Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

The ADI difference and extrapolation scheme for high-dimensional variable coefficient evolution equations

  • Received: 01 April 2025 Revised: 30 April 2025 Accepted: 14 May 2025 Published: 26 May 2025
  • This paper investigated a numerical method for a two-dimensional variable coefficient evolution equation (VCEE), utilizing the alternating direction implicit (ADI) method and an extrapolation formula. The time derivative was discretised by the backward Euler (BE) scheme on a uniform mesh and the finite difference method (FDM) was applied to spatial discretization. We proved an priori estimate and the error bound of the solution to the difference scheme using the energy analysis method, and verified the uniqueness, stability, and convergence of the proposed scheme. To further improve numerical accuracy, we introduced a Richardson extrapolation method, which enhances the global accuracy to fourth order. Finally, some numerical examples were provided to demonstrate the validity of the theoretical analysis.

    Citation: Jinxiu Zhang, Xuehua Yang, Song Wang. The ADI difference and extrapolation scheme for high-dimensional variable coefficient evolution equations[J]. Electronic Research Archive, 2025, 33(5): 3305-3327. doi: 10.3934/era.2025146

    Related Papers:

    [1] Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121
    [2] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [3] Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683
    [4] Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589
    [5] Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506
    [6] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [7] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201
    [8] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [9] Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043
    [10] Areej A. Almoneef, Abd-Allah Hyder, Fatih Hezenci, Hüseyin Budak . Simpson-type inequalities by means of tempered fractional integrals. AIMS Mathematics, 2023, 8(12): 29411-29423. doi: 10.3934/math.20231505
  • This paper investigated a numerical method for a two-dimensional variable coefficient evolution equation (VCEE), utilizing the alternating direction implicit (ADI) method and an extrapolation formula. The time derivative was discretised by the backward Euler (BE) scheme on a uniform mesh and the finite difference method (FDM) was applied to spatial discretization. We proved an priori estimate and the error bound of the solution to the difference scheme using the energy analysis method, and verified the uniqueness, stability, and convergence of the proposed scheme. To further improve numerical accuracy, we introduced a Richardson extrapolation method, which enhances the global accuracy to fourth order. Finally, some numerical examples were provided to demonstrate the validity of the theoretical analysis.



    Fractional analysis can be regarded as a generalization of classical analysis. Fractional analysis has been investigated and discussed by several mathematicians and they have explored the fractional derivatives and integrals in variant ways with numerous notations. Although the expressions of these generalized definitions can be transformed into each other, but have variant physical meanings. It is well known that the first fractional integral operator is the Riemann-Liouville fractional integral operator. Recently, fractional calculus has become one of the prestigious fields in research because of its inherent applications in different fields like numerical physical science [1], fluid mechanics [2], biological modeling [3,4], and many more. Fractional calculus owes its starting point to whether or not the importance of the derivative of an integer order could be generalized to a fractional order which is not an integer. Analysis of fractional calculus is the generalization of classical analysis, it has been developed rapidly with the interesting convexity theory attributed to Jensen [5]. Its fertile applications in functional analysis, stochastic theory, finite element method, and optimization theory have made it a fascinating topic for research. Therefore, it acts as an incorporative subject among quantum theory, orthogonal polynomials, combinatorics, etc. These are the principal urges that led to the deep research and improvement of the theory of inequality in literature (see [6,7,8]).

    Let 0<γ1γ2...γP and φ=(φ1,φ2,...,φP) be non-negative weights such that Pk=1 φk=1. The Jensen's inequality (see [5]) in the literature, reads as:

    If the convexity of Φ holds true on the interval [1,2], then

    Φ(Pk=1 φk γk)Pk=1 φk Φ(γk), (1.1)

    for all γk[d,D], φk[0,1]and(k=1,2,...,P). This inequality helps to obtain new bounds for useful distances in information theory (see [9]).

    Mercer [10] in the year 2003, investigated a generalized form of Jensen's inequality, which is famously known as Jensen-Mercer (J-M) inequality:

    If Φ is a convex function on [d,D], then

    Φ(d+DPk=1 φk γk)Φ(d)+Φ(D)Pk=1 φk Φ(γk), (1.2)

    holds true for all γk[d,D], φk[0,1] and (k=1,2,...,P).

    Some generalizations on J-M operator inequalities are proposed by Pečarić et al. in [11]. Later, Niezgoda in [12] proved several generalizations of Mercer's type inequalities to higher dimensions. Kian [13] contemplated the idea of Jensen inequality for superquadratic functions. Moreover, reverse Mercer's type operator inequalities and the aforesaid inequalities for super-quadratic functions have been proposed in [14,15]. Also, the integral and integral mean version have been established in [16]. Cortez et al. (see Remark 3.4 [17]) presented the concept of s-convex variant of J-M inequality in a generalized form. For some recent generalizations on J-M type inequalities, we direct readers to go through [18,19,20] and the references cited therein.

    Hudzik et al. [21], introduced the notion of s-convex functions in the first and second sense and also discussed some of their notable features.

    Definition 1.1. Let s(0,1] and Φ be a real valued function on an interval I=[0,). Then ϕ is said to be s-convex in the first sense if

    ϕ(φ1γ1+φ2γ2)φs1ϕ(γ1)+φs2ϕ(γ2),

    holds true for all γ1,γ2I, φ1,φ20 with φs1+φs2=1.

    Definition 1.2. Let s(0,1] and Φ be a real valued function on an interval I=[0,). Then ϕ is said to be s-convex in the second sense if

    ϕ(φ1γ1+φ2γ2)φs1ϕ(γ1)+φs2ϕ(γ2),

    holds true for all γ1,γ2I, φ1,φ20 with φ1+φ2=1.

    The class of s-convex function in the first and second sense are denoted by (Φ K1s) and (Φ K2s) respectively. Moreover, they also studied that the class of s-convex function in the second sense is more stronger than the s-convexity in first sense for s(0,1). Several features of s-convex function in both senses are discussed taking some examples into consideration. It is interesting to see that if s(0,1) and Φ K2s, then Φ is non negative.

    For more detail on s-convex function (see [21,22,23,24]) and references cited therein. Chen [23] gave a nice relationship between convex functions and s-convex functions as:

    Lemma 1.1. (see [23]) Suppose Φ:[d,D] is a convex function. Then

    (i) If Φ is non-negative, then it is s-convex for s(0,1].

    (ii) If Φ is non-positive, then it is s-convex for s[1,).

    Butt et al. [25] investigated the J-M inequality for s-convex functions in Breckner sense (s>0) as follows:

    Theorem 1.1. Let φ1,φ2,...,φP be positive probability distributions and Pȷ=1φsȷ1. If Φ:[d,D](0,) is s-Breckner sense convex function, then the following inequality is valid

    Φ(d+DPȷ=1φȷγȷ)Φ(d)+Φ(D)Pȷ=1φsȷΦ(γȷ), (1.3)

    for any increasing sequence {γȷ}Pȷ=1[d,D].

    The following conditions are necessary:

    (i) By considering s=1 in (1.3), we get the J-M inequality (1.1).

    (ii) By considering s=1 and φ1=d and φ2=D, in (1.3) it gives the definition of the classical convex function.

    The following inequality named as Simpson's inequality, is given in the literature as (see [26,27,28]).

    |13{Φ(d)+Φ(D)2+2Φ(d+D2)1DdDdΦ(x)dx}|12880||Φ4||(Dd)4,

    where Φ:[d,D] is a four times continuously differentiable mapping on (d,D) and ||Φ4||=supx(d,D)|Φ4(x)|<.

    Several authors have concentrated on Simpson-type inequalities for different classes of mappings. Precisely, a few mathematicians have dealt with Simpson-type inequalities for convex mappings, since convexity theory is an efficient and stable process for taking care of an extraordinary number of issues that emerge in various branches in pure and applied sciences. For some recent improvements on Simpson type inequality via different convexities and fractional operators see references [29,30,31,32] and cited therein.

    Let ΦL[d,D]. Then the left and right Riemann-Liouville (R-L) fractional integrals of order δ>0 with d0 are defined as follows:

    Jδd+Φ(x)= 1Γ(δ)xd(xκ)δ1 Φ(κ) dκ ,    x>d,

    and

    JδDΦ(x)= 1Γ(δ)Dx(κx)δ1 Φ(κ) dκ ,    x<D.

    For further details one may (see [33,34]).

    In [35], the idea of the J-M inequality has been used by Kian and Moslehian and the following Hermite-Hadamard-Mercer inequality was demonstrated:

    Φ(d+Dω1+ω22)1ω2ω1ω2ω1Φ(d+Dκ)dκΦ(d+Dω1)+Φ(d+Dω2)2Φ(d)+Φ(D)Φ(ω1)+Φ(ω2)2. (1.4)

    Recently, the notions of fractional operators have drawn the attention of several researchers. Fractional calculus helps mathematicians solve many real-life problems in a convincing manner than classical calculus. Mainly, there are two types of nonlocal fractional derivatives, the classical Riemann-Liouville and Caputo derivatives with singular kernels and the others with non-singular kernels, which have been introduced recently, such as the Caputo-Fabrizio and Atangana-Baleanu derivatives. However, the fractional derivative operators with non-singular kernels are effective to solve the non-locality of real-world problems in an appropriate manner. The introduction of new notions of fractional operators is a journey to succeed momentum to the fractional calculus and to gain the most efficient operators to the discussion. Now, we recall the notion of the Caputo-Fabrizio fractional operator:

    Definition 1.3. Let p[1,) and [ω1,ω2] be an open subset of , the Sobolev space Hp(ω1,ω2) is defined by

    Hp(ω1,ω2)={ΦL2(ω1,ω2):DμΦL2(ω1,ω2),forall|μ|p}.

    Definition 1.4. [36] Let ΦH1(0,κ), κ>ω, δ[0,1] then, the definition of the new Caputo fractional derivative is given as:

    CFDδΦ(t)=M(δ)1δtωΦ(s)exp[δ(1δ)(κs)]ds, (1.5)

    where M(δ) is normalization function with M(0)=M(1)=1.

    Moreover, the corresponding Caputo-Fabrizio fractional integral operator is given as:

    Definition 1.5. [37] Let ΦH1(0,κ), κ>ω, δ[0,1]. Then, the definition of Caputo-Fabrizio fractional integrals are given as:

    (CFωIδΦ)(t)=1δM(δ)Φ(t)+δM(δ)tωΦ(y)dy,

    and

    (CF IδκΦ)(t)=1δM(δ)Φ(t)+δM(δ)κtΦ(y)dy,

    where M(δ) is normalization function with M(0)=M(1)=1.

    Recently, Atangana & Baleanu introduced a new fractional operator containing the Mittag-Leffler function in the kernel, that solves the problem of retrieving the original function (a clear advantage over the Caputo-Fabrizio operator). Mittag-Leffler's function is more suitable than a power law in modeling nature and physical phenomena. This attribute has made the A-B operator more effective and helpful. As a result, many researchers have shown keen interest in utilizing this operator. Atangana & Baleanu introduced the derivative operator both in Caputo and Riemann-Liouville sense:

    Definition 1.6. [38] Let κ>ω, δ[0,1] and ΦH1(ω,κ). The new fractional derivative is given as:

    ABCωDδt[Φ(t)]=M(δ)1δtωΦ(x)Eδ[δ(tx)δ(1δ)]dx, (1.6)

    where Eδ is the Mittag-Leffler function and is defined as Eδ(tδ)=k=0(t)δkΓ(δk+1).

    Definition 1.7. [38] Let ΦH1(ω,κ), ω>κ, δ[0,1]. The new fractional derivative is given as:

    ABRωDδt[Φ(t)]=M(δ)1δddttωΦ(x)Eδ[δ(tx)δ(1δ)]dx, (1.7)

    where Eδ is the Mittag-Leffler function.

    However, in the same paper the authors also presented corresponding A-B fractional integral operator as:

    Definition 1.8. [38] The fractional integral operator with non-local kernel of a function ΦH1(ω,κ) is defined as:

    ABωItδ{Φ(t)}=1δM(δ)Φ(t)+δM(δ)Γ(δ)tωΦ(y)(ty)δ1dy,

    where κ>ω,δ[0,1].

    In [39], the right hand side of A-B fractional integral operator is presented as follows:

    ABκItδ{Φ(t)}=1δM(δ)Φ(t)+δM(δ)Γ(δ)κtΦ(y)(yt)δ1dy.

    Here, Γ(δ) is the Gamma function. The positivity of the normalization function M(δ) implies that the fractional A-B integral of a positive function is positive. It is worth noticing that the case when the order δ1 yields the classical integral and the case when δ0 provides the initial function.

    Sarikaya et al. [33] used Riemann-Liouville fractional integrals to generalise the Hermite-Hadamard inequality. Iscan [40] generalised the conclusions reached by Sarikaya et al. [33] to Hermite-Hadamard-Fejér type inequalities. Chen [41] employed the methods of Sarikaya et al. [33] and used the product of two convex functions to produce fractional Hermite-Hadamard type integral inequalities. Recently, Sun proved different variants of the Hermite-Hadamard inequality via generalized local fractional integral operators with Mittag-Leffler kernel for h-convex functions [42], s-preinvex functions [43] and generalized preinvex fuctions [44]. Fernandez and Mohammed [45] presented a nice relation between Riemann-Liouville fractional integrals and A-B fractional integral operators and also proved new type of Hermite-Hadamard inequalities for convex functions. Ogulmus et al. [46] established Hermite-Hadamard-Mercer type inequalities involving Riemann-Liouville fractional operator. Sahoo et al. [47] presented some mid-point versions of Hermite-Hadamard inequalities via Caputo-Fabrizio fractional operator. Latif et al. [48] worked on Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function.

    The main motivation of this study is to obtain an integral identity employing A-B fractional integral operator, which has a unique place among fractional integral operators, and to generate some new Simpson-Mercer's like inequalities for s-convex functions based on this identity. Considering many special cases of the main findings, the study also includes the applications of the results.

    In this section, we study several Simpson-Mercer's like inequalities via the A-B fractional integral operator for differentiable functions on (d,D). For this, we establish a new A-B integral identity that will serve as an auxiliary result to produce subsequent results for improvements. Throughout the paper, let us assume that P1: = (1+κ2)s+(1κ2)s1, for κ[0,1].

    Lemma 2.1. Suppose the mapping Φ:I=[d,D] is differentiable on (d,D) with D>d. If ΦL[d,D], then for all ω1,ω2[d,D] and δ>0, the following A-B fractional identity of Simpson-Mercer type holds true:

    16{Φ(d+Dω1)+Φ(d+Dω2)}+23Φ(d+Dω1+ω22)+2δ(1δ)Γ(δ)(ω2ω1)δΦ(d+Dω1+ω22) 2δ1M(δ)Γ(δ)(ω2ω1)δ { AB(d+Dω1)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22) +AB(d+Dω2)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22)}=ω2ω12[10(κδ213)Φ(d+D[1+κ2ω1+1κ2ω2])dκ+10(13κδ2)Φ(d+D[1κ2ω1+1+κ2ω2])dκ], (2.1)

    for κ[0,1].

    Proof. Let us assume that

    ω2ω12[10(κδ213)Φ(d+D[1+κ2ω1+1κ2ω2])dκ+10(13κδ2)Φ(d+D[1κ2ω1+1+κ2ω2])dκ]=ω2ω12{J1+J2}. (2.2)

    Implies that

    J1=10(κδ213)Φ(d+D[1+κ2ω1+1κ2ω2])dκ.

    Integrating by parts, we get

    J1=(κδ213)Φ(d+D[1+κ2ω1+1κ2ω2])ω2ω12|1010Φ(d+D[1+κ2ω1+1κ2ω2])ω2ω12×δκδ12dκ.

    By substituting the variables, we get

    J1=2ω2ω1{16Φ(d+Dω1)+13Φ(d+Dω1+ω22)}2δM(δ)Γ(δ)(ω2ω1)δ+1×{ AB(d+Dω1)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22)1δM(δ)Φ(d+Dω1+ω22)}.

    Similarly,

    J2=10(13κδ2)Φ(d+D[1κ2ω1+1+κ2ω2])dκ=2ω2ω1{16Φ(d+Dω2)+13Φ(d+Dω1+ω22)}2δM(δ)Γ(δ)(ω2ω1)δ+1{ AB(d+Dω2)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22)1δM(δ)Φ(d+Dω1+ω22)}.

    By using the values of J1 and J2 in (2.2), we get (2.1).

    Corollary 2.1. If we consider δ=1 in (2.1), then we have the following Simpson-Mercer type equality

    16{Φ(d+Dω1)+4Φ(d+Dω1+ω22)+Φ(d+Dω2)}1(ω2ω1)d+Dω1d+Dω2Φ(x)dx=ω2ω12[10(κ213)Φ(d+D[1+κ2ω1+1κ2ω2])dκ+10(13κ2)Φ(d+D[1κ2ω1+1+κ2ω2])dκ].

    Remark 2.1. If we set ω1=d and ω2=D in Corollary 2.1, we obtain Lemma 1 in [27].

    Theorem 2.1. Taking all the conditions as defined in Lemma 2.1 and assumption P1 into consideration and let |Φ| be s-convex function on [d,D], for s>0. Then, for all δ>0, the following Simpson-Mercer type inequality for A-B fractional integral holds true for κ[0,1]:

    |16{Φ(d+Dω1)+Φ(d+Dω2)}+23Φ(d+Dω1+ω22)+2δ(1δ)Γ(δ)(ω2ω1)δΦ(d+Dω1+ω22) 2δ1M(δ)Γ(δ)(ω2ω1)δ { AB(d+Dω1)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22) +AB(d+Dω2)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22)}|ω2ω12[2{(23)1+1δ(δδ+1)+12δ6(δ+1)}[|Φ(d)|+|Φ(D)|]12s[|Φ(ω1)|+|Φ(ω2)|]{J3(δ)+J4(δ)}], (2.3)

    where

    J3(δ)=(23)1δ0(13κδ2)[(1+κ)s+(1κ)s]dκ,

    and

    J4(δ)=1(23)1δ(κδ213)[(1+κ)s+(1κ)s]dκ.

    Proof. Employing Lemma 2.1 with the J-M inequality and the s-convexity of |Φ|, we have

    |16{Φ(d+Dω1)+Φ(d+Dω2)}+23Φ(d+Dω1+ω22)+2δ(1δ)Γ(δ)(ω2ω1)δΦ(d+Dω1+ω22) 2δ1M(δ)Γ(δ)(ω2ω1)δ { AB(d+Dω1)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22) +AB(d+Dω2)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22)}| ω2ω12[10|κδ213||Φ(d+D[1+κ2ω1+1κ2ω2])|dκ+10|13κδ2||Φ(d+D[1κ2ω1+1+κ2ω2])|dκ] ω2ω12[10|κδ213|{|Φ(d)|+|Φ(D)|[(1+κ2)s|Φ(ω1)|+(1κ2)s|Φ(ω2)|}dκ+10|13κδ2|{|Φ(d)|+|Φ(D)|[(1κ2)s|Φ(ω1)|+(1+κ2)s|Φ(ω2)|}dκ] ω2ω12[210|κδ213|{|Φ(d)|+|Φ(D)|}dκ12s{|Φ(ω1)|+|Φ(ω2)|}10|κδ213|[(1+κ)s+(1κ)s]dκ= ω2ω12[2{(23)1δ0(13κδ2)dκ+1(23)1δ(κδ213)dκ}{|Φ(d)|+|Φ(D)|}12s{|Φ(ω1)|+|Φ(ω2)|}{(23)1δ0(13κδ2)[(1+κ)s+(1κ)s]dκ+1(23)1δ(κδ213)[(1+κ)s+(1κ)s]dκ}]=ω2ω12[2{(23)1+1δ(δδ+1)+12δ6(δ+1)}[|Φ(d)|+|Φ(D)|]12s[|Φ(ω1)|+|Φ(ω2)|]{J3(δ)+J4(δ)}], (2.4)

    which completes the proof.

    Remark 2.2. If we consider ω1=d and ω2=D and δ=1 in Theorem 2.1, we obtain Theorem 7 in [27].

    Corollary 2.2. Taking the same assumptions as defined in Theorem 2.1 with s=1 into consideration, we get the following Simpson-Mercer type inequality

    |16{Φ(d+Dω1)+Φ(d+Dω2)}+23Φ(d+Dω1+ω22)+2δ(1δ)Γ(δ)(ω2ω1)δΦ(d+Dω1+ω22) 2δ1M(δ)Γ(δ)(ω2ω1)δ { AB(d+Dω1)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22) +AB(d+Dω2)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22)}|ω2ω12[2{(23)1+1δ(δδ+1)+12δ6(δ+1)}[|Φ(d)|+|Φ(D)|]12[|Φ(ω1)|+|Φ(ω2)|]{J3(δ)+J4(δ)}]. (2.5)

    Corollary 2.3. If we consider δ=1 in Theorem 2.1, then we have the following Simpson-Mercer type inequality

    |16{Φ(d+Dω1)+4Φ(d+Dω1+ω22)+Φ(d+Dω2)}1ω2ω1d+Dω1d+Dω2Φ(x)dx|ω2ω12[518(|Φ(d)|+|Φ(D)|)12s(|Φ(ω1)|+|Φ(ω2)|){16(s+1)(5s+213s+16)12(s+2)(5s+2+13s+22)+ 5s+2+12(s+1)(s+2)3s+22s(2s+7)3(s+1)(s+2)}].

    In the results to follow hereon, we will give the new upper bounds for the right hand side of the Simpson-Mercer type inequality via s-convexity involving A-B fractional integrals operator.

    Theorem 2.2. Taking all the conditions as defined in Lemma 2.1 and assumption P1 into consideration, if |Φ|q is s-convex function on [d,D], for s>0, then for all δ>0, the following inequality for A-B fractional integral holds true for κ[0,1]:

    |16{Φ(d+Dω1)+Φ(d+Dω2)}+23Φ(d+Dω1+ω22)+2δ(1δ)Γ(δ)(ω2ω1)δΦ(d+Dω1+ω22) 2δ1M(δ)Γ(δ)(ω2ω1)δ { AB(d+Dω1)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22) +AB(d+Dω2)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22)}| ω2ω12(10|κδ213|pdκ)1p{(|Φ(d)|q+|Φ(D)|q[|Φ(ω1)|q+|Φ(ω1+ω22)|qs+1])1q+(|Φ(d)|q+|Φ(D)|q[|Φ(ω2)|q+|Φ(ω1+ω22)|qs+1])1q}, (2.6)

    where 1p+1q=1 and q>1.

    Proof. Employing Lemma 2.1 and the Hölder's inequality, we have

    |16{Φ(d+Dω1)+Φ(d+Dω2)}+23Φ(d+Dω1+ω22)+2δ(1δ)Γ(δ)(ω2ω1)δΦ(d+Dω1+ω22) 2δ1M(δ)Γ(δ)(ω2ω1)δ { AB(d+Dω1)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22) +AB(d+Dω2)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22)}| ω2ω12[10|κδ213||Φ(d+D[1+κ2ω1+1κ2ω2])|dκ+10|13κδ2||Φ(d+D[1κ2ω1+1+κ2ω2])|dκ] ω2ω12[(10|κδ213|pdκ)1p(10|Φ(d+D[1+κ2ω1+1κ2ω2])|qdκ)1q+ (10|κδ213|pdκ)1p(10|Φ(d+D[1κ2ω1+1+κ2ω2])|qdκ)1q]. (2.7)

    Since |Φ|q is s-convex on [d,D], with the J-M inequality, we obtain

    10|Φ(d+D[1+κ2ω1+1κ2ω2])|qdκ |Φ(d)|q+|Φ(D)|q[|Φ(ω1)|q+|Φ(ω1+ω22)|qs+1], (2.8)

    and

    10|Φ(d+D[1κ2ω1+1+κ2ω2])|qdκ  |Φ(d)|q+|Φ(D)|q[|Φ(ω2)|q+|Φ(ω1+ω22)|qs+1]. (2.9)

    By using the Eqs (2.8) and (2.9) with (2.7), we get the (2.6). This concludes the proof.

    Remark 2.3. If we set ω1=d, ω2=D and δ=1 in Theorem 2.2, we obtain Theorem 8 in [27].

    Corollary 2.4. Under the same assumptions as defined in Theorem 2.2 with s=1, we get the following A-B fractional inequality of Simpson-Mercer type:

    |16{Φ(d+Dω1)+Φ(d+Dω2)}+23Φ(d+Dω1+ω22)+2δ(1δ)Γ(δ)(ω2ω1)δΦ(d+Dω1+ω22) 2δ1M(δ)Γ(δ)(ω2ω1)δ { AB(d+Dω1)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22) +AB(d+Dω2)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22)}| ω2ω12(10|κδ213|pdκ)1p{(|Φ(d)|q+|Φ(D)|q[|Φ(ω1)|q+|Φ(ω1+ω22)|q2])1q+(|Φ(d)|q+|Φ(D)|q[|Φ(ω2)|q+|Φ(ω1+ω22)|q2])1q}. (2.10)

    Corollary 2.5. Under the same assumptions as defined in Theorem 2.2 with δ=1, we get the following Simpson-Mercer type inequality

    |16{Φ(d+Dω1)+4Φ(d+Dω1+ω22)+Φ(d+Dω2)}1ω2ω1d+Dω1d+Dω2Φ(x)dx| ω2ω112(1+2p+13(p+1))1p{(|Φ(d)|q+|Φ(D)|q[|Φ(ω1)|q+|Φ(ω1+ω22)|qs+1])1q+( |Φ(d)|q+|Φ(D)|q[|Φ(ω2)|q+|Φ(ω1+ω22)|qs+1])1q}.

    Theorem 2.3. Taking all the conditions as defined in Lemma 2.1 and assumption P1 into consideration, if |Φ|q is s-convex function on [d,D], for s>0 and q>1, then for all δ>0, the following inequality for A-B fractional integral holds true for κ[0,1]:

    |16{Φ(d+Dω1)+Φ(d+Dω2)}+23Φ(d+Dω1+ω22)+2δ(1δ)Γ(δ)(ω2ω1)δΦ(d+Dω1+ω22) 2δ1M(δ)Γ(δ)(ω2ω1)δ { AB(d+Dω1)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22)+AB(d+Dω2)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22)}| ω2ω12(10|κδ213|pdκ)1p×{(|Φ(d)|q+|Φ(D)|q[2s+11(s+1)2s|Φ(ω1)|q+ 1(s+1)2s |Φ(ω2)|q])1q+ (|Φ(d)|q+|Φ(D)|q;[1(s+1)2s|Φ(ω1)|q+ 2s+11(s+1)2s |Φ(ω2)|q])1q}, (2.11)

    where 1p+1q=1 and q>1.

    Proof. Employing Lemma 2.1 and the Hölder inequality, we have

    |16{Φ(d+Dω1)+Φ(d+Dω2)}+23Φ(d+Dω1+ω22)+2δ(1δ)Γ(δ)(ω2ω1)δΦ(d+Dω1+ω22) 2δ1M(δ)Γ(δ)(ω2ω1)δ { AB(d+Dω1)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22) +AB(d+Dω2)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22)}| ω2ω12[10|κδ213||Φ(d+D[1+κ2ω1+1κ2ω2])|dκ+10|13κδ2||Φ(d+D[1κ2ω1+1+κ2ω2])|dκ] ω2ω12[(10|κδ213|pdκ)1p(10|Φ(d+D[1+κ2ω1+1κ2ω2])|qdκ)1q+ (10|κδ213|pdκ)1p(10|Φ(d+D[1κ2ω1+1+κ2ω2])|qdκ)1q]. (2.12)

    Since |Φ|q is s-convex on [d,D], with the J-M inequality, we obtain

    |Φ(d+D[1+κ2ω1+1κ2ω2])|q |Φ(d)|q+|Φ(D)|q[(1+κ2)s|Φ(ω1)|q+(1κ2)s|Φ(ω2)|q], (2.13)

    and

    |Φ(d+D[1κ2ω1+1+κ2ω2])|q  |Φ(d)|q+|Φ(D)|q[(1κ2)s|Φ(ω1)|q+(1+κ2)s|Φ(ω2)|q]. (2.14)

    Upon combining the Eqs (2.13) and (2.14) in (2.12) and using the tool of calculus, we get (2.11). This completes the proof.

    Remark 2.4. If we set ω1=d, ω2=D and δ=1 in Theorem 2.3, we obtain Theorem 9 in [27].

    Corollary 2.6. Under the same assumptions as defined in Theorem 2.3 with s=1, we get the following A-B fractional inequality of Simpson-Mercer type:

    |16{Φ(d+Dω1)+Φ(d+Dω2)}+23Φ(d+Dω1+ω22)+2δ(1δ)Γ(δ)(ω2ω1)δΦ(d+Dω1+ω22) 2δ1M(δ)Γ(δ)(ω2ω1)δ { AB(d+Dω1)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22) +AB(d+Dω2)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22)}| ω2ω12(10|κδ213|pdκ)1p{(|Φ(d)|q+|Φ(D)|q[3|Φ(ω1)|q+|Φ(ω2)|q4])1q+(|Φ(d)|q+|Φ(D)|q[|Φ(ω1)|q+3|Φ(ω2)|q4])1q}. (2.15)

    Corollary 2.7. Under the same assumptions as defined in Theorem 2.3 with δ=1, we get the following Simpson-Mercer type inequality:

    |16{Φ(d+Dω1)+4Φ(d+Dω1+ω22)+Φ(d+Dω2)}1ω2ω1d+Dω1d+Dω2Φ(x)dx| ω2ω112(1+2p+13(p+1))1p×{(|Φ(d)|q+|Φ(D)|q[2s+11(s+1)2s|Φ(ω1)|q+ 1(s+1)2s |Φ(ω2)|q])1q+ (|Φ(d)|q+|Φ(D)|q[1(s+1)2s|Φ(ω1)|q+ 2s+11(s+1)2s |Φ(ω2)|q])1q}.

    Theorem 2.4. Taking all the conditions as defined in Lemma 2.1 and assumption P1 into consideration, if |Φ|q is s-convex function on [d,D], for s>0,  q1, then for all δ>0, the following Simpson- Mercer type inequality for A-B fractional integral {holds true} for κ[0,1]:

    |16{Φ(d+Dω1)+Φ(d+Dω2)}+23Φ(d+Dω1+ω22)+2δ(1δ)Γ(δ)(ω2ω1)δΦ(d+Dω1+ω22) (2.16)
     2δ1M(δ)Γ(δ)(ω2ω1)δ { AB(d+Dω1)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22) +AB(d+Dω2)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22)}|ω2ω12J5(δ)×{J6(δ)1q+J7(δ)1q}, (2.17)

    where

    J5(δ)= (10|κδ213|dκ)11q=(10|13κδ2|dκ)11q,J6(δ)=10|κδ213|{|Φ(d)|q+|Φ(D)|q[(1+κ2)s|Φ(ω1)|q+(1κ2)s|Φ(ω2)|q]}dκ,

    and

    J7(δ)=10|κδ213|{|Φ(d)|q+|Φ(D)|q[(1κ2)s|Φ(ω1)|q+(1+κ2)s|Φ(ω2)|q]}dκ.

    Proof. Employing Lemma 2.1 and well-known Power mean inequality, we have

    |16{Φ(d+Dω1)+Φ(d+Dω2)}+23Φ(d+Dω1+ω22)+2δ(1δ)Γ(δ)(ω2ω1)δΦ(d+Dω1+ω22) (2.18)
     2δ1M(δ)Γ(δ)(ω2ω1)δ { AB(d+Dω1)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22) +AB(D+Dω2)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22)}| ω2ω12[10|κδ213||Φ(d+D[1+κ2ω1+1κ2ω2])|dκ+10|13κδ2||Φ(d+D[1κ2ω1+1+κ2ω2])|dκ] ω2ω12[(10|κδ213|dκ)11q(10|κδ213||Φ(d+D[1+κ2ω1+1κ2ω2])|qdκ)1q+ (10|κδ213|dκ)11q(10|κδ213||Φ(d+D[1κ2ω1+1+κ2ω2])|qdκ)1q]. (2.19)

    Since |Φ|q is s-convex on [d,D], with the J-M inequality, we obtain

    |Φ(d+D[1+κ2ω1+1κ2ω2])|q |Φ(d)|q+|Φ(D)|q[(1+κ2)s|Φ(ω1)|q+(1κ2)s|Φ(ω2)|q], (2.20)

    and

    |Φ(d+D[1κ2ω1+1+κ2ω2])|q  |Φ(d)|q+|Φ(D)|q[(1κ2)s|Φ(ω1)|q+(1+κ2)s|Φ(ω2)|q]. (2.21)

    By using the Eqs (2.20) and (2.21) in (2.19), we get

    |16{Φ(d+Dω1)+Φ(d+Dω2)}+23Φ(d+Dω1+ω22)+2δ(1δ)Γ(δ)(ω2ω1)δΦ(d+Dω1+ω22) 2δ1M(δ)Γ(δ)(ω2ω1)δ { AB(d+Dω1)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22) +AB(d+Dω2)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22)}|ω2ω12J5(δ)×{J6(δ)1q+J7(δ)1q},

    which completes the proof.

    Remark 2.5. If we consider ω1=d, ω2=D and δ=1 in Theorem 2.4, we obtain Theorem 10 in [27].

    Corollary 2.8. Under the same assumptions as defined in Theorem 2.4 with s=1, we get the following A-B fractional inequality of Simpson-Mercer type:

    |16{Φ(d+Dω1)+Φ(d+Dω2)}+23Φ(d+Dω1+ω22)+2δ(1δ)Γ(δ)(ω2ω1)δΦ(d+Dω1+ω22) 2δ1M(δ)Γ(δ)(ω2ω1)δ { AB(d+Dω1)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22) +AB(d+Dω2)Iδ(d+Dω1+ω22)Φ(d+Dω1+ω22)}|ω2ω12(J5(δ)×{J6(δ)1q+J7(δ)1q}).

    Example 3.1. Let the function Jϱ:[1,) be defined [54] as

    Jϱ(u)=2ϱΓ(ϱ+1)uϱIϱ(u),  u.

    Here, we consider the modified Bessel function of first kind given in

    Jϱ(u)=n=0(u2)ϱ+2nn!Γ(ϱ+n+1).

    The first and second order derivative are given as

    Jϱ(u)=u2(ϱ+1)Jϱ+1(u).
    Jϱ(u)=14(ϱ+1)[u2(ϱ+1)Jϱ+2(u)+2Jϱ+1(u)].

    If we use, Φ(u)=Jϱ(u) and the above functions in Corollary 2.3, we have

    |16{(d+Dω1)2(ϱ+1)Jϱ+1(d+Dω1)+4(d+Dω1+ω222(ϱ+1)Jϱ+1(d+Dω1+ω22))+d+Dω22(ϱ+1)Jϱ+1(d+Dω2)}1ω2ω1[Jϱ(d+Dω1)Jϱ(d+Dω2)]|ω2ω12[518{|14(ϱ+1)[d2(ϱ+1)Jϱ+2(d)+2Jϱ+1(d)]|+|14(ϱ+1)[D2(ϱ+1)Jϱ+2(D)+2Jϱ+1(D)]|}12s[|14(ϱ+1)[ω21(ϱ+1)Jϱ+2(ω1)+2Jϱ+1(ω1)]|+|14(ϱ+1)[ω22(ϱ+1)Jϱ+2(ω2)+2Jϱ+1(ω2)]|]×(16(s+1)(5s+213s+16)12(s+2)(5s+2+13s+22)+5s+2+12(s+1)(s+2)3s+22s(2s+7)3(s+1)(s+2))].

    Example 3.2. If we use, Φ(u)=Jϱ(u) and the above functions in Corollary 2.5, we have

    Consider the following two special means for 0<d<D.

    The arithmetic mean:

    A(d,D)=d+D2.

    The generalized logarithmic-mean:

    Lk(d,D)=[Dk+1dk+1(k+1)(Dd)]1k;k{1,0}.

    Proposition 3.1. Suppose that d,D, s(0,1], 0<d<D, 0[d,D]. Then,

    |16{2A((d+Dω1)s,(d+Dω2)s)}+4(2A(d,D)A(ω1,ω2))sLss(d+Dω1,d+Dω2)| s(ω2ω1)2[(59A(ds1,Ds1)12s1A(ωs11,ωs12))(J3(1)+J4(1))].

    Proof. The proof follows an immediate consequences from Corollary 2.3 by considering Φ(u)=us.

    Proposition 3.2. Suppose that d,D, s(0,1], 0<d<D, 0[d,D]. Then for all q>1, the following inequality holds true:

    |16{2A((d+Dω1)s,(d+Dω2)s)}+4(2A(d,D)A(ω1,ω2))sLss(d+Dω1,d+Dω2)|s(ω2ω1)12(1+2p+1(3p+3))1p{(2A(d(s+1)q,D(s+1)q)[ω(s+1)q1+A(ω1,ω2)(s+1)qs+1])1q+(2A(d(s+1)q,D(s+1)q)[ω(s+1)q2+A(ω1,ω2)(s+1)qs+1])1q}.

    Proof. The proof follows an immediate consequence from Corollary 5 by considering Φ(u)=us.

    Proposition 3.3. Suppose that d,D, s(0,1], 0<d<D, 0[d,D]. Then,

    |16{2A((d+Dω1)s,(d+Dω2)s)}+4(2A(d,D)A(ω1,ω2))sLss(d+Dω1,d+Dω2)| s(ω2ω1)12(1+2p+1(3p+3))1p{(2A(d(s+1)q,D(s+1)q)[(2s+11)ω(s1)q1+ω(s1)q22s(s+1)])1q+(2A(d(s+1)q,D(s+1)q)[(2s+11)ω(s1)q2+ω(s1)q1(s+1)2s])1q}.

    Proof. The proof follows an immediate consequences from Corollary 2.7 by considering Φ(u)=us.

    The q-digamma(psi) function ϱρ, is the ρ-analogue of the digamma function ϱ (see [54,55]) given as:

    ϱρ=ln(1ρ)+ lnρk=0ρk+γ1ρk+γ    =ln(1ρ)+ lnρk=0ρkγ1ρkγ.

    For ρ>1 and γ>0, ρ-digamma function ϱρ can be given as:

    ϱρ=ln(ρ1)+ lnρ[γ12k=0ρ(k+γ)1ρ(k+γ)]    =ln(ρ1)+ lnρ[γ12k=0ρkγ1ρkγ].

    Proposition 3.4. Suppose d,D,ρ be real numbers such that 0<d<D, 0<ρ<1, s(0,1] and 1p+1q=1,q>1. Then the following inequality holds true:

    |16{ϱρ(d+Dω1)+ ϱρ(d+Dω2)}+23ϱρ(d+Dω1+ω22)1ω2ω1d+Dω1d+Dω2ϱρ(γ)dγ|  ω2ω112(1+2p+1(3p+3))1p{(|ϱρ(d)|q+|ϱρ(D)|q[2s+11(s+1)2s|ϱρ(ω1)|q+ 1(s+1)2s |ϱρ(ω2)|q])1q+ (|ϱρ(d)|q+|ϱρ(D)|q[1(s+1)2s|ϱρ(ω1)|q+ 2s+11(s+1)2s |ϱρ(ω2)|q])1q}.

    Proof. By employing the definition of ρ-digamma function ϱρ(γ), it is easy to notice that ρ -digamma function Φ(γ)=ϱρ(γ) is completely monotonic on (0,). This ensures that the function Φ(γ)=ϱρ(γ) is s-convex on (0,) for each ρ(0,1). Now by applying Corollary 2.7, we get the desired result.

    Proposition 3.5. Suppose d,D,q,ρ be real numbers such that 0<d<D, 1p+1q=1,q>1 and 0<ρ<1, s(0,1]. Then the following inequality holds true:

    |16{ϱρ(d+Dω1)+ ϱρ(d+Dω2)}+23ϱρ(d+Dω1+ω22)1ω2ω1d+Dω1d+Dω2ϱρ(γ)dγ|  ω2ω112(1+2p+13(p+1))1p{(|ϱρ(d)|q+|ϱρ(D)|q[|ϱρ(ω1)|q+|ϱρ(ω1+ω22)|qs+1])1q+( |ϱρ(d)|q+|ϱρ(D)|q[|ϱρ(ω2)|q+|ϱρ(ω1+ω22)|qs+1])1q}.

    Proof. By employing the definition of ρ-digamma function ϱρ(γ), it is easy to notice that ρ -digamma function Φ(γ)=ϱρ(γ) is completely monotonic on (0,). This ensures that the function Φ(γ)=ϱρ(γ) is s-convex on (0,) for each ρ(0,1). Now by applying Corollary 2.5, we get the desired result.

    Proposition 3.6. Suppose d,D,ρ be real numbers such that 0<d<D, and 0<ρ<1, s(0,1]. Then the following inequality holds true:

    |16{ϱρ(d+Dω1)+ ϱρ(d+Dω2)}+23ϱρ(d+Dω1+ω22)1ω2ω1d+Dω1d+Dω2ϱρ(γ)dγ| ω2ω12[518(|ϱρ(d)|+|ϱρ(D)|)12s(|ϱρ(ω1)|+|ϱρ(ω2)|){16(s+1)(5s+213s+16)12(s+2)(5s+2+13s+22)+ 5s+2+12(s+1)(s+2)3s+22s(2s+7)3(s+1)(s+2)}].

    Proof. By employing the definition of ρ-digamma function ϱρ(γ), it is easy to notice that ρ -digamma function Φ(γ)=ϱρ(γ) is completely monotonic on (0,). This ensures that the function Φ(γ)=ϱρ(γ) is s-convex on (0,) for each ρ(0,1). Now by applying Corollary 2.3, we get the desired result.

    One can see that the recent developments in the field of inequalities are related to finding generalized versions and new bounds of various well-known inequalities employing different fractional integral operators. Researchers use new methodologies, new applications, and new operators to add originality to this subject. In this article, the incorporation of the Simpson-Mercer inequalities and the Atangana-Baleanu (A-B) fractional integral operator is studied for differentiable mappings, whose derivatives in absolute value at certain powers are s-convex in the second sense. Some novel cases of the established results are discussed as well. Moreover, the study also have applications to special means, modified Bessel functions, and q-digamma functions. An interesting scope is to check whether the methodology of this paper can be utilized to refine the Simpson-Mercer inequality via concepts such as interval analysis, quantum calculus, and coordinates. In future readers can work on modified A-B fractional operators as given in manucripts (see [49,50,51]) and modified Caputo-Fabrizio fractional operators (see [52,53]).

    The authors received financial support from Taif University Researches Supporting Project number (TURSP-2020/031), Taif University, Taif, Saudi Arabia.

    The authors declare no conflicts of interest.



    [1] R. K. Mohanty, M. K. Jain, High accuracy difference schemes for the system of two space nonlinear parabolic differential equations with mixed derivatives and variable coefficients, J. Aomput. Appl. Math., 70 (1996), 15–32. https://doi.org/10.1016/0377-0427(95)00135-2 doi: 10.1016/0377-0427(95)00135-2
    [2] L. Zhang, X. Lü, S. Zhu, Painlevé analysis, Bäcklund transformation and soliton solutions of the (2+1)-dimensional variable-coefficient Boussinesq equation, Int. J. Theor. Phys., 63 (2024), 160. https://doi.org/10.1007/s10773-024-05478-9 doi: 10.1007/s10773-024-05478-9
    [3] C. Han, X. Lü, Variable coefficient-informed neural network for PDE inverse problem in fluid dynamics, Physica D, 472 (2025), 134362. https://doi.org/10.1016/j.physd.2024.134362 doi: 10.1016/j.physd.2024.134362
    [4] S. Chen, X. Lü, Adaptive network traffic control with approximate dynamic programming based on a non-homogeneous Poisson demand model, Transp. B: Transp. Dyn., 12 (2024), 2336029. https://doi.org/10.1080/21680566.2023.2336029 doi: 10.1080/21680566.2023.2336029
    [5] X. Peng, Y. Zhao, X. Lü, Data-driven solitons and parameter discovery to the (2+1)-dimensional NLSE in optical fiber communications, Nonlinear Dyn., 112 (2024), 1291–1306. https://doi.org/10.1007/s11071-023-08594-5 doi: 10.1007/s11071-023-08594-5
    [6] D. Gao, W. Ma, X. Lü, Wronskian solution, Bäcklund transformation and Painlevé analysis to a (2+1)-dimensional Konopelchenko–Dubrovsky equation, Z. Naturforsch. A, 79 (2024), 887–895. https://doi.org/10.1515/zna-2024-0016 doi: 10.1515/zna-2024-0016
    [7] C. Li, X. Lü, J. Gong, Y. Lei, Extended SEIR model of COVID-19 spread focusing on compartmental flow in England, Nonlinear Dyn., 113 (2025), 971–988. https://doi.org/10.1007/s11071-024-09748-9 doi: 10.1007/s11071-024-09748-9
    [8] F. Cao, X. Lü, Y. Zhou, X. Cheng, Modified SEIAR infectious disease model for Omicron variants spread dynamics, Nonlinear Dyn., 111 (2023), 14597–14620. https://doi.org/10.1007/s11071-023-08595-4 doi: 10.1007/s11071-023-08595-4
    [9] M. Dehghan, J. Manafian, The solution of the variable coefficients fourth-order parabolic partial differential equations by the homotopy perturbation method, Z. Naturforsch. A, 64 (2009), 420–430. https://doi.org/10.1515/zna-2009-7-803 doi: 10.1515/zna-2009-7-803
    [10] R. Manohar, S. R. K. Iyengar, U. A. Krishnaiah, High order difference methods for linear variable coefficient parabolic equation, J. Comput. Phys., 77 (1988), 513–523. https://doi.org/10.1016/0021-9991(88)90181-7 doi: 10.1016/0021-9991(88)90181-7
    [11] Z. Sun, Numerical Solution of Partial Differential Equation, 3rd edition, Science Press, Beijing, (2022), 44–61.
    [12] V. V. Kravchenko, J. A. Otero, S. M. Torba, Analytic approximation of solutions of parabolic partial differential equations with variable coefficients, Adv. Math. Phys., 2017 (2017), Article ID 2947275. https://doi.org/10.1155/2017/2947275 doi: 10.1155/2017/2947275
    [13] X. X. Ma, X. L. Yan, R. D. Chen, A high-order ADI difference scheme for two-dimensional parabolic equations with variable coefficients, J. Tianjin Polytech. Univ., 33 (2014), 77–80+84. https://doi.org/10.3969/j.issn.1671-024X.2014.01.019 doi: 10.3969/j.issn.1671-024X.2014.01.019
    [14] X. He, T. Lin, Y. Lin, X. Zhang, Immersed finite element methods for parabolic equations with moving interface, Numer. Methods Partial Differ. Equations, 29 (2013), 619–646. https://doi.org/10.1002/num.21722 doi: 10.1002/num.21722
    [15] A. K. Pani, G. Fairweather, H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations, IMA J. Numer. Anal., 22 (2002), 231–252. https://doi.org/10.1093/imanum/22.2.231 doi: 10.1093/imanum/22.2.231
    [16] K. J. Marfurt, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations, Geophysics, 49 (1984), 533–549. https://doi.org/10.1190/1.1441689 doi: 10.1190/1.1441689
    [17] W. Wang, H. Zhang, Z. Zhou, X. Yang, A fast compact finite difference scheme for the fourth-order diffusion-wave equation, Int. J. Comput. Math., 101(2) (2024), 170–193. https://doi.org/10.1080/00207160.2024.2323985 doi: 10.1080/00207160.2024.2323985
    [18] J. Wang, X. Jiang, X. Yang, H. Zhang, A new robust compact difference scheme on graded meshes for the time-fractional nonlinear Kuramoto–Sivashinsky equation, Comput. Appl. Math., 43 (2024), 381. https://doi.org/10.1007/s40314-024-02883-4 doi: 10.1007/s40314-024-02883-4
    [19] Y. Shi, X. Yang, Pointwise error estimate of conservative difference scheme for supergeneralized viscous Burgers' equation, Electron. Res. Arch., 32 (2024), 1471–1497. https://doi.org/10.3934/era.2024068 doi: 10.3934/era.2024068
    [20] M. Liu, T. Guo, M. A. Zaky, A. S. Hendy, An accurate second-order ADI scheme for three-dimensional tempered evolution problems arising in heat conduction with memory, Appl. Numer. Math., 204 (2024), 111–129. https://doi.org/10.1016/j.apnum.2024.06.006 doi: 10.1016/j.apnum.2024.06.006
    [21] Y. Shi, X. Yang, The pointwise error estimate of a new energy-preserving nonlinear difference method for supergeneralized viscous Burgers' equation, Comput. Appl. Math., 44 (2025), 257. https://doi.org/10.1007/s40314-025-03222-x doi: 10.1007/s40314-025-03222-x
    [22] X. Li, Z. Sun, Compact alternating direction difference scheme for two-dimensional reaction-diffusion equations with variable coefficients, Numer. Math.: A J. Chinese Univ., 28 (2006), 83–95. https://doi.org/10.3969/j.issn.1000-081X.2006.01.012 doi: 10.3969/j.issn.1000-081X.2006.01.012
    [23] D. Ruan, X. Wang, A high-order Chebyshev-type method for solving nonlinear equations: local convergence and applications, Electron. Res. Arch., 33 (2025), 1398–1413. https://doi.org/10.3934/era.2025065 doi: 10.3934/era.2025065
    [24] W. Wang, H. Zhang, X. Jiang, X. Yang, A high-order and efficient numerical technique for the nonlocal neutron diffusion equation representing neutron transport in a nuclear reactor, Ann. Nucl. Energy, 195 (2024), 110163. https://doi.org/10.1016/j.anucene.2023.110163 doi: 10.1016/j.anucene.2023.110163
    [25] X. Yang, W. Wang, Z. Zhou, H. Zhang, An efficient compact difference method for the fourth-order nonlocal subdiffusion problem, Taiwan. J. Math., 29 (2025), 35–66. https://doi.org/10.11650/tjm/240906 doi: 10.11650/tjm/240906
    [26] D. Ruan, X. Wang, Y. Wang, Local convergence of seventh-order iterative method under weak conditions and its applications, Eng. Comput., 2025. https://doi.org/10.1108/EC-08-2024-0775
    [27] S. Mazumder, Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods, Academic Press, 2015.
    [28] X. Wang, N. Shang, Local convergence analysis of a novel derivative-free method with and without memory for solving nonlinear systems, Int. J. Comput. Math., 2025. https://doi.org/10.1080/00207160.2025.2464701 doi: 10.1080/00207160.2025.2464701
    [29] X. Wang, W. Li, Fractal behavior of King's optimal eighth-order iterative method and its numerical application, Math. Commun., 29 (2024), 217–236. https://hrcak.srce.hr/321249
    [30] J. Yu, Z. Wang, Research on numerical algorithms for a class of variable coefficient parabolic free boundary problems, J. Gansu Lianhe Univ., Nat. Sci. Ed., 21 (2007), 5–9. https://doi.org/10.3969/j.issn.1672-691X.2007.02.002 doi: 10.3969/j.issn.1672-691X.2007.02.002
    [31] L. Liu, C. Liu, C. Jiang, Pseudospectral solution for a class of nonlinear pseudo-parabolic equations, J. Comput. Math., 29 (2007), 99–112. https://doi.org/10.3321/j.issn:0254-7791.2007.01.010 doi: 10.3321/j.issn:0254-7791.2007.01.010
    [32] Y. Su, X. Lü, S. Li, L. Yang, Z. Gao, Self-adaptive equation embedded neural networks for traffic flow state estimation with sparse data, Phys. Fluids, 36 (2024), 104127. https://doi.org/10.1063/5.0230757 doi: 10.1063/5.0230757
    [33] C. Han, X. Lü, Novel patterns in the space variable fractional order Gray–Scott model, Nonlinear Dyn., 112 (2024), 16135–16151. https://doi.org/10.1007/s11071-024-09857-5 doi: 10.1007/s11071-024-09857-5
    [34] H. Liao, Z. Sun, Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations, Numer. Methods Partial Differ. Equations, 26 (2010), 37–60. https://doi.org/10.1002/num.20414 doi: 10.1002/num.20414
    [35] Z. Zhou, H. Zhang, X. Yang, A BDF2 ADI difference scheme for a three-dimensional nonlocal evolution equation with multi-memory kernels, Comput. Appl. Math., 43 (2024), 418. https://doi.org/10.1007/s40314-024-02931-z doi: 10.1007/s40314-024-02931-z
    [36] C. Li, H. Zhang, X. Yang, A new linearized ADI compact difference method on graded meshes for a nonlinear 2D and 3D PIDE with a WSK, Comput. Math. Appl., 176 (2024), 349–370. https://doi.org/10.1016/j.camwa.2024.11.006 doi: 10.1016/j.camwa.2024.11.006
    [37] K. Liu, Z. He, H. Zhang, X. Yang, A Crank-Nicolson ADI compact difference scheme for the three-dimensional nonlocal evolution problem with a weakly singular kernel, Comput. Appl. Math., 44 (2025), 164. https://doi.org/10.1007/s40314-025-03125-x doi: 10.1007/s40314-025-03125-x
    [38] T. Liu, H. Zhang, X. Yang, The ADI compact difference scheme for three-dimensional integro-partial differential equation with three weakly singular kernels, J. Appl. Math. Comput., (2025), 1–29. https://doi.org/10.1007/s12190-025-02386-3 doi: 10.1007/s12190-025-02386-3
    [39] Z. Zhou, H. Zhang, X. Yang, H1-norm error analysis of a robust ADI method on graded mesh for three-dimensional subdiffusion problems, Numer. Algorithms, 96 (2024), 1533–1551. https://doi.org/10.1007/s11075-023-01676-w doi: 10.1007/s11075-023-01676-w
    [40] C. Li, H. Zhang, X. Yang, A fourth-order accurate extrapolation nonlinear difference method for fourth-order nonlinear PIDEs with a weakly singular kernel, Comput. Appl. Math., 43 (2024), 288. https://doi.org/10.1007/s40314-024-02812-5 doi: 10.1007/s40314-024-02812-5
    [41] Z. Wang, D. Cen, Y. Mo, Sharp error estimate of a compact L1-ADI scheme for the two-dimensional time-fractional integro-differential equation with singular kernels, Appl. Numer. Math., 159 (2021), 190–203. https://doi.org/10.1016/j.apnum.2020.09.011 doi: 10.1016/j.apnum.2020.09.011
    [42] Z. Wang, Y. Liang, Y. Mo, A novel high order compact ADI scheme for two dimensional fractional integro-differential equations, Appl. Numer. Math., 167 (2021), 257–272. https://doi.org/10.1016/j.apnum.2021.05.008 doi: 10.1016/j.apnum.2021.05.008
    [43] Y. Jiang, H. Chen, C. Huang, J. Wang, A fully discrete GL-ADI scheme for 2D time-fractional reaction-subdiffusion equation, Appl. Math. Comput., 488 (2025), 129147. https://doi.org/10.1016/j.amc.2024.129147 doi: 10.1016/j.amc.2024.129147
    [44] Y. Jiang, H. Chen, T. Sun, C. Huang, Efficient L1-ADI finite difference method for the two-dimensional nonlinear time-fractional diffusion equation, Appl. Math. Comput., 471 (2024), 128609. https://doi.org/10.1016/j.amc.2024.128609 doi: 10.1016/j.amc.2024.128609
    [45] W. Qiu, Y. Li, X. Zheng, Numerical analysis of nonlinear Volterra integrodifferential equations for viscoelastic rods and plates, Calcolo, 61 (2024), 50. https://doi.org/10.1007/s10092-024-00607-y doi: 10.1007/s10092-024-00607-y
    [46] W. Qiu, Optimal error estimate of an accurate second-order scheme for Volterra integrodifferential equations with tempered multi-term kernels, Adv. Comput. Math., 49 (2023), 43. https://doi.org/10.1007/s10444-023-10050-2 doi: 10.1007/s10444-023-10050-2
    [47] L. Qiao, J. Guo, W. Qiu, Fast BDF2 ADI methods for the multi-dimensional tempered fractional integrodifferential equation of parabolic type, Comput. Math. Appl., 123 (2022), 89–104. https://doi.org/10.1016/j.camwa.2022.08.014 doi: 10.1016/j.camwa.2022.08.014
    [48] L. Qiao, D. Xu, A fast ADI orthogonal spline collocation method with graded meshes for the two-dimensional fractional integro-differential equation, Adv. Comput. Math., 47 (2021), 64. https://doi.org/10.1007/s10444-021-09884-5 doi: 10.1007/s10444-021-09884-5
    [49] L. Qiao, W. Qiu, D. Xu, Error analysis of fast L1 ADI finite difference/compact difference schemes for the fractional telegraph equation in three dimensions, Math. Comput. Simul., 205 (2023), 205–231. https://doi.org/10.1016/j.matcom.2022.10.001 doi: 10.1016/j.matcom.2022.10.001
    [50] Z. Wang, S. Vong, A high-order exponential ADI scheme for two dimensional time fractional convection–diffusion equations, Comput. Math. Appl., 68 (2014), 185–196. https://doi.org/10.1016/j.camwa.2014.05.016 doi: 10.1016/j.camwa.2014.05.016
    [51] E. T. Rodriguez, K. Garbev, D. Merz, L. Black, I. G. Richardson, Thermal stability of C-S-H phases and applicability of Richardson and Groves' and Richardson C-(A)-S-H(I) models to synthetic C-S-H, Cem. Concr. Res., 93 (2017), 45–56. https://doi.org/10.1016/j.cemconres.2016.12.005 doi: 10.1016/j.cemconres.2016.12.005
    [52] P. J. Roache, P. M. Knupp, Completed Richardson extrapolation, Commun. Numer. Meth. Eng., 9 (1993), 365–374. https://doi.org/10.1002/cnm.1640090502 doi: 10.1002/cnm.1640090502
    [53] W. Shyy, M. Garbey, A. Appukuttan, J. Wu, Evaluation of Richardson extrapolation in computational fluid dynamics, Numer. Heat Transf. B, 41 (2002), 139–164. https://doi.org/10.1080/104077902317240058 doi: 10.1080/104077902317240058
    [54] Z. Chen, H. Zhang, H. Chen, ADI compact difference scheme for the two-dimensional integro-differential equation with two fractional Riemann–Liouville integral kernels, Fractals Fract., 8 (2024), 707. https://doi.org/10.3390/fractalfract8120707 doi: 10.3390/fractalfract8120707
    [55] X. Shen, X. Yang, H. Zhang, The high-order ADI difference method and extrapolation method for solving the two-dimensional nonlinear parabolic evolution equations, Mathematics, 12 (2024), 3469. https://doi.org/10.3390/math12223469 doi: 10.3390/math12223469
    [56] Y. Shi, X. Yang, A time two-grid difference method for nonlinear generalized viscous Burgers' equation, J. Math. Chem., 62 (2024), 1323–1356. https://doi.org/10.1007/s10910-024-01592-x doi: 10.1007/s10910-024-01592-x
    [57] J. Wang, X. Jiang, X. Yang, H. Zhang, A compact difference scheme for mixed-type time-fractional Black-Scholes equation in European option pricing, Math. Meth. Appl. Sci., 48 (2025), 6818–6829. https://doi.org/10.1002/mma.10717 doi: 10.1002/mma.10717
    [58] J. Wang, X. Jiang, H. Zhang, X. Yang, A new fourth-order nonlinear difference scheme for the nonlinear fourth-order generalized Burgers-type equation, J. Appl. Math. Comput., (2025), 1–31. https://doi.org/10.1007/s12190-025-02467-3 doi: 10.1007/s12190-025-02467-3
    [59] J. Wang, X. Jiang, H. Zhang, A BDF3 and new nonlinear fourth-order difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 151 (2024), 109002. https://doi.org/10.1016/j.aml.2023.109002 doi: 10.1016/j.aml.2023.109002
    [60] X. Jiang, J. Wang, W. Wang, H. Zhang, A predictor-corrector compact difference scheme for a nonlinear fractional differential equation, Fractal Fract., 7 (2023), 521. https://doi.org/10.3390/fractalfract7070521 doi: 10.3390/fractalfract7070521
  • This article has been cited by:

    1. Soubhagya Kumar Sahoo, Muhammad Amer Latif, Omar Mutab Alsalami, Savin Treanţă, Weerawat Sudsutad, Jutarat Kongson, Hermite–Hadamard, Fejér and Pachpatte-Type Integral Inequalities for Center-Radius Order Interval-Valued Preinvex Functions, 2022, 6, 2504-3110, 506, 10.3390/fractalfract6090506
    2. Muhammad Tariq, Soubhagya Kumar Sahoo, Sotiris K. Ntouyas, Omar Mutab Alsalami, Asif Ali Shaikh, Kamsing Nonlaopon, Some Hermite–Hadamard and Hermite–Hadamard–Fejér Type Fractional Inclusions Pertaining to Different Kinds of Generalized Preinvexities, 2022, 14, 2073-8994, 1957, 10.3390/sym14101957
    3. Soubhagya Kumar Sahoo, Eman Al-Sarairah, Pshtiwan Othman Mohammed, Muhammad Tariq, Kamsing Nonlaopon, Modified Inequalities on Center-Radius Order Interval-Valued Functions Pertaining to Riemann–Liouville Fractional Integrals, 2022, 11, 2075-1680, 732, 10.3390/axioms11120732
    4. Bibhakar Kodamasingh, Soubhagya Kumar Sahoo, Wajid Ali Shaikh, Kamsing Nonlaopon, Sotiris K. Ntouyas, Muhammad Tariq, Some New Integral Inequalities Involving Fractional Operator with Applications to Probability Density Functions and Special Means, 2022, 11, 2075-1680, 602, 10.3390/axioms11110602
    5. Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Some New Fractional Hadamard and Pachpatte-Type Inequalities with Applications via Generalized Preinvexity, 2023, 15, 2073-8994, 1033, 10.3390/sym15051033
    6. Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, New Variant of Hermite–Hadamard, Fejér and Pachpatte-Type Inequality and Its Refinements Pertaining to Fractional Integral Operator, 2023, 7, 2504-3110, 405, 10.3390/fractalfract7050405
    7. Erhan Set, Ahmet Akdemir, Emin Özdemir, Ali Karaoğlan, Mustafa Dokuyucu, New integral inequalities for Atangana-Baleanu fractional integral operators and various comparisons via simulations, 2023, 37, 0354-5180, 2251, 10.2298/FIL2307251S
    8. Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon, Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator, 2023, 8, 2473-6988, 25572, 10.3934/math.20231306
    9. XIAOMAN YUAN, LEI XU, TINGSONG DU, SIMPSON-LIKE INEQUALITIES FOR TWICE DIFFERENTIABLE (s,P)-CONVEX MAPPINGS INVOLVING WITH AB-FRACTIONAL INTEGRALS AND THEIR APPLICATIONS, 2023, 31, 0218-348X, 10.1142/S0218348X2350024X
    10. Wenbing Sun, Haiyang Wan, New local fractional Hermite-Hadamard-type and Ostrowski-type inequalities with generalized Mittag-Leffler kernel for generalized h-preinvex functions, 2024, 57, 2391-4661, 10.1515/dema-2023-0128
    11. Artion Kashuri, Yahya Almalki, Ali M. Mahnashi, Soubhagya Kumar Sahoo, New Estimates on Hermite–Hadamard Type Inequalities via Generalized Tempered Fractional Integrals for Convex Functions with Applications, 2023, 7, 2504-3110, 579, 10.3390/fractalfract7080579
    12. YUN LONG, TINGSONG DU, ANALYSIS ON MULTIPLICATIVE k-ATANGANA–BALEANU FRACTIONAL INTEGRALS WITH APPLICATION TO VARIOUS MERCER-TYPE INEQUALITIES, 2025, 33, 0218-348X, 10.1142/S0218348X25500033
    13. A. Munir, A. Qayyum, H. Budak, S. Qaisar, U. Ali, S. S. Supadi, A Fractional Version of Corrected Dual-Simpson's Type Inequality via s−convex Function with Applications, 2025, 19, 1823-8343, 17, 10.47836/mjms.19.1.02
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(195) PDF downloads(27) Cited by(0)

Figures and Tables

Figures(2)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog