Loading [MathJax]/jax/output/SVG/jax.js
Research article Topical Sections

Existence and uniqueness of solutions for (p, q)-difference equations with integral boundary conditions

  • Received: 12 February 2025 Revised: 15 May 2025 Accepted: 16 May 2025 Published: 23 May 2025
  • In this paper, we explored the existence and uniqueness of solutions for a boundary value problem involving (p,q)-difference equations with integral conditions. By employing well-established fixed-point theorems, we established new and significant results in this area. To further illustrate the applicability of our findings, we presented three concrete examples that demonstrate the validity of the theoretical results.

    Citation: Özlem Batıt Özen, Erbil Çetin, Öyküm Ülke, Aynur Şahin, Fatma Serap Topal. Existence and uniqueness of solutions for (p, q)-difference equations with integral boundary conditions[J]. Electronic Research Archive, 2025, 33(5): 3225-3245. doi: 10.3934/era.2025142

    Related Papers:

    [1] Qingcong Song, Xinan Hao . Positive solutions for fractional iterative functional differential equation with a convection term. Electronic Research Archive, 2023, 31(4): 1863-1875. doi: 10.3934/era.2023096
    [2] Changjia Wang, Yuxi Duan . Well-posedness for heat conducting non-Newtonian micropolar fluid equations. Electronic Research Archive, 2024, 32(2): 897-914. doi: 10.3934/era.2024043
    [3] Changmu Chu, Jiaquan Liu, Zhi-Qiang Wang . Sign-changing solutions for Schrödinger system with critical growth. Electronic Research Archive, 2022, 30(1): 242-256. doi: 10.3934/era.2022013
    [4] Hongyu Li, Liangyu Wang, Yujun Cui . Positive solutions for a system of fractional $ q $-difference equations with generalized $ p $-Laplacian operators. Electronic Research Archive, 2024, 32(2): 1044-1066. doi: 10.3934/era.2024051
    [5] Xinguang Zhang, Yongsheng Jiang, Lishuang Li, Yonghong Wu, Benchawan Wiwatanapataphee . Multiple positive solutions for a singular tempered fractional equation with lower order tempered fractional derivative. Electronic Research Archive, 2024, 32(3): 1998-2015. doi: 10.3934/era.2024091
    [6] Jinheng Liu, Kemei Zhang, Xue-Jun Xie . The existence of solutions of Hadamard fractional differential equations with integral and discrete boundary conditions on infinite interval. Electronic Research Archive, 2024, 32(4): 2286-2309. doi: 10.3934/era.2024104
    [7] Ahmed Alsaedi, Madeaha Alghanmi, Bashir Ahmad, Boshra Alharbi . Uniqueness results for a mixed $ p $-Laplacian boundary value problem involving fractional derivatives and integrals with respect to a power function. Electronic Research Archive, 2023, 31(1): 367-385. doi: 10.3934/era.2023018
    [8] Chenghua Gao, Enming Yang, Huijuan Li . Solutions to a discrete resonance problem with eigenparameter-dependent boundary conditions. Electronic Research Archive, 2024, 32(3): 1692-1707. doi: 10.3934/era.2024077
    [9] Qianhong Zhang, Shirui Zhang, Zhongni Zhang, Fubiao Lin . On three-dimensional system of rational difference equations with second-order. Electronic Research Archive, 2025, 33(4): 2352-2365. doi: 10.3934/era.2025104
    [10] Limin Guo, Weihua Wang, Cheng Li, Jingbo Zhao, Dandan Min . Existence results for a class of nonlinear singular $ p $-Laplacian Hadamard fractional differential equations. Electronic Research Archive, 2024, 32(2): 928-944. doi: 10.3934/era.2024045
  • In this paper, we explored the existence and uniqueness of solutions for a boundary value problem involving (p,q)-difference equations with integral conditions. By employing well-established fixed-point theorems, we established new and significant results in this area. To further illustrate the applicability of our findings, we presented three concrete examples that demonstrate the validity of the theoretical results.



    Fractional calculus has gained considerable attention in recent years due to its ability to model complex phenomena with memory and hereditary properties. While classical calculus focuses on integer-order derivatives and integrals, fractional calculus extends these concepts to non-integer orders, offering a broader framework for analyzing real-world problems in various fields, such as physics, biology, and engineering (see, e.g., [1,2,3,4]).

    Quantum calculus, often referred to as q-calculus, has emerged as an essential mathematical framework with numerous applications in various scientific fields, particularly in physics. It provides tools for studying phenomena in quantum mechanics, special functions, and other areas of theoretical and applied physics (see, e.g., [5,6,7,8]). Over time, advancements in quantum calculus have led to the development of postquantum calculus, a more generalized framework that extends the concepts of q-calculus. While quantum calculus is primarily concerned with q-numbers that rely on a single base q, postquantum calculus introduces p and q-numbers, incorporating two independent parameters p and q.

    This generalization has significantly expanded the scope and applicability of the calculus, offering a more flexible and robust mathematical structure for modeling complex systems. The (p,q)-calculus has drawn considerable interest from both mathematicians and physicists, who have explored its potential in a variety of research domains. These studies have addressed topics ranging from generalized special functions to discrete dynamic systems, quantum theory, and number theory. For detailed discussions and applications, readers are referred to works such as [9,10,11,12,13,14].

    One of the prominent areas where (p,q)-calculus has found significant application is the study of (p,q)-difference equations. These equations, which generalize classical difference equations, play a vital role in analyzing discrete dynamic systems and exploring their underlying mathematical properties. The flexibility introduced by the independent parameters p and q enables a deeper understanding of such systems, facilitating new theoretical insights and practical applications across diverse fields.

    Boundary value problems (BVPs) involving fractional (p,q)-difference equations form a crucial branch of this research, as they address the existence of solutions satisfying both fractional difference equations and prescribed boundary conditions. Such problems frequently arise in discrete systems where boundary constraints or endpoint behaviors play a significant role (see, e.g., [15,16,17,18]).

    In [15], Gençtürk obtained some existence results of solutions for the following boundary value problem

    D2qu(t)+f(t,u(t))=0,0<t<1
    u(0)=10u(t)dp,qt,u(1)=10tu(t)dp,qt,

    for q-difference equation with integral conditions.

    In [16], Qin and Sun investigated the existence of positive solutions for the following boundary value problem of a class of fractional (p,q)-difference equation involving the Riemann–Liouville fractional derivative

    Dαp,qu(t)+f(pαt,u(pαt))=0,0<t<1
    u(0)=u(1)=0.

    Motivated by these works, this paper proposes a new framework that combines (p,q)-difference equations involving the Caputo fractional derivative with nonlocal boundary conditions. We investigate the existence and uniqueness of solutions for a fractional (p,q)-difference boundary value problem given by the following:

    {cDαp,qu(t)+f(t,u(t))=0,0<t<1u(0)=u(0)=u(0)==u(n3)(0)=0,u(n2)(0)=10u(t)dp,qt,u(1)=10tu(t)dp,qt, (1.1)

    where n1<αn with n3,cDαp,q denotes the Caputo-type fractional (p,q)-derivative operator, while Dp,q denotes the first-order (p,q)-difference operator, and f:[0,1]×RR is a continuous function. By employing fixed-point theorems and related analytical tools, we establish sufficient conditions under which solutions exist and are unique. This work contributes to the theoretical foundation of fractional (p,q)-difference equations and provides a basis for further exploration of their applications in discrete mathematical modeling.

    The rest of our paper is organized as follows: In this section, we present necessary definitions, properties, and lemmas. In Section 2, we will give some sufficient lemmas and theorems, which are used in the main results. In Section 3, some results on the existence and uniqueness of positive solutions are obtained. Also, some examples illustrating the obtained results are presented. Our results generalize many known results in the literature of BVPs.

    Now, we will give some fundamental theorems, lemmas, and definitions of the (p,q)-calculus, which can be found in [11,19]. Let [a,b]R be an interval with a<b, and 0<q<p1 be constants with p+q1,

    [k]p,q=pkqkpq,kN,
    [k]p,q!={[k]p,q[k1]p,q[1]p,q=ki=1piqipq,kN,1,k=0.

    The (p,q)-analogue of the power function (ab)(n)p,q with nN0={0,1,2,} is given by

    (ab)(0)p,q:=1,(ab)(n)p,q:=n1k=0(apkbqk),a,bR.

    The (p,q)-gamma and (p,q)-beta functions are defined by

    Γp,q(x):={(pq)(x1)p,q(pq)x1=(1qp)(x1)p,q(1qp)x1,xR{0,1,2,},[x1]p,q!,xN,

    and

    Bp,q(x,y):=10tx1(1qt)(y1)p,qdp,qt=p12(y1)(2x+y2)Γp,q(x)Γp,q(y)Γp,q(x+y),

    respectively.

    Definition 1.1. [11] Let 0<q<p1. Then, the (p,q)-derivative of the function f is defined as

    Dp,qf(t)=f(pt)f(qt)(pq)t,t0,

    and Dp,qf(0)=limt0Dp,qf(t), provided that f is differentiable at 0.

    Definition 1.2. [11] Let 0<q<p1,f be an arbitrary function, and t be a real number. The (p,q)-integral of f is defined as

    t0f(s)dp,qs=(pq)tn=0qnpn+1f(qnpn+1t) (1.2)

    provided that the series of the right-hand side in (1.2) converges.

    Definition 1.3. [11] For α>0,0<q<p1 and f defined on ITp,q:={qkpk+1T:kN0}{0}, the fractional (p,q)-integral of f is defined by

    Iαp,qf(t)=1p(α2)Γp,q(α)t0(tqs)(α1)p,qf(spα1)dp,qs.

    Lemma 1.1. The (p,q)-fractional integral operator Iαp,q is monotone, that is, if f1(t)f2(t) for all t, then Iαp,qf1(t)Iαp,qf2(t) for all t.

    Definition 1.4. [19] For α>0,0<q<p1, and f:ITp,qR, the fractional (p,q)-difference operator of Caputo type of order α is defined by

    CDαp,qf(t)=INαp,qDNp,qf(t)=1p(Nα2)Γp,q(Nα)t0(tqs)(Nα1)p,qDNp,qf(spNα1)dp,qs,

    andCD0p,qf(t)=f(t), where N1<α<N,NN.

    Theorem 1.1. [19] Letting α(N1,N),NN,0<q<p1, and f:ITp,qR leads to

    CDαp,qf(t)=(pq)tNαp(Nα2)Γp,q(Nα)k=0qkpk+1(1(qp)k+1)(Nα1)p,qDNp,qf(qkpk+Nαt).

    Theorem 1.2. [19] Let α(N1,N),NN,0<q<p1, and f:ITp,qR. Then

    Iαp,qCDαp,qf(t)=f(t)N1k=0tkp(k2)[k]p,q![Dkp,qf(0)].

    Lemma 1.2. (Leibniz Formula) [19] Let f:ITp,q×ITp,qR, then

    Dp,q(t0f(t,s)dp,qs)=qt0tDp,qf(t,s)dp,qs+f(pt,t).

    Also, we obtain the following formula

    ddt(t0f(t,s)dp,qs)=t0f(t,s)tdp,qs+f(t,t).

    This section deals with relevant prerequisites that are essential for investigations into this study. We also establish some significant results that will be needed to prove our main results.

    Lemma 2.1. For any gC([0,1],R), the boundary value problem

    {cDαp,qu(t)+g(t)=0,0<t<1u(0)=u(0)=u(0)==u(n3)(0)=0,u(n2)(0)=10u(t)dp,qt,u(1)=10tu(t)dp,qt (2.1)

    is equivalent to the following integral equation

    u(t)=1p(α2)Γp,q(α)10H(t,qs)g(spα1)dp,qs, (2.2)

    where

    H(t,qs)=G(t,qs)+tn2tn1Δ(n2)!{(1Bp,q(n+1,1))10G(t,qs)dp,qt+Bp,q(n,1)10tG(t,qs)dp,qt}+tn1Δ{(1Bp,q(n1,1)Bp,q(n,1)(n2)!)10tG(t,qs)dp,qt+Bp,q(n,1)Bp,q(n+1,1)(n2)!10G(t,qs)dp,qt}

    such that

    Δ=|1Bp,q(n1,1)Bp,q(n,1)(n2)!Bp,q(n,1)Bp,q(n+1,1)Bp,q(n,1)(n2)!1Bp,q(n+1,1)|

    and

    G(t,s)={(ts)(α1)p,q+tn1(1s)(α1)p,q,0st,tn1(1s)(α1)p,q,ts1.

    Proof. Since

    cDαp,qu(t)=g(t),
    Iαp,qcDαp,qu(t)=Iαp,qg(t)

    then we get

    u(t)=Iαp,qg(t)+c0+c1t+c2t2++cn1tn1
    =1p(α2)Γp,q(α)t0(tqs)(α1)p,qg(spα1)dp,qs+c0+c1t+c2t2++cn1tn1.

    Since the boundary condition u(0)=0, we have c0=0. Using Leibniz formula, we have

    u(t)=1p(α2)Γp,q(α)t0(α1)(tqs)(α2)p,qg(spα1)dp,qs1p(α2)Γp,q(α)(tqt)(α1)p,qg(tpα1)+c1+2c2t++(n1)cn1tn2,

    and since the boundary condition u(0)=0, we get c1=0.

    Similarly, since

    u(t)=1p(α2)Γp,q(α)t0(α1)(α2)(tqs)(α3)p,qg(spα1)dp,qs
    1p(α2)Γp,q(α)(α1)(tqt)(α2)p,qg(tpα1)
    1p(α2)Γp,q(α)[(1q)(α1)p,q(α1)t(α2)g(tpα1)+(1q)(α1)p,qt(α1)1pα1g(tpα1)]
    +2c2++(n1)(n2)cn1tn3,

    and the boundary condition u(0)=0, we obtain u(0)=2c2=0. Then, we have c2=0.

    If we continue like this, by using other boundary conditions u(0)==u(n3)(0)=0, we get c3==cn3=0. By using the other boundary condition, we get

    u(n2)(0)=(n2)!cn2=10u(t)dp,qt,

    and so

    cn2=1(n2)!10u(t)dp,qt,n>2.

    Substituting cn2, we get

    u(t)=1p(α2)Γp,q(α)t0(tqs)(α1)p,qg(spα1)dp,qs+(1(n2)!10u(s)dp,qs)tn2+cn1tn1.

    Since

    u(1)=1p(α2)Γp,q(α)10(1qs)(α1)p,qg(spα1)dp,qs+(1(n2)!10u(s)dp,qs)+cn1
    =10su(s)dp,qs

    then, from the last boundary condition, we have

    cn1=10su(s)dp,qs+1p(α2)Γp,q(α)10(1qs)(α1)p,qg(spα1)dp,qs1(n2)!10u(s)dp,qs.

    Consequently

    u(t)=1p(α2)Γp,q(α)t0(tqs)(α1)p,qg(spα1)dp,qs+(1(n2)!10u(s)dp,qs)tn2
    +(10su(s)dp,qs+1p(α2)Γp,q(α)10(1qs)(α1)p,qg(spα1)dp,qs1(n2)!10u(s)dp,qs)tn1
    =1p(α2)Γp,q(α)t0(tqs)(α1)p,qg(spα1)dp,qs+tn1p(α2)Γp,q(α)10(1qs)(α1)p,qg(spα1)dp,qs
    +[tn2(n2)!tn1(n2)!]10u(s)dp,qs+tn110su(s)dp,qs.

    Whence

    u(t)=1p(α2)Γp,q(α)10G(t,qs)g(spα1)dp,qs+[tn2tn1(n2)!]10u(s)dp,qs
    +tn110su(s)dp,qs, (2.3)

    where

    G(t,s)={(ts)(α1)p,q+tn1(1s)(α1)p,q,0st,tn1(1s)(α1)p,q,ts1.

    Integrating (2.3) over [0,1], we obtain

    10u(t)dp,qt=1p(α2)Γp,q(α)1010G(t,qs)g(spα1)dp,qsdp,qt+(10u(s)dp,qs)10(tn2tn1(n2)!)dp,qt+(10su(s)dp,qs)10tn1dp,qt
    =1p(α2)Γp,q(α)1010G(t,qs)g(spα1)dp,qsdp,qt+[Bp,q(n1,1)Bp,q(n,1)(n2)!](10u(s)dp,qs)+Bp,q(n,1)10su(s)dp,qs.

    Thus, we have

    [1Bp,q(n1,1)Bp,q(n,1)(n2)!]10u(s)dp,qsBp,q(n,1)10su(s)dp,qs
    =1p(α2)Γp,q(α)1010G(t,qs)g(spα1)dp,qsdp,qt. (2.4)

    Multiplying (2.3) by t and integrating over [0,1], we get

    10tu(t)dp,qt=1p(α2)Γp,q(α)10(tt0G(t,qs)g(spα1)dp,qs)dp,qt+10[(tn1tn(n2)!)10u(s)dp,qs]dp,qt
    +10(tn10su(s)dp,qs)dp,qt
    =1p(α2)Γp,q(α)1010tG(t,qs)g(spα1)dp,qsdp,qt+[Bp,q(n,1)Bp,q(n+1,1)(n2)!]10u(s)dp,qs+Bp,q(n+1,1)10su(s)dp,qs.

    Hence

    [Bp,q(n+1,1)Bp,q(n,1)(n2)!]10u(s)dp,qs+[1Bp,q(n+1,1)]10su(s)dp,qs
    =1p(α2)Γp,q(α)1010tG(t,qs)g(spα1)dp,qsdp,qt. (2.5)

    Applying the Cramer rule to (2.4) and (2.5), saying

    Δ=|1Bp,q(n1,1)Bp,q(n,1)(n2)!Bp,q(n,1)Bp,q(n+1,1)Bp,q(n,1)(n2)!1Bp,q(n+1,1)|,

    and assuming Δ0, then we have

    10u(s)dp,qs=1Δ|1p(α2)Γp,q(α)1010G(t,qs)g(spα1)dp,qsdp,qtBp,q(n,1)1p(α2)Γp,q(α)1010tG(t,qs)g(spα1)dp,qsdp,qt1Bp,q(n+1,1)|
    =1Δp(α2)Γp,q(α){1010G(t,qs)g(spα1)dp,qsdp,qtBp,q(n+1,1)1010G(t,qs)g(spα1)dp,qsdp,qt+Bp,q(n,1)1010tG(t,qs)g(spα1)dp,qsdp,qt}

    and

    10su(s)dp,qs=1Δ|1Bp,q(n1,1)Bp,q(n,1)(n2)!1p(α2)Γp,q(α)1010G(t,qs)g(spα1)dp,qsdp,qtBp,q(n+1,1)Bp,q(n,1)(n2)!1p(α2)Γp,q(α)1010tG(t,qs)g(spα1)dp,qsdp,qt|
    =1Δp(α2)Γp,q(α){1010tG(t,qs)g(spα1)dp,qsdp,qtBp,q(n1,1)Bp,q(n,1)(n2)!1010tG(t,qs)g(spα1)dp,qsdp,qtBp,q(n+1,1)Bp,q(n,1)(n2)!1010G(t,qs)g(spα1)dp,qsdp,qt}.

    As a result,

    u(t)=1p(α2)Γp,q(α)10G(t,qs)g(spα1)dp,qs
    +[tn2tn1(n2)!]1Δp(α2)Γp,q(α){(1Bp,q(n+1,1))1010G(t,qs)g(spα1)dp,qsdp,qt
    +Bp,q(n,1)1010tG(t,qs)g(spα1)dp,qsdp,qt}
    +tn1Δp(α2)Γp,q(α){(1+Bp,q(n,1)Bp,q(n1,1)(n2)!)1010tG(t,qs)g(spα1)dp,qsdp,qt
    +Bp,q(n,1)Bp,q(n+1,1)(n2)!1010G(t,qs)g(spα1)dp,qsdp,qt}
    =1p(α2)Γp,q(α)10H(t,qs)g(spα1)dp,qs,

    where

    H(t,qs)=G(t,qs)+tn2tn1Δ(n2)!{(1Bp,q(n+1,1))10G(t,qs)dp,qt+Bp,q(n,1)10tG(t,qs)dp,qt}
    +tn1Δ{(1Bp,q(n1,1)Bp,q(n,1)(n2)!)10tG(t,qs)dp,qt+Bp,q(n,1)Bp,q(n+1,1)(n2)!10G(t,qs)dp,qt}.

    Lemma 2.2. The Green functions G(t,s) and H(t,s) satisfy the following inequalities:

    1) |G(t,s)|2(1s)(α1),forallt,s[0,1]

    2) |H(t,s)|2A,forallt,s[0,1]

    where

    A=(1+2|Δ|(n2)!{|1Bp,q(n+1,1)|Bp,q(1,1)+|Bp,q(n,1)|Bp,q(2,1)}+1|Δ|{|1Bp,q(n1,1)Bp,q(n,1)(n2)!|Bp,q(2,1)+|Bp,q(n,1)Bp,q(n+1,1)(n2)!|}). (2.6)

    Proof. From G(t,s) given in Lemma 2.1, we get

    |G(t,s)|(ts)(α1)+tn1(1s)(α1)2(1s)(α1),t,s[0,1].

    Also, we obtain

    |H(t,s)||G(t,s)|+|tn2tn1||Δ|(n2)!{|1Bp,q(n+1,1)|10|G(t,s)|dp,qt+|Bp,q(n,1)|10t|G(t,s)|dp,qt}
    +tn1|Δ|{|1Bp,q(n1,1)Bp,q(n,1)(n2)!|10t|G(t,s)|dp,qt
    +|Bp,q(n,1)Bp,q(n+1,1)(n2)!|10|G(t,s)|dp,qt}
    2(1s)(α1)+2|Δ|(n2)!{|1Bp,q(n+1,1)|210(1s)α1dp,qt+|Bp,q(n,1)|2(1s)α110tdp,qt}+1|Δ|{|1Bp,q(n1,1)Bp,q(n,1)(n2)!|2(1s)α110tdp,qt+|Bp,q(n,1)Bp,q(n+1,1)(n2)!|2(1s)α110dp,qt}
    2(1s)(α1)(1+2|Δ|(n2)!{|1Bp,q(n+1,1)|.Bp,q(1,1)+|Bp,q(n,1)|Bp,q(2,1)}+1|Δ|{|1Bp,q(n1,1)Bp,q(n,1)(n2)!|Bp,q(2,1)+|Bp,q(n,1)Bp,q(n+1,1)(n2)!|Bp,q(1,1)})
    =2(1s)(α1)A,

    such that

    A=(1+2|Δ|(n2)!{|1Bp,q(n+1,1)|.Bp,q(1,1)+|Bp,q(n,1)|Bp,q(2,1)})
    +1|Δ|{|1Bp,q(n1,1)Bp,q(n,1)(n2)!|Bp,q(2,1)+|Bp,q(n,1)Bp,q(n+1,1)(n2)!|}.

    So, we get |H(t,s)|2A(1s)(α1)2A, for all t,s[0,1].

    Next, we give some well-known fixed-point theorems that will be the main tools for our results. For more details on fixed point theory, we refer the readers to [20,21,22,23].

    Theorem 2.1. (Krasnoselskii's fixed-point theorem) [24] Let K be a bounded, closed, convex, and nonempty subset of a Banach space 𝕏. Let T1 and T2 be two operators such that

    a) T1u+T2vK whenever u,vK.

    b) T1 is compact and continuous.

    c) T2 is a contraction mapping.

    Then, there exists a zK such that z=T1z+T2z.

    Theorem 2.2. (Banach fixed-point theorem) [25] Let 𝕏 be a Banach space, and let T:XX be a contraction operator, i.e., there exists a constant λ[0,1) such that TuTvλuv for any u,vX. Then there exists a unique zX such that Tz=z.

    Definition 2.1. [26] Let 𝕏 be a Banach space, and let T:XX be a mapping. T is called a nonlinear contraction if there exists a continuous non-decreasing function ψ:R+R+, which ψ(0)=0 and ψ(x)<x for all x>0 has the following property:

    TuTvψ(uv),u,vX.

    Theorem 2.3. (Boyd and Wong fixed-point theorem) [27] Assume that 𝕏 is a Banach space, and let T:XX be a nonlinear contraction. Then, T has a unique fixed point in X.

    We will denote by X=C([0,1],R) the Banach space of all continuous functions from [0,1] to R endowed with the norm defined by u=sup{|u(t)|:t[0,1]}.

    We regard T:C([0,1],R)C([0,1],R) as being defined by an operator as

    Tu(t)=1p(α2)Γp,q(α)10H(t,qs)f(spα1,u(spα1))dp,qs. (2.7)

    In this section, we will deal with our main results. The first result is based on Krasnoselskii's fixed-point theorem.

    Theorem 3.1 Let f:[0,1]×RR be a continuous function satisfying the following assumptions:

    (H1)|f(t,u)f(t,v)|L|uv|,t[0,1] and u,vR,

    (H2)|f(t,u)|μ(t),(t,u)[0,1]×R and μL1([0,1],R+).

    If ML<1, where

    M:=2Bp,q(1,α)p(α2)Γp,q(α){1+2|Δ|(n2)![|1Bp,q(n+1,1)|+|Bp,q(n,1)|]
    +1|Δ|(|1Bp,q(n1,1)Bp,q(n,1)(n2)!|+|Bp,q(n,1)Bp,q(n+1,1)(n2)!|)}

    then the problem (1.1) has at least one solution on [0,1].

    Proof. Defining maxt[0,1]|μ(t)|:=μ and fixing a constant ˜RμM, consider B˜R={uC([0,1],R):u˜R}. Let us define the operators T1 and T2 on the ball B˜R as follows

    T1u(t):=1p(α2)Γp,q(α)10G(t,qs)f(spα1,u(spα1))dp,qs,
    T2u(t):=(tn2tn1(n2)!)1Δp(α2)Γp,q(α){(1Bp,q(n+1,1))1010G(t,qs)f(spα1,u(spα1))dp,qtdp,qs
    +Bp,q(n,1)1010tG(t,qs)f(spα1,u(spα1))dp,qtdp,qs}
    +tn1Δp(α2)Γp,q(α){(1Bp,q(n1,1)Bp,q(n,1)(n2)!)1010tG(t,qs)f(spα1,u(spα1))dp,qtdp,qs+Bp,q(n,1)Bp,q(n+1,1)(n2)!1010G(t,qs)f(spα1,u(spα1))dp,qtdp,qs}.

    For u,vB˜R, we have

    |T1u(t)+T2v(t)|1p(α2)Γp,q(α)10|G(t,qs)|μ(spα1)dp,qs
    +(2(n2)!)1|Δ|p(α2)Γp,q(α){|1Bp,q(n+1,1)|1010|G(t,qs)|μ(spα1)dp,qtdp,qs
    +|Bp,q(n,1)|1010|G(t,qs)|μ(spα1)dp,qtdp,qs}
    +1|Δ|p(α2)Γp,q(α){|1Bp,q(n1,1)Bp,q(n,1)(n2)!|1010|G(t,qs)|μ(spα1)dp,qtdp,qs
    +|Bp,q(n,1)Bp,q(n+1,1)(n2)!|1010|G(t,qs)|μ(spα1)dp,qtdp,qs}
    1p(α2)Γp,q(α)2Bp,q(1,α)μ+2|Δ|(n2)!p(α2)Γp,q(α){|1Bp,q(n+1,1)|+|Bp,q(n,1)|}2Bp,q(1,α)μ
    +2Bp,q(1,α)μ|Δ|p(α2)Γp,q(α){|1Bp,q(n1,1)Bp,q(n,1)(n2)!|+|Bp,q(n,1)Bp,q(n+1,1)(n2)!|}
    =μ2Bp,q(1,α)p(α2)Γp,q(α){1+2|Δ|(n2)![|1Bp,q(n+1,1)|+|Bp,q(n,1)|]
    +1|Δ|(|1Bp,q(n1,1)Bp,q(n,1)(n2)!|+|Bp,q(n,1)Bp,q(n+1,1)(n2)!|)}
    =μM˜R.

    This implies that T1u+T2vB˜R.

    |T2u1(t)T2u2(t)|
    =|(tn2tn1(n2)!)1Δp(α2)Γp,q(α){(1Bp,q(n+1,1))1010G(t,qs)f(spα1,u1(spα1))dp,qtdp,qs
    +Bp,q(n,1)1010tG(t,qs)f(spα1,u1(spα1))dp,qtdp,qs}
    +tn1Δp(α2)Γp,q(α){(1Bp,q(n1,1)Bp,q(n,1)(n2)!)1010tG(t,qs)f(spα1,u1(spα1))dp,qtdp,qs+Bp,q(n,1)Bp,q(n+1,1)(n2)!1010G(t,qs)f(spα1,u1(spα1))dp,qtdp,qs}
    (tn2tn1(n2)!)1Δp(α2)Γp,q(α){(1Bp,q(n+1,1))1010G(t,qs)f(spα1,u2(spα1))dp,qtdp,qs
    +Bp,q(n,1)1010tG(t,qs)f(spα1,u2(spα1))dp,qtdp,qs}
    +tn1Δp(α2)Γp,q(α){(1Bp,q(n1,1)Bp,q(n,1)(n2)!)1010tG(t,qs)f(spα1,u2(spα1))dp,qtdp,qs+Bp,q(n,1)Bp,q(n+1,1)(n2)!1010G(t,qs)f(spα1,u2(spα1))dp,qtdp,qs}|
    =|(tn2tn1(n2)!)1Δp(α2)Γp,q(α){(1Bp,q(n+1,1))1010G(t,qs)[f(spα1,u1(spα1))f(spα1,u2(spα1))]dp,qtdp,qs
    +Bp,q(n,1)1010tG(t,qs)[f(spα1,u1(spα1))f(spα1,u2(spα1))]dp,qtdp,qs}
    +tn1Δp(α2)Γp,q(α){(1Bp,q(n1,1)Bp,q(n,1)(n2)!)1010tG(t,qs)[f(spα1,u1(spα1))f(spα1,u2(spα1))]dp,qtdp,qs+Bp,q(n,1)Bp,q(n+1,1)(n2)!1010G(t,qs)[f(spα1,u1(spα1))f(spα1,u2(spα1))]dp,qtdp,qs}|
    {2|Δ|p(α2)Γp,q(α)(n2)![|1Bp,q(n+1,1)|+Bp,q(n,1)]+1|Δ|p(α2)Γp,q(α)(|1Bp,q(n1,1)Bp,q(n,1)(n2)!|
    +|Bp,q(n,1)Bp,q(n+1,1)(n2)!|)}1010|G(t,qs)||f(spα1,u1(spα1))f(spα1,u2(spα1))|dp,qtdp,qs
    {2|Δ|p(α2)Γp,q(α)(n2)![|1Bp,q(n+1,1)|+Bp,q(n,1)]+1|Δ|p(α2)Γp,q(α)(|1Bp,q(n1,1)Bp,q(n,1)(n2)!|
    +|Bp,q(n,1)Bp,q(n+1,1)(n2)!|)}10102(1qs)(α1)p,qL|u1u2|dp,qtdp,qs
    {2|Δ|p(α2)Γp,q(α)(n2)![|1Bp,q(n+1,1)|+Bp,q(n,1)]+1|Δ|p(α2)Γp,q(α)(|1Bp,q(n1,1)Bp,q(n,1)(n2)!|
    +|Bp,q(n,1)Bp,q(n+1,1)(n2)!|)}Lu1u22Bp,q(1,α)
    MLu1u2,

    and so

    T2u1T2u2MLu1u2.

    Since ML<1, then T2 is a contraction mapping.

    At present, we will show that T1 is compact and continuous. The continuity of f together with the assumption (H2) yields that the operator T1 is continuous and uniformly bounded on B˜R. Setting sup(t,u)[0,1]×B˜R|f(t,u)|:=fmax<, also for t1,t2[0,1] with t1t2 and uB˜R, we obtain that

    |T1u(t2)T1u(t1)|=1p(α2)Γp,q(α)|10(G(t2,qs)G(t1,qs))f(spα1,u(spα1))dp,qs|
    1p(α2)Γp,q(α)10|G(t2,qs)G(t1,qs)|fmaxdp,qs.

    It is clear that when t2t1, the right-hand side of the above inequality tends to be zero, because of the continuity of G(t,s). Thus, T1 is relatively compact on B˜R. Hence, by the Arzelà–Ascoli theorem, T1 is compact on B˜R.

    Since all the assumptions of Theorem 2.1 are satisfied, we deduce that the problem (1.1) has at least one solution on [0,1]. This completes the proof.

    Example 3.1. Consider the following boundary value problem for fractional (p,q)-difference equation of the form:

    {cD5212,13u(t)+Γ12,13(72)103sinu(t)(1+t2)=0,t(0,1)u(0)=0,u(0)=10u(t)dp,qt,u(1)=10tu(t)dp,qt. (3.1)

    Setting constants α=52,p=12,q=13,n=3, and the function f(t,u(t))=Γ12,13(72)103sinu(t)(1+t2). It is easy to see that |f(t,u)f(t,v)|Γ12,13(72)103|uv|, then the condition (H1) is satisfied with L=Γ12,13(72)103. We can find easily that |f(t,u)|Γ12,13(72)103(1+t2):=μ(t); then, this shows that the function f satisfies condition (H2). Indeed, by calculating M, we obtain M20,78432Γ12,13(72). Hence, ML<1. Consequently, by Theorem 3.1, we conclude that problem (3.1) has a unique solution on [0,1].

    The second result is based on the Banach fixed-point theorem.

    Theorem 3.2. Suppose that f:[0,1]×RR is a continuous function satisfying (H1); also, the following assumption holds:

    (H3)p(α2)Γp,q(α)>2ALBp,q(1,α),

    where L is a Lipschitz constant in (H1), and A is given by (2.6). Then the problem (1.1) has a unique solution.

    Proof. We convert problem (1.1) to a fixed-point problem u=Tu, where T:C([0,1],R)C([0,1],R) is given by (2.8). Suppose that M:=supt[0,1]|f(t,0)| and a constant R satisfies

    R2AMBp,q(1,α)p(α2)Γp,q(α)2ALBp,q(1,α).

    First, we will show that TBRBR, where BR={uC([0,1],R):uR}. For any uBR, we have

    |Tu(t)|=|1p(α2)Γp,q(α)10H(t,qs)f(spα1,u(spα1))dp,qs|
    supt[0,1]|1p(α2)Γp,q(α)10H(t,qs)f(spα1,u(spα1))dp,qs|
    1p(α2)Γp,q(α)102A(1qs)(α1)p,q|f(spα1,u(spα1))|dp,qs
    =2Ap(α2)Γp,q(α)10(1qs)(α1)p,q|f(spα1,u(spα1))f(spα1,0)+f(spα1,0)|dp,qs
    2Ap(α2)Γp,q(α)10(1qs)(α1)p,q{|f(spα1,u(spα1))f(spα1,0)|+|f(spα1,0)|}dp,qs
    2Ap(α2)Γp,q(α)10(1qs)(α1)p,q{L|u(spα1)|+M}dp,qs
    2Ap(α2)Γp,q(α)10(1qs)(α1)p,q{LR+M}dp,qs
    2A(LR+M)p(α2)Γp,q(α)10(1qs)(α1)p,qdp,qs=2A(LR+M)p(α2)Γp,q(α)Bp,q(1,α)R.

    Therefore, TuR and TBRBR.

    Second, we will show that T is contraction. For any u,vC([0,1],R), we have

    |Tu(t)Tv(t)|
    =|1p(α2)Γp,q(α)10H(t,qs)f(spα1,u(spα1))dp,qs1p(α2)Γp,q(α)10H(t,qs)f(spα1,v(spα1))dp,qs|
    supt[0,1]|1p(α2)Γp,q(α)10H(t,qs)[f(spα1,u(spα1))f(spα1,v(spα1))]dp,qs|
    supt[0,1]1p(α2)Γp,q(α)10|H(t,qs)||f(spα1,u(spα1))f(spα1,v(spα1))|dp,qs
    supt[0,1]1p(α2)Γp,q(α)10L|H(t,qs)||u(spα1)v(spα1)|dp,qs
    Luvp(α2)Γp,q(α)supt[0,1]10|H(t,qs)|dp,qs
    Luvp(α2)Γp,q(α)102A(1qs)(α1)p,qdp,qs
    =2ALp(α2)Γp,q(α)uv10(1qs)(α1)p,qdp,qs=2ALBp,q(1,α)p(α2)Γp,q(α)uv.

    Thus, we get

    TuTv2ALBp,q(1,α)p(α2)Γp,q(α)uv.

    From the condition (H3), T is a contraction. By the Banach fixed-point theorem, the boundary value problem (1.1) has a unique solution.

    Example 3.2. Consider the following boundary value problem for the fractional (p,q)-difference equation of the form:

    {cD5212,13u(t)+Γ12,13(72)102u2(t)+2|u(t)|1+|u(t)|=0,t(0,1)u(0)=0,u(0)=10u(t)dp,qt,u(1)=10tu(t)dp,qt. (3.2)

    Setting constants α=52,p=12,q=13,n=3, and the function f(t,u(t))=Γ12,13(72)102u2(t)+2|u(t)|1+|u(t)|, we find that the value of A given by (2.6) is approximately 1127. By some calculations, we have |f(t,u)f(t,v)|150Γ12,13(72)|uv|, then the condition (H1) is satisfied with L=150Γ12,13(72). With the same L, we can easily see that the condition (H3)

    (12)(522)Γ12,13(52)>11,2725Γ12,13(72)B12,13(1,52)

    is also satisfied. Consequently, by Theorem 3.2, we conclude that the boundary value problem (3.2) has a unique solution on [0,1].

    The third result is derived from Boyd and Wong fixed-point theorem.

    Theorem 3.3 Suppose that

    (H4) There exists a continuous function h:[0,1]R+ with the property that

    |f(t,u)f(t,v)|h(t)|uv|J+|uv|

    for t[0,1] and u,v0, where

    J=2Ap(α2)Γp,q(α)10(1qs)(α1)p,qh(spα1)dp,qs.

    Then the boundary value problem (1.1) has a unique solution.

    Proof. Consider the operator T:C([0,1],R)C([0,1],R) by

    Tu(t)=1p(α2)Γp,q(α)10H(t,qs)f(spα1,u(spα1))dp,qs,

    where H(t,s) is defined by Lemma 2.1.

    Let us set a continuous non-decreasing function ψ:R+R+ by

    ψ(x)=JxJ+x,x>0

    with ψ(0)=0 and ψ(x)<x,x>0. Using (H4), we have

    |Tu(t)Tv(t)|=|1p(α2)Γp,q(α)10H(t,qs)f(spα1,u(spα1))dp,qs1p(α2)Γp,q(α)10H(t,qs)f(spα1,v(spα1))dp,qs|
    1p(α2)Γp,q(α)10|H(t,qs)||f(spα1,u(spα1))f(spα1,v(spα1))|dp,qs
    1p(α2)Γp,q(α)10|H(t,qs)|h(spα1)|u(spα1)v(spα1)|J+|u(spα1)v(spα1)|dp,qs
    1p(α2)Γp,q(α)102A(1qs)(α1)p,qh(spα1)dp,qsuvJ+uv,

    so

    TuTvψ(uv).

    Hence, we see that T is a nonlinear contraction. Therefore, by Definition 2.1 and Theorem 2.3, the operator T has a unique fixed point in C([0,1],R), which is a unique solution to the boundary value problem (1.1).

    Example 3.3. Consider the following boundary value problem for the fractional (p,q)-difference equation of the form:

    {cD5212,13u(t)+Γ12,13(112)t2tan1(|u|λ+|u|)=0,t(0,1)u(0)=0,u(0)=10u(t)dp,qt,u(1)=10tu(t)dp,qt. (3.3)

    Setting constants α=52,p=12,q=13,n=3, and the function f(t,u(t))=h(t)tan1(|u|λ+|u|), where h(t)=Γ12,13(112)t2 and λ19, we obtain

    J=2A(12)(522)Γ12,13(52)10(113s)(32)12,13Γ12,13(112)(s232)2d12,13s18,8,

    where A11,27 as in Example 3.2. Since

    |f(t,u)f(t,v)|=Γ12,13(112)t2|tan1|u|λ+|u|tan1|v|λ+|v||
    Γ12,13(112)t2||u|λ+|u||v|λ+|v||
    Γ12,13(112)t2|uv|λ+|uv|
    Γ12,13(112)t2|uv|18,8+|uv|

    the condition (H4) holds. Thus, by Theorem 3.3, the boundary value problem (3.3) has a unique solution on [0,1].

    In this study, we investigated the existence and uniqueness of solutions for a boundary value problem involving (p,q)-difference equations with integral conditions. By leveraging well-known fixed-point theorems, we derived new theoretical results that contribute to the ongoing research in this field. Our findings provide a strong foundation for analyzing such equations, which have wide-ranging applications in mathematical modeling and applied sciences. In the limit as p1, our results reduce to results for the fractional q- difference integral boundary value problem.

    To validate our theoretical framework, we presented three illustrative examples that demonstrate the applicability and effectiveness of our results. These examples confirm that the imposed conditions ensure the existence and uniqueness of solutions, reinforcing the reliability of our approach.

    Future research can extend this work in several directions. One potential avenue is the study of (p,q)-difference equations with more general boundary conditions or nonlinear integral constraints. Additionally, exploring numerical methods for approximating solutions could provide further insights into the practical implementation of these theoretical results. Moreover, investigating the stability and behavior of solutions under perturbations would be a valuable extension to this study.

    In conclusion, our work contributes to the understanding of BVPs for (p,q)-difference equations and highlights the effectiveness of fixed-point techniques in establishing solution existence and uniqueness. These results open new possibilities for further advancements in the field and their applications in various scientific and engineering disciplines.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare there is no conflict of interest.



    [1] B. Daşbaşı, The fractional-order mathematical modeling of bacterial resistance against multiple antibiotics in case of local bacterial infection, Sakarya Univ. J. Sci., 21 (2017), 442–453. https://doi.org/10.16984/saufenbilder.298934 doi: 10.16984/saufenbilder.298934
    [2] S. Alkan, A numerical method for solution of integro-differential equations of fractional order, Sakarya Univ. J. Sci., 21 (2017), 82–89. https://doi.org/10.16984/saufenbilder.296796 doi: 10.16984/saufenbilder.296796
    [3] S. Çetinkaya, A. Demir, Time fractional equation with non-homogenous Dirichlet boundary conditions, Sakarya Univ. J. Sci., 24 (2020), 1185–1190. https://doi.org/10.16984/saufenbilder.749168 doi: 10.16984/saufenbilder.749168
    [4] İ. Devecioğlu, R. Mutlu, A conformal fractional derivative-based leaky integrate-and-fire neuron model, Sakarya Univ. J. Sci., 26 (2022), 568–578. https://doi.org/10.16984/saufenbilder.1041088 doi: 10.16984/saufenbilder.1041088
    [5] R. J. Finkelstein, q-field theory, Letters Math. Phys., 34 (1995), 169–176. https://doi.org/10.1007/BF00739095 doi: 10.1007/BF00739095
    [6] P. G. O. Freund, A. V. Zabrodin, The spectral problem for the q-Knizhnik-Zamolodchikov equation and continuous q-Jacobi polynomials, Commun. Math. Phys., 173 (1995), 17–42. https://doi.org/10.1007/BF02100180 doi: 10.1007/BF02100180
    [7] P. P. Kulish, E. V. Damaskinsky, On the q oscillator and the quantum algebra suq (1, 1), J. Phys. A: Math. Gen., 23 (1990), L415. https://doi.org/10.1088/0305-4470/23/9/003
    [8] N. Allouch, J. R. Graef, S. Hamani, Boundary value problem for fractional q-difference equations with integral conditions in Banach spaces, Fractal Fract., 6 (2022), 2–11. https://doi.org/10.3390/fractalfract6050237 doi: 10.3390/fractalfract6050237
    [9] R. Chakrabarti, R. Jagannathan, A (p, q)-oscillator realization of two-parameter quantum algebras, J. Phys. A: Math. Gen., 24 (1991), L711. https://doi.org/10.1088/0305-4470/24/13/002 doi: 10.1088/0305-4470/24/13/002
    [10] M. N. Hounkonnou, J. D. B. Kyemba, R (p, q)-calculus: differentiation and integration, SUT J. Math., 49 (2013), 145–167. https://doi.org/10.55937/sut/1394548362
    [11] P. N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, Results Math., 73 (2018), 1–21. https://doi.org/10.48550/arXiv.1309.3934 doi: 10.48550/arXiv.1309.3934
    [12] V. Sahai, S. Yadav, Representations of two parameter quantum algebras and p, q-special functions, J. Math. Anal. Appl., 335 (2007), 268–279. https://doi.org/10.1016/j.jmaa.2007.01.072
    [13] N. Turan, M. Başarır, A. Şahin, On the solutions of a nonlinear system of q-difference equations, Boundary Value Probl., 92 (2024), 1–19. https://doi.org/10.1186/s13661-024-01896-6 doi: 10.1186/s13661-024-01896-6
    [14] N. Turan, M. Başarır, A. Şahin, On the solutions of the second-order (p, q)-difference equation with an application to the fixed-point theory, AIMS Math., 9 (2024), 10679–10697. https://doi.org/10.3934/math.2024521 doi: 10.3934/math.2024521
    [15] İ. Gençtürk, Boundary value problems for a second-order (p, q)-difference equation with integral conditions, Turkish J. Math., 46 (2022), 499–515. https://doi.org/10.3906/mat-2106-90 doi: 10.3906/mat-2106-90
    [16] Z. Qin, S. Sun, Positive solutions for fractional (p, q)-difference boundary value problems, J. Appl. Math. Comput., 68 (2022), 2571–2588. https://doi.org/10.1007/s12190-021-01630-w
    [17] P. Neang, K. Nonlaopon, J. Tariboon, S.K. Ntouyas, B. Ahmad, Existence and uniqueness results for fractional (p, q)-difference equations with separated boundary conditions, Mathematics, 10 (2022), 1–15. https://doi.org/10.3390/math10050767
    [18] N. Kamsrisuk, C. Promsakon, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for (p, q)-difference equations, Differ. Equations Appl., 10 (2018), 183–195. https://doi.org: 10.7153/dea-2018-10-11
    [19] J. Soontharanon, T. Sitthiwirattham, On fractional (p, q)-calculus, Adv. Differ. Equations, 35 (2020), 1–18. https://doi.org/10.1186/s13662-020-2512-7 doi: 10.1186/s13662-020-2512-7
    [20] A. Şahin, Z. Kalkan, The AA-iterative algorithm in hyperbolic spaces with applications to integral equations on time scales, AIMS Math., 9 (2024), 24480–24506. https://doi.org/10.3934/math.20241192 doi: 10.3934/math.20241192
    [21] Z. Kalkan, A. Şahin, A. Aloqaily, N. Mlaiki, Some fixed point and stability results in b-metric-like spaces with an application to integral equations on time scales, AIMS Math., 9 (2024), 11335–11351. https://doi.org/10.3934/math.2024556 doi: 10.3934/math.2024556
    [22] A. Şahin, E. Öztürk, G. Aggarwal, Some fixed-point results for the KF-iteration process in hyperbolic metric spaces, Symmetry, 15 (2023), 1–16. https://doi.org/10.3390/sym15071360 doi: 10.3390/sym15071360
    [23] A. Şahin, Z. Kalkan, H. Arısoy, On the solution of a nonlinear Volterra integral equation with delay, Sakarya Univ. J. Sci., 21 (2017), 1367–1376. https://doi.org/10.16984/saufenbilder.305632 doi: 10.16984/saufenbilder.305632
    [24] M. A. Krasnoselskii, Two remarks on the method of successive approximations, Usp. Mat. Nauk, 10 (1955), 123–127.
    [25] S. Banach, Sur les opérations dans les ensembles abstraites et leurs applications aux équations integrals, Fundam. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [26] T. Sitthiwirattham, J. Tariboon, S. K. Ntouyas, Three-point boundary value problems of nonlinear second-order q-difference equations involving different numbers of q, J. Appl. Math., 2013 (2013), 1–12. http://dx.doi.org/10.1155/2013/763786 doi: 10.1155/2013/763786
    [27] D. W. Boyd, J. S. Wong, On nonlinear contractions, Proc. Am. Math. Soc., 20 (1969), 458–464. https://doi.org/10.2307/2035677 doi: 10.2307/2035677
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(235) PDF downloads(37) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog