Fractional-order financial systems hold significant importance in practical situations. In this work, a novel fractional-order financial system considering the non-constant elasticity of demand was presented, and the system's complex dynamics were studied. The results demonstrated that the system can exhibit diverse chaotic dynamics and periodic oscillations, which are influenced by different fractional orders and system parameters. Then, to stabilize the proposed chaotic system with uncertainties and achieve predefined-time synchronization of master-slave systems, an effective sliding mode control strategy utilizing the RBF neural network was put forward. In real financial markets, uncertainties and perturbations occur suddenly, and excessive control input can lead to resource inefficiency. Therefore, unlike other papers that rely on conservative estimations using upper bounds, this paper used RBF neural network approximation to design a more flexible and robust controller while reducing the control input. Simulation findings reveal that this approach requires less control input than traditional methods without the RBF neural network and converges more rapidly than finite-time, fixed-time, and other predefined-time sliding mode control strategies with the RBF neural network, which validates the feasibility of this approach. Finally, the proposed chaotic system and control method were successfully applied to secure encryption, demonstrating their practical value.
Citation: Shanshan Yang, Ning Li. Chaotic behavior of a new fractional-order financial system and its predefined-time sliding mode control based on the RBF neural network[J]. Electronic Research Archive, 2025, 33(5): 2762-2799. doi: 10.3934/era.2025122
Fractional-order financial systems hold significant importance in practical situations. In this work, a novel fractional-order financial system considering the non-constant elasticity of demand was presented, and the system's complex dynamics were studied. The results demonstrated that the system can exhibit diverse chaotic dynamics and periodic oscillations, which are influenced by different fractional orders and system parameters. Then, to stabilize the proposed chaotic system with uncertainties and achieve predefined-time synchronization of master-slave systems, an effective sliding mode control strategy utilizing the RBF neural network was put forward. In real financial markets, uncertainties and perturbations occur suddenly, and excessive control input can lead to resource inefficiency. Therefore, unlike other papers that rely on conservative estimations using upper bounds, this paper used RBF neural network approximation to design a more flexible and robust controller while reducing the control input. Simulation findings reveal that this approach requires less control input than traditional methods without the RBF neural network and converges more rapidly than finite-time, fixed-time, and other predefined-time sliding mode control strategies with the RBF neural network, which validates the feasibility of this approach. Finally, the proposed chaotic system and control method were successfully applied to secure encryption, demonstrating their practical value.
| [1] | I. Podlubny, Fractional Differential Equations, Academic Press, 1999. |
| [2] |
J. M. Munoz-Pacheco, E. Zambrano-Serrano, C. Volos, O. I. Tacha, I. N. Stouboulos, V. T. Pham, A fractional order chaotic system with a 3D grid of variable attractors, Chaos Solitons Fractals, 113 (2018), 69–78. https://doi.org/10.1016/j.chaos.2018.05.015 doi: 10.1016/j.chaos.2018.05.015
|
| [3] | P. Ostalczyk, Discrete Fractional Calculus: Applications in Control and Image Processing, World Scientific, 2016. https://doi.org/10.1142/9833 |
| [4] |
L. C. de Barros, M. M. Lopes, F. S. Pedro, E. Esmi, J. P. C. dos Santos, D. E. Sánchez, The memory effect on fractional calculus: an application in the spread of COVID-19, Comput. Appl. Math., 40 (2021), 72. https://doi.org/10.1007/s40314-021-01456-z doi: 10.1007/s40314-021-01456-z
|
| [5] |
S. B. Chen, H. Jahanshahi, O. A. Abba, J. E. Solís-Pérez, S. Bekiros, J. F. Gómez-Aguilar, et al., The effect of market confidence on a financial system from the perspective of fractional calculus: Numerical investigation and circuit realization, Chaos Solitons Fractals, 140 (2020), 110223. https://doi.org/10.1016/j.chaos.2020.110223 doi: 10.1016/j.chaos.2020.110223
|
| [6] |
H. Jahanshahi, A. Yousefpour, J. M. Munoz-Pacheco, S. Kacar, V. T. Pham, F. E. Alsaadi, A new fractional-order hyperchaotic memristor oscillator: Dynamic analysis, robust adaptive synchronization, and its application to voice encryption, Appl. Math. Comput., 383 (2020), 125310. https://doi.org/10.1016/j.amc.2020.125310 doi: 10.1016/j.amc.2020.125310
|
| [7] | S. Vaidyanathan, C. Volos, Advances and Applications in Chaotic Systems, Springer, 2016. https://doi.org/10.1007/978-3-319-30279-9 |
| [8] |
R. H. Strotz, J. C. McAnulty, J. B. Naines, Goodwin's nonlinear theory of the business cycle: an electro-analog solution, Econometrica, J. Econometric Soc., 21 (1953), 390–411. https://doi.org/10.2307/1905446 doi: 10.2307/1905446
|
| [9] |
J. H. Ma, Y. S. Chen, Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (Ⅰ), Appl. Math. Mech., 22 (2001), 1240–1251. https://doi.org/10.1007/bf02437847 doi: 10.1007/bf02437847
|
| [10] |
J. H. Ma, Y. S. Chen, Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (Ⅱ), Appl. Math. Mech., 22 (2001), 1375–1382. https://doi.org/10.1007/bf02435540 doi: 10.1007/bf02435540
|
| [11] |
Q. Gao, J. H. Ma, Chaos and Hopf bifurcation of a finance system, Nonlinear Dyn., 58 (2009), 209–216. https://doi.org/10.1007/s11071-009-9472-5 doi: 10.1007/s11071-009-9472-5
|
| [12] |
O. I. Tacha, C. K. Volos, I. N. Stouboulos, I. M. Kyprianidis, Analysis, adaptive control and circuit simulation of a novel finance system with dissaving, Arch. Control Sci., 26 (2016), 95–115. https://doi.org/10.1515/acsc-2016-0006 doi: 10.1515/acsc-2016-0006
|
| [13] | S. Vaidyanathan, C. K. Volos, O. I. Tacha, I. M. Kyprianidis, I. N. Stouboulos, V. T. Pham, Analysis, control and circuit simulation of a novel 3-D finance chaotic system, in Advances and Applications in Chaotic Systems, Springer, (2016), 495–512. https://doi.org/10.1007/978-3-319-30279-9_21 |
| [14] |
S. Vaidyanathan, A. Sambas, S. Kacar, U. Cavusoglu, A new finance chaotic system, its electronic circuit realization, passivity based synchronization and an application to voice encryption, Nonlinear Eng., 8 (2019), 193–205. https://doi.org/10.1515/nleng-2018-0012 doi: 10.1515/nleng-2018-0012
|
| [15] |
T. Yang, Dynamical analysis on a finance system with nonconstant elasticity of demand, Int. J. Bifurcation Chaos, 30 (2020), 2050148. https://doi.org/10.1142/s0218127420501485 doi: 10.1142/s0218127420501485
|
| [16] | B. Subartini, S. Vaidyanathan, A. Sambas, Multistability in the finance chaotic system, its bifurcation analysis and global chaos synchronization via integral sliding mode control, IAENG Int. J. Appl. Math., 51 (2021), 995–1002. |
| [17] |
Y. F. Wei, C. R. Xie, X. Qing, Y. H. Xu, Control of a new financial risk contagion dynamic model based on finite-time disturbance, Entropy, 26 (2024), 999. https://doi.org/10.3390/e26120999 doi: 10.3390/e26120999
|
| [18] |
S. R. Yan, A. Mohammadzadeh, E. Ghaderpour, Type-3 fuzzy logic and Lyapunov approach for dynamic modeling and analysis of financial markets, Heliyon, 10 (2024), e33730. https://doi.org/10.1016/j.heliyon.2024.e33730 doi: 10.1016/j.heliyon.2024.e33730
|
| [19] |
M. D. Johansyah, S. Vaidyanathan, K. Benkouider, A. Sambas, K. M. Rao, K. Anjaneyulu, Exploring chaos and stability in a 3-D finance model with absolute function nonlinearity, Mathematics, 13 (2025), 735. https://doi.org/10.3390/math13050735 doi: 10.3390/math13050735
|
| [20] |
A. Phukan, H. K. Sarmah, Bifurcation analysis of a non linear 6D financial system with three time delay feedback, Chaos Solitons Fractals, 194 (2025), 116248. https://doi.org/10.1016/j.chaos.2025.116248 doi: 10.1016/j.chaos.2025.116248
|
| [21] |
C. G. Xu, C. Aouiti, M. X. Liao, P. L. Li, Z. X. Liu, Chaos control strategy for a fractional-order financial model, Adv. Differ. Equations, 2020 (2020), 573. https://doi.org/10.1186/s13662-020-02999-x doi: 10.1186/s13662-020-02999-x
|
| [22] |
Z. Yao, K. H. Sun, S. He, Dynamics of fractional-order chaotic rocard relaxation econometric system, Int. J. Bifurcation Chaos, 32 (2022), 2250195. https://doi.org/10.1142/S0218127422501954 doi: 10.1142/S0218127422501954
|
| [23] |
T. Cui, P. J. Liu, Computational modeling of financial sistem via a new fractal-fractional mathematical model, Fractals, 31 (2023), 2340083. https://doi.org/10.1142/S0218348X23400832 doi: 10.1142/S0218348X23400832
|
| [24] |
Q. N. Li, R. H. Li, D. M. Huang, Dynamic analysis of a new 4D fractional-order financial system and its finite-time fractional integral sliding mode control based on RBF neural network, Chaos Solitons Fractals, 177 (2023), 114156. https://doi.org/10.1016/j.chaos.2023.114156 doi: 10.1016/j.chaos.2023.114156
|
| [25] |
L. Diabi, A. Ouannas, A. Hioual, S. Momani, A. Abbes, On fractional discrete financial system: Bifurcation, chaos, and control, Chin. Phys. B, 33 (2024), 100201. https://doi.org/10.1088/1674-1056/ad5d96 doi: 10.1088/1674-1056/ad5d96
|
| [26] |
Z. Xu, K. H. Sun, H. H. Wang, Dynamics and function projection synchronization for the fractional-order financial risk system, Chaos Solitons Fractals, 188 (2024), 115599. https://doi.org/10.1016/j.chaos.2024.115599 doi: 10.1016/j.chaos.2024.115599
|
| [27] |
L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems, Chaos Solitons Fractals, 64 (1990), 821–824. https://doi.org/10.1103/PhysRevLett.64.821 doi: 10.1103/PhysRevLett.64.821
|
| [28] |
H. Fu, Y. G. Gao, Synchronization of uncertain general fractional unified chaotic systems via finite-time adaptive sliding mode control, Chaos, 33 (2023), 043136. https://doi.org/10.1063/5.0130366 doi: 10.1063/5.0130366
|
| [29] |
H. Q. Wang, G. Chai, S. J. Kang, Adaptive fixed-time anti-synchronization and synchronization control for Liu-Chen-Liu chaotic systems with actuator faults, Int. J. Adapt. Control Signal Process., 38 (2024), 2158–2177. https://doi.org/10.1002/acs.3799 doi: 10.1002/acs.3799
|
| [30] |
L. P. Chen, M. Xue, A. M. Lopes, R. C. Wu, X. H. Zhang, Y. Q. Chen, New synchronization criterion of incommensurate fractional-order chaotic systems, IEEE Trans. Circuits Syst. II Express Briefs, 71 (2024), 455–459. https://doi.org/10.1109/TCSII.2023.3297174 doi: 10.1109/TCSII.2023.3297174
|
| [31] |
Y. L. Wang, H. Jahanshahi, S. Bekiros, F. Bezzina, Y. M. Chu, A. A. Aly, Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence, Chaos Solitons Fractals, 146 (2021), 110881. https://doi.org/10.1016/j.chaos.2021.110881 doi: 10.1016/j.chaos.2021.110881
|
| [32] |
S. H. Yuningsih, E. Rusyaman, S. Vaidyanathan, A. Sambas, Investigation of chaos behavior and integral sliding mode control on financial risk model, AIMS Math., 7 (2022), 18377–18392. https://doi.org/10.3934/math.20221012 doi: 10.3934/math.20221012
|
| [33] |
M. D. Johansyah, A. Sambas, S. Mobayen, B. Vaseghi, S. F. Al-Azzawi, Sukono, et al., Dynamical analysis and adaptive finite-time sliding mode control approach of the financial fractional-order chaotic system, Mathematics, 11 (2023), 100. https://doi.org/10.3390/math11010100 doi: 10.3390/math11010100
|
| [34] |
X. M. Zhang, Q. L. Han, J. Wang, Admissible delay upper bounds for global asymptotic stability of neural networks with time-varying delays, IEEE Trans. Neural Networks Learn. Syst., 29 (2018), 5319–5329. https://doi.org/10.1109/TNNLS.2018.2797279 doi: 10.1109/TNNLS.2018.2797279
|
| [35] |
L. M. Wang, T. D. Dong, M. F. Ge, Finite-time synchronization of memristor chaotic systems and its application in image encryption, Appl. Math. Comput., 347 (2019), 293–305. https://doi.org/10.1016/j.amc.2018.11.017 doi: 10.1016/j.amc.2018.11.017
|
| [36] |
Y. C. Ding, H. Liu, A new fixed-time stability criterion for fractional-order systems, AIMS Math., 7 (2022), 6173–6181. https://doi.org/10.3934/math.2022343 doi: 10.3934/math.2022343
|
| [37] |
J. D. Sánchez-Torres, D. G. Gómez-Gutiérrez, E. López, A. G. Loukianov, A class of predefined-time stable dynamical systems, IMA J. Math. Control Inf., 35 (2018), i1–i29. https://doi.org/10.1093/imamci/dnx004 doi: 10.1093/imamci/dnx004
|
| [38] |
C. A. Anguiano-Gijón, A. J. Muñoz-Vázquez, J. D. Sánchez-Torres, G. Romero-Galván, F. Martínez-Reyes, On predefined-time synchronisation of chaotic systems, Chaos Solitons Fractals, 122 (2019), 172–178. https://doi.org/10.1016/j.chaos.2019.03.015 doi: 10.1016/j.chaos.2019.03.015
|
| [39] |
M. J. Zhang, H. Y. Zang, L. Y. Bai, A new predefined-Time sliding mode control scheme for synchronizing chaotic systems, Chaos Solitons Fractals, 164 (2022), 112745. https://doi.org/10.1016/j.chaos.2022.112745 doi: 10.1016/j.chaos.2022.112745
|
| [40] |
H. B. Xue, X. H. Liu, A novel fast terminal sliding mode with predefined-time synchronization, Chaos Solitons Fractals, 175 (2023), 114049. https://doi.org/10.1016/j.chaos.2023.114049 doi: 10.1016/j.chaos.2023.114049
|
| [41] |
W. Zheng, S. C. Qu, Q. Tang, X. N. Du, Predefined-time sliding mode control for synchronization of uncertain hyperchaotic system and application, J. Vib. Control, 31 (2025), 528–538. https://doi.org/10.1177/10775463241228649 doi: 10.1177/10775463241228649
|
| [42] |
S. Sahoo, R. Nathasarma, B. K. Roy, Time-synchronized predefined-time synchronization between two non-identical chaotic systems, Chaos Solitons Fractals, 181 (2024), 114662. https://doi.org/10.1016/j.chaos.2024.114662 doi: 10.1016/j.chaos.2024.114662
|
| [43] |
C. Jia, X. H. Liu, X. Y. Li, J. Y. Xu, A new adaptive predefined time sliding mode control for nonlinear systems, IEEE Trans. Circuits Syst. II Express Briefs, 71 (2024), 2094–2098. https://doi.org/10.1109/TCSII.2023.3332089 doi: 10.1109/TCSII.2023.3332089
|
| [44] |
M. Y. Wang, J. P. Li, Interpretable predictions of chaotic dynamical systems using dynamical system deep learning, Sci. Rep., 14 (2024), 3143. https://doi.org/10.1038/s41598-024-53169-y doi: 10.1038/s41598-024-53169-y
|
| [45] |
H. Jahanshahi, Z. H. Zhu, Review of machine learning in robotic grasping control in space application, Acta Astronaut., 220 (2024), 37–61. https://doi.org/10.1016/j.actaastro.2024.04.012 doi: 10.1016/j.actaastro.2024.04.012
|
| [46] |
R. Zahedifar, M. S. Baghshah, A. Taheri, LLM-controller: Dynamic robot control adaptation using large language models, Rob. Auton. Syst., 186 (2025), 104913. https://doi.org/10.1016/j.robot.2024.104913 doi: 10.1016/j.robot.2024.104913
|
| [47] |
J. L. Chen, X. S. Zhao, J. Y. Xiao, Novel predefined-time control for fractional-order systems and its application to chaotic synchronization, Math. Methods Appl. Sci., 47 (2024), 5427–5440. https://doi.org/10.1002/mma.9871 doi: 10.1002/mma.9871
|
| [48] |
M. Yang, Q. Zhang, K. Xu, M. Chen, Adaptive differentiator-based predefined-time control for nonlinear systems subject to pure-feedback form and unknown disturbance, Complexity, 2021 (2021), 7029058. https://doi.org/10.1155/2021/7029058 doi: 10.1155/2021/7029058
|
| [49] |
H. Liu, H. Y. Tu, S. Huang, X. J. Zheng, Adaptive predefined-time sliding mode control for QUADROTOR formation with obstacle and inter-quadrotor avoidance, Sensors, 23 (2023), 2392. https://doi.org/10.3390/s23052392 doi: 10.3390/s23052392
|
| [50] |
Y. Zhang, F. W. Meng, Y. Z. Tai, Neural network-based Predefined-time attitude control for rigid spacecraft with uncertainties and disturbances, J. Ind. Manage. Optim., 21 (2025), 1832–1845. https://doi.org/10.3934/jimo.2024151 doi: 10.3934/jimo.2024151
|
| [51] |
E. Ahmed, A. M. A. El-Sayed, H. A. A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models, J. Math. Anal. Appl., 325 (2007), 542–553. https://doi.org/10.1016/j.jmaa.2006.01.087 doi: 10.1016/j.jmaa.2006.01.087
|
| [52] |
C. P, Li, W. H. Deng, Remarks on fractional derivatives, Appl. Math. Comput., 187 (2007), 777–784. https://doi.org/10.1016/j.amc.2006.08.163 doi: 10.1016/j.amc.2006.08.163
|
| [53] | K. Diethelm, The Analysis of Fractional Differential Equations, Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2 |
| [54] |
N. X. Liu, J. T. Fei, Adaptive fractional sliding mode control of active power filter based on dual RBF neural networks, IEEE Access, 5 (2017), 27590–27598. https://doi.org/10.1109/access.2017.2774264 doi: 10.1109/access.2017.2774264
|
| [55] | K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002), 3–22. https://link.springer.com/article/10.1023/A: 1016592219341 |
| [56] |
G. C. Wu, Z. G. Deng, D. Baleanu, D. Q. Zeng, New variable-order fractional chaotic systems for fast image encryption, Chaos, 29 (2019), 083103. https://doi.org/10.1063/1.5096645 doi: 10.1063/1.5096645
|
| [57] |
L. L. Liu, Q. Zhang, X. P. Wei, A RGB image encryption algorithm based on DNA encoding and chaos map, Comput. Electr. Eng., 38 (2012), 1240–1248. https://doi.org/10.1016/j.compeleceng.2012.02.007 doi: 10.1016/j.compeleceng.2012.02.007
|
| [58] |
Y. W. Yang, J. Gao, H. Imani, Design, analysis, circuit implementation, and synchronization of a new chaotic system with application to information encryption, AIP Adv., 13 (2023), 075116. https://doi.org/10.1063/5.0161382 doi: 10.1063/5.0161382
|