary conditions, J. Differ. Equations, 170 (2001), 408–471. https://doi.org/10.1006/jdeq.2000.3829 doi: 10.1006/jdeq.2000.3829
    [15] C. Fulton, S. Pruess, Numerical methods for a singular eigenvalue problem with eigenparameter in the boundary conditions, J. Math. Anal. Appl., 71 (1979), 431–462. https://doi.org/10.1016/0022-247X(79)90203-8 doi: 10.1016/0022-247X(79)90203-8
    [16] J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary conditions, Math. Z., 133 (1973), 301–312. https://doi.org/10.1007/BF01177870 doi: 10.1007/BF01177870
    [17] Z. S. Aliyev, A. A. Dunyamalieva, Defect basis property of a system of root functions of a Sturm-Liouville problem with spectral parameter in the boundary conditions, Differ. Equations, 51 (2015), 1249–1266. https://doi.org/10.1134/S0012266115100018 doi: 10.1134/S0012266115100018
    [18] R. S. Phillips, Dissipative operators and hyperbolic systems of partial differential equations, Trans. Am. Math. Soc., 90 (1959), 193–254. https://doi.org/10.2307/1993202 doi: 10.2307/1993202
    [19] P. D. Lax, R. S. Phillips, Scattering theory for dissipative hyperbolic systems, J. Funct. Anal., 14 (1973), 172–235. https://doi.org/10.1016/0022-1236(73)90049-9 doi: 10.1016/0022-1236(73)90049-9
    [20] E. Bairamov, A. M. Krall, Dissipative operators generated by the Sturm-Liouville differential expression in the Weyl limit circle case, J. Math. Anal. Appl., 254 (2001), 178–190. https://doi.org/10.1006/jmaa.2000.7233 doi: 10.1006/jmaa.2000.7233
    [21] Z. Wang, H. Wu, Dissipative non-self-adjoint Sturm-Liouville operators and completeness of their eigenfunctions, J. Math. Anal. Appl., 394 (2012), 1–12. https://doi.org/10.1016/j.jmaa.2012.04.071 doi: 10.1016/j.jmaa.2012.04.071
    [22] E. Bairamov, E. Uǧurlu, The determinants of dissipative Sturm-Liouville operators with transmission conditions, Math. Comput. Modell., 53 (2011), 805–813. https://doi.org/10.1016/j.mcm.2010.10.017 doi: 10.1016/j.mcm.2010.10.017
    [23] E. Bairamov, E. Uǧurlu, On the characteristic values of the real component of a dissipative boundary value transmission problem, Appl. Math. Comput., 218 (2012), 9657–9663. https://doi.org/10.1016/j.amc.2012.02.079 doi: 10.1016/j.amc.2012.02.079
    [24] E. Bairamov, E. Uǧurlu, Krein's theorems for a dissipative boundary value transmission problem, Complex Anal. Oper. Theory, 7 (2013), 831–842. https://doi.org/10.1007/s11785-011-0180-z doi: 10.1007/s11785-011-0180-z
    [25] B. P. Allahverdiev, H. Tuna, Y. Yalçınkaya, A completeness theorem for dissipative conformable fractional Sturm-Liouville operator in singular case, Filomat, 36 (2022), 2461–2474. https://doi.org/10.2298/FIL2207461A doi: 10.2298/FIL2207461A
    [26] T. Wang, J. J. Ao, A. Zettl, A class of dissipative differential operators of order three, AIMS Math., 6 (2021), 7034–7043. https://doi.org/10.3934/math.2021412 doi: 10.3934/math.2021412
    [27] X. Y. Zhang, J. Sun, The determinants of fourth order dissipative operators with transmission conditions, J. Math. Anal. Appl., 410 (2014), 55–69. https://doi.org/10.1016/j.jmaa.2013.08.004 doi: 10.1016/j.jmaa.2013.08.004
    [28] E. Uǧurlu, Extensions of a minimal third-order formally symmetric operator, Bull. Malays. Math. Sci. Soc., 43 (2020), 453–470. https://doi.org/10.1007/s40840-018-0696-8 doi: 10.1007/s40840-018-0696-8
    [29] B. P. Allahverdiev, A nonself-adjoint singular Sturm-Liouville problem with a spectral parameter in the boundary condition, Math. Nachr., 278 (2005), 743–755. https://doi.org/10.1002/mana.200310269 doi: 10.1002/mana.200310269
    [30] H. Tuna, On spectral properties of dissipative fourth order boundary-value problem with a spectral parameter in the boundary condition, Appl. Math. Comput., 219 (2013), 9377–9387. https://doi.org/10.1016/j.amc.2013.03.010 doi: 10.1016/j.amc.2013.03.010
    [31] I. Gohberg, M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, American Mathematical Soc., Providence R.I., 1969.
    [32] M. G. Krein, On the indeterminate case of the Sturm-Liouville boundary problem in the interval (0,$\infty$), Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 16 (1952), 293–324.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(566) PDF downloads(23) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog