Research article

Dynamics of an eco-epidemiological model with toxicity, treatment, time-varying incubation

  • Published: 20 May 2025
  • In this paper, we considered an eco-epidemiological model including toxicity, treatment, time-varying incubation, and Holling Ⅱ functional response. First, for the model without time delay, the positivity and boundedness of solutions were investigated, and some conditions for local asymptotic stability of all possible equilibriums and condition for global stability of the positive equilibrium were also given. Then, the local stability around the positive equilibrium and conditions for the existence of Hopf bifurcation of such model with time delay were explored. Furthermore, by using the method of multiple scales, a control strategy based on time delay was obtained to suppress oscillation. Moreover, the global stability of the positive equilibrium of the model with time-varying delay was investigated. Finally, the theoretical findings were validated through numerical simulations. Those results demonstrated that time-varying delays can induce more complex dynamics in systems. By combining the method of multiple scale with periodic perturbations, the oscillatory behavior induced by Hopf bifurcation can be effectively suppressed, providing a novel approach for stability control in time-varying delay systems.

    Citation: Rui Ma, Xin-You Meng. Dynamics of an eco-epidemiological model with toxicity, treatment, time-varying incubation[J]. Electronic Research Archive, 2025, 33(5): 3074-3110. doi: 10.3934/era.2025135

    Related Papers:

  • In this paper, we considered an eco-epidemiological model including toxicity, treatment, time-varying incubation, and Holling Ⅱ functional response. First, for the model without time delay, the positivity and boundedness of solutions were investigated, and some conditions for local asymptotic stability of all possible equilibriums and condition for global stability of the positive equilibrium were also given. Then, the local stability around the positive equilibrium and conditions for the existence of Hopf bifurcation of such model with time delay were explored. Furthermore, by using the method of multiple scales, a control strategy based on time delay was obtained to suppress oscillation. Moreover, the global stability of the positive equilibrium of the model with time-varying delay was investigated. Finally, the theoretical findings were validated through numerical simulations. Those results demonstrated that time-varying delays can induce more complex dynamics in systems. By combining the method of multiple scale with periodic perturbations, the oscillatory behavior induced by Hopf bifurcation can be effectively suppressed, providing a novel approach for stability control in time-varying delay systems.



    加载中


    [1] A. J. Lotka, Analytical note on certain rythmic relations in organic systems, Proc. Natl. Acad. Sci. U.S.A., 6 (1920), 410–415. https://doi.org/10.1073/pnas.6.7.410 doi: 10.1073/pnas.6.7.410
    [2] V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, in: Animal ecology, ICES J. Mar. Sci., 3 (1928), 3–51. https://doi.org/10.1093/icesjms/3.1.3
    [3] E. Beltrami, T. O. Carroll, Modelling the role of viral disease in recurrent phytoplankton blooms, J. Math. Biol., 32 (1994), 857–863.
    [4] J. Chattopadhyay, R. R. Sarkar, G. Ghosal, Removal of infected prey prevent limit cycle oscillations in an infected prey-predator system-a mathematical study, Ecol. Modell., 156 (2002), 113–121. https://doi.org/10.1016/S0304-3800(02)00133-3 doi: 10.1016/S0304-3800(02)00133-3
    [5] X. Y. Meng, N. N. Qin, H. F. Huo, Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species, J. Biol. Dyn., 12 (2018), 342–374. https://doi.org/10.1080/17513758.2018.1454515 doi: 10.1080/17513758.2018.1454515
    [6] N. Sk, S. Pal, Dynamics of an infected prey-generalist predator system with the effects of fear, refuge and harvesting: Deterministic and stochastic approach, Eur. Phys. J. Plus, 137 (2022), 1–24. https://doi.org/10.1140/epjp/s13360-022-02348-9 doi: 10.1140/epjp/s13360-022-02348-9
    [7] M. X. Wang, S. W. Yao, The dynamics of an eco-epidemiological prey-predator model with infectious diseases in prey, Commun. Nonlinear Sci. Numer. Simul., 132 (2024). https://doi.org/10.1016/j.cnsns.2024.107902 doi: 10.1016/j.cnsns.2024.107902
    [8] X. Y. Meng, L. Xiao, Hopf bifurcation and Turing instability of a delayed diffusive zooplankton-phytoplankton model with hunting cooperation, Int. J. Bifurcation Chaos, 34 (2024), 2450090. https://doi.org/10.1142/S0218127424500901 doi: 10.1142/S0218127424500901
    [9] S. Akhtar, N. H. Gazi, S. Sarwardi, Mathematical modelling and bifurcation analysis of an eco-epidemiological system with multiple functional responses subjected to Allee effect and competition, Results Control Optim., 15 (2024), 100421. https://doi.org/10.1016/j.rico.2024.100421 doi: 10.1016/j.rico.2024.100421
    [10] S. X. Wu, X. Y. Meng, Dynamics of a delayed stage-structure predator-prey model with refuge and cooperation, Electron. Res. Arch., 33 (2025), 995–1036. https://doi.org/10.3934/era.2025045 doi: 10.3934/era.2025045
    [11] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London, Ser. A, Math. Phys. Sci., 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [12] S. Sharma, G. P. Samanta, A Leslie-Gower predator-prey model with disease in prey incorporating a prey refuge, Chaos, Solitons Fractals, 70 (2015), 69–84. https://doi.org/10.1016/j.chaos.2014.11.010 doi: 10.1016/j.chaos.2014.11.010
    [13] A. Kumar, P. K. Srivastava, A. Yadav, Delayed information induces oscillations in a dynamical model for infectious disease, Int. J. Biomath., 12 (2019), 163–196. https://doi.org/10.1142/S1793524519500207 doi: 10.1142/S1793524519500207
    [14] U. Ghosh, A. A. Thirthar, B. Mondal, P. Majumdar, Effect of fear, treatment, and hunting cooperation on an eco-epidemiological model: Memory effect in terms of fractional derivative, Iran. J. Sci. Technol. Trans. A Sci., 46 (2022), 1541–1554. https://doi.org/10.1007/s40995-022-01371-w doi: 10.1007/s40995-022-01371-w
    [15] S. C. Srivastava, N. K. Thakur, Modeling the spread and control of viral infection in damaged aquatic system: Emergence of patterns, Iran. J. Sci., 47 (2023), 467–487. https://doi.org/10.1007/s40995-023-01415-9 doi: 10.1007/s40995-023-01415-9
    [16] J. Chattopadhyay, R. R. Sarkar, A. El Abdllaoui, A delay differential equation model on harmful algal blooms in the presence of toxic substances, IMA J. Math. Appl. Med. Biol., 19 (2002), 137–161. https://doi.org/10.1093/imammb/19.2.137 doi: 10.1093/imammb/19.2.137
    [17] J. Chattopadhyay, R. R. Sarkar, S. Mandal, Toxin-producing plankton may act as a biological control for planktonic blooms-field study and mathematical modelling, J. Theor. Biol., 215 (2002), 333–344. https://doi.org/10.1006/jtbi.2001.2510 doi: 10.1006/jtbi.2001.2510
    [18] S. Gakkhar, A. Singh, A delay model for viral infection in toxin producing phytoplankton and zooplankton system, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 3607–3620. https://doi.org/10.1016/j.cnsns.2010.01.010 doi: 10.1016/j.cnsns.2010.01.010
    [19] Q. H. Huang, G. Seo, C. H. Shan, Bifurcations and global dynamics in a toxin-dependent aquatic population model, Math. Biosci., 296 (2018), 26–35. https://doi.org/10.1016/j.mbs.2017.11.013 doi: 10.1016/j.mbs.2017.11.013
    [20] C. Liu, Q. L. Zhang, J. N. Li, Global stability analysis and optimal control of a harvested eco-epidemiological prey predator model with vaccination and taxation, Abstr. Appl. Anal., 2013 (2013), 1–16. https://doi.org/10.1155/2013/950396 doi: 10.1155/2013/950396
    [21] G. Mortoja, P. Panja, K. Mondal, Dynamics of a predator-prey model with nonlinear incidence rate, Crowley-Martin type functional response and disease in prey population, Ecol. Genet. Genomics, 10 (2018), 100035. https://doi.org/10.1016/j.egg.2018.100035 doi: 10.1016/j.egg.2018.100035
    [22] M. Peng, Z. D. Zhang, C. W. Lim, X. D. Wang, Hopf bifurcation and hybrid control of a delayed ecoepidemiological model with nonlinear incidence rate and Holling type Ⅱ functional response, Math. Probl. Eng., 2018 (2018), 1–12. https://doi.org/10.1155/2018/6052503 doi: 10.1155/2018/6052503
    [23] B. N. Kahsay, O. D. Makinde, Eco-epidemiological model and optimal control analysis of tomato yellow leaf curl virus disease in tomato plant, Biotechnol. Bioeng., 2023 (2023). https://doi.org/10.1155/2023/4066236 doi: 10.1155/2023/4066236
    [24] N. K. Thakur, S. C. Srivastava, A. Ojha, Dynamical study of an eco-epidemiological delay model for plankton system with toxicity, Iran. J. Sci. Technol. Trans. A Sci., 45 (2021), 283–304. https://doi.org/10.1007/s40995-020-01042-8 doi: 10.1007/s40995-020-01042-8
    [25] K. Agnihotri, H. Kaur, The dynamics of viral infection in toxin producing phytoplankton and zooplankton system with time delay, Chaos, Solitons Fractals, 118 (2019), 122–133. https://doi.org/10.1016/j.chaos.2018.11.018 doi: 10.1016/j.chaos.2018.11.018
    [26] J. N. Lu, X. G. Zhang, R. Xu, Global stability and Hopf bifurcation of an eco-epidemiological model with time delay, Int. J. Biomath., 12 (2019), 1–21. https://doi.org/10.1142/S1793524519500621 doi: 10.1142/S1793524519500621
    [27] S. Biswas, P. K. Tiwari, S. Pal, Delay-induced chaos and its possible control in a seasonally forced eco-epidemiological model with fear effect and predator switching, Nonlinear Dyn., 104 (2021), 2901–2930. https://doi.org/10.1007/s11071-021-06396-1 doi: 10.1007/s11071-021-06396-1
    [28] S. Biswas, B. Ahmad, S. Khajanchi, Exploring dynamical complexity of a cannibalistic eco-epidemiological model with multiple time delay, Math. Methods Appl. Sci., 46 (2023), 4184–4211. https://doi.org/10.1002/mma.8749 doi: 10.1002/mma.8749
    [29] Z. W. Liang, X. Y. Meng, Stability and Hopf bifurcation of a multiple delayed predator-prey system with fear effect, prey refuge and Crowley-Martin function, Chaos, Solitons Fractals, 175 (2023), 113955. https://doi.org/10.1016/j.chaos.2023.113955 doi: 10.1016/j.chaos.2023.113955
    [30] S. C. Srivastava, N. K. Thakur, R. Singh, A. Ojha, Impact of fear and switching on a delay-induced eco-epidemiological model with Beverton-Holt functional response, Int. J. Dyn. Control, 12 (2024), 669–695. https://doi.org/10.1007/s40435-023-01216-3 doi: 10.1007/s40435-023-01216-3
    [31] S. A. Gourley, R. S. Liu, Y. J. Lou, Intra-specific competition and insect larval development: A model with time-dependent delay, Proc. R. Soc. Edinburgh Sect. A: Math., 147 (2017), 353–369. http://doi.org/10.1017/S0308210516000159 doi: 10.1017/S0308210516000159
    [32] F. X. Li, X. Q. Zhao, Dynamics of a periodic bluetongue model with a temperature-dependent incubation period, SIAM J. Appl. Math., 79 (2019), 2479–2505. https://doi.org/10.1137/18M1218364 doi: 10.1137/18M1218364
    [33] T. L. Zhang, X. Q. Zhao, Mathematical modeling for schistosomiasis with seasonal influence: A case study in Hubei, China, SIAM J. Appl. Math., 19 (2020), 1438–1471. https://doi.org/10.1137/19M1280259 doi: 10.1137/19M1280259
    [34] H. Y. Zhao, L. Shi, J. Wang, K. Wang, A stage structure HFMD model with temperature-dependent latent period, Appl. Math. Modell., 93 (2021), 745–761. https://doi.org/10.1016/j.apm.2021.01.010 doi: 10.1016/j.apm.2021.01.010
    [35] H. Wu, W. Chen, N. Wang, L. Zhang, H. Li, Z. Teng, A delayed stage-structure brucellosis model with interaction among seasonality, time-varying incubation and density-dependent growth, Int. J. Biomath., 16 (2023), 113–148. https://doi.org/10.1142/S1793524522501145 doi: 10.1142/S1793524522501145
    [36] X. Liu, X. Y. Meng, Dynamics of Bacterial white spot disease spreads in Litopenaeus Vannamei with time-varying delay, Math. Biosci. Eng., 20 (2023), 20748–20769. https://doi.org/10.3934/mbe.2023918 doi: 10.3934/mbe.2023918
    [37] C. Y. Yin, X. Y. Meng, J. M. Zuo, Modeling the effects of vaccinating strategies and periodic outbreaks on dengue in Singapore, J. Appl. Anal. Comput., 15 (2025), 1284–1309. https://doi.org/10.11948/20240205 doi: 10.11948/20240205
    [38] S. Gakkhar, K. Negi, A mathematical model for viral infection in toxin producing phytoplankton and zooplankton system, Appl. Math. Comput., 179 (2006), 301–313. https://doi.org/10.1016/j.amc.2005.11.166 doi: 10.1016/j.amc.2005.11.166
    [39] P. Yuan, L. L. Chen, M. S. You, H. Zhu, Dynamics complexity of generalist predatory mite and the leafhopper pest in tea plantations, J. Dyn. Differ. Equ., 35 (2023), 2833–2871. https://doi.org/10.1007/s10884-021-10079-1 doi: 10.1007/s10884-021-10079-1
    [40] S. Fan, A new extracting formula and a new distinguishing means on the one variable cubic equation, Natur. Sci. J. Hainan Teach. Coll., 2 (1989), 91–98.
    [41] S. L. Das, A. Chatterjee, Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations, Nonlinear Dyn., 30 (2002), 323–335. https://doi.org/10.1023/A:1021220117746 doi: 10.1023/A:1021220117746
    [42] A. H. Nayfeh, Order reduction of retarded nonlinear systems-the method of multiple scales versus center-manifold reduction, Nonlinear Dyn., 51 (2008), 483–500. https://doi.org/10.1007/s11071-007-9237-y doi: 10.1007/s11071-007-9237-y
    [43] S. Zhang, J. Xu, Oscillation control for n-dimensional congestion control model via time-varying delay, Sci. China Technol. Sci., 54 (2011), 2044–2053. https://doi.org/10.1007/s11431-011-4488-8 doi: 10.1007/s11431-011-4488-8
    [44] S. Zhang, J. Xu, Time-varying delayed feedback control for an internet congestion control model, Discrete Contin. Dyn. Syst. - Ser. B, 16 (2011), 653–668. https://doi.org/10.3934/dcdsb.2011.16.653 doi: 10.3934/dcdsb.2011.16.653
    [45] L. J. Pei, S. Wang, Double Hopf bifurcation of differential equation with linearly state-dependent delays via MMS, J. Appl. Math. Comput., 341 (2019), 256–276. https://doi.org/10.1016/j.amc.2018.08.040 doi: 10.1016/j.amc.2018.08.040
    [46] L. J. Pei, Y. M. Chen, S. Wang, Complicated oscillations and non-resonant double Hopf bifurcation of multiple feedback delayed control system of the gut microbiota, Nonlinear Anal. Real World Appl., 54 (2020), 103091. https://doi.org/10.1016/j.nonrwa.2020.103091 doi: 10.1016/j.nonrwa.2020.103091
    [47] S. Biswas, P. K. Tiwari, Delay-induced chaos and its possible control in a seasonally forced eco-epidemiological model with fear effect and predator switching, Nonlinear Dyn., 104 (2021), 2901–2930. https://doi.org/10.1007/s11071-021-06396-1 doi: 10.1007/s11071-021-06396-1
    [48] M. S. Shabbir, Q. Din, Understanding cannibalism dynamics in predator-prey interactions: Bifurcations and chaos control strategies, Qual. Theory Dyn. Syst., 23 (2024), 1–33. https://doi.org/10.1007/s12346-023-00908-7 doi: 10.1007/s12346-023-00908-7
    [49] D. Y. Li, H. Liu, H. T. Zhang, Bifurcation analysis in a predator-prey model with an Allee effect and a delayed mechanism, Acta Math. Sci., 43 (2023), 1415–1438. https://doi.org/10.1007/s10473-023-0324-z doi: 10.1007/s10473-023-0324-z
    [50] M. Z. Huang, X. Y. Song, Modeling and qualitative analysis of diabetes therapies with state feedback control, Int. J. Biomath., 7 (2014), 1450035. https://doi.org/10.1142/S1793524514500351 doi: 10.1142/S1793524514500351
    [51] V. S. Sharma, A. Singh, Strong resonance bifurcations and state feedback control in a discrete prey-predator model with harvesting effect, Qual. Theory Dyn. Syst., 22 (2023), 109. https://doi.org/10.1007/s12346-023-00805-z doi: 10.1007/s12346-023-00805-z
    [52] K. Pyragas, Delayed feedback control of chaos, Phil. Trans.: Math. Phys. Eng. Sci., 364 (2006), 2309–2334. https://doi.org/10.1098/rsta.2006.1827 doi: 10.1098/rsta.2006.1827
    [53] X. Zhang, Q. L. Zhang, Bifurcation analysis and control of a class of hybrid biological economic models, Nonlinear Anal. Hybrid Syst., 3 (2009), 578–587. https://doi.org/10.1016/j.nahs.2009.04.009 doi: 10.1016/j.nahs.2009.04.009
    [54] Z. G. Li, W. H. Chen, J. Yang, Concurrent active learning in autonomous airborne source search: Dual control for exploration and exploitation, IEEE Trans. Autom. Control, 68 (2023), 3123–3130. https://doi.org/10.1109/TAC.2022.3221907 doi: 10.1109/TAC.2022.3221907
    [55] G. Q. Tan, W. H. Chen, J. Yang, X. Tran, Z. Li, Dual control for autonomous airborne source search with Nesterov accelerated gradient descent: Algorithm and performance analysis, Neurocomputing, 630 (2025), 129729. https://doi.org/10.1016/j.neucom.2025.129729 doi: 10.1016/j.neucom.2025.129729
    [56] Z. G. Li, W. H. Chen, J. Yang, C. Liu, Cooperative active learning-based dual control for exploration and exploitation in autonomous search, IEEE Trans. Neural Networks Learn. Syst., 36 (2025), 2221–2233. https://doi.org/10.1109/TNNLS.2024.3349467 doi: 10.1109/TNNLS.2024.3349467
    [57] Y. G. Zheng, Z. H. Wang, Stability analysis of nolinear dynamics systems with slowly and periodically varying delay, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3999–4009. https://doi.org/10.1016/j.cnsns.2012.02.026 doi: 10.1016/j.cnsns.2012.02.026
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(662) PDF downloads(33) Cited by(0)

Article outline

Figures and Tables

Figures(16)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog