This paper mainly discusses the non-zero-sum Nash differential games for stochastic differential equations (SDEs) involving time-varying coefficient and infinite Markov jumps. First of all, a necessary and sufficient conditions for the existence of Nash equilibrium strategies is given, which turns the non-zero-sum Nash differential games into solving the equations that are composed of countable coupled generalized differential Riccati equations (CGDREs). As an application, a unified treatment is presented for $ H_{2} $, $ H_{\infty} $, and $ H_{2}/H_{\infty} $ control by the Nash game approach, which can reveal the relationship among these three problems. Furthermore, the theoretical results are used to solve a numerical example.
Citation: Yueying Liu, Mengping Sun, Zhen Wang, Xiangyun Lin, Cuihua Zhang. Nash equilibrium strategies for non-zero-sum differential games of SDEs with time-varying coefficient and infinite Markov jumps[J]. Electronic Research Archive, 2025, 33(4): 2525-2542. doi: 10.3934/era.2025112
This paper mainly discusses the non-zero-sum Nash differential games for stochastic differential equations (SDEs) involving time-varying coefficient and infinite Markov jumps. First of all, a necessary and sufficient conditions for the existence of Nash equilibrium strategies is given, which turns the non-zero-sum Nash differential games into solving the equations that are composed of countable coupled generalized differential Riccati equations (CGDREs). As an application, a unified treatment is presented for $ H_{2} $, $ H_{\infty} $, and $ H_{2}/H_{\infty} $ control by the Nash game approach, which can reveal the relationship among these three problems. Furthermore, the theoretical results are used to solve a numerical example.
| [1] |
H. Shen, M. Xing, S. Xu, M. V. Basin, J. H. Park, $H_{\infty}$ stabilization of discrete-time nonlinear semi-Markov jump singularly perturbed systems with partially known semi-Markov kernel information, IEEE T. Circuits Syst. I, Reg. Papers, 68 (2021), 818–828. http://doi.org/10.1109/TCSI.2020.3034897 doi: 10.1109/TCSI.2020.3034897
|
| [2] |
Q. Zhu, Event-triggered sampling problem for exponential stability of stochastic nonlinear delay systems driven by Levy processes, IEEE Trans. Autom. Control, 70 (2025), 1176–1183. http://doi.org/10.1109/TAC.2024.3448128 doi: 10.1109/TAC.2024.3448128
|
| [3] |
Z. Chen, F. Li, D. Luo, J. Wang, H. Shen, Stabilization of discrete-time semi-Markov jump singularly perturbed systems subject to actuator saturation and partially known semi-Markov kernel information, J. Frankl. Inst., 359 (2022), 6043–6060. http://doi.org/10.1016/j.jfranklin.2022.06.011 doi: 10.1016/j.jfranklin.2022.06.011
|
| [4] |
S. Jiao, H. Shen, Y. Wei, X. Huang, Z. Wang, Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays, Appl. Math. Comput., 336 (2018), 338–350. http://doi.org/10.1016/j.amc.2018.05.013 doi: 10.1016/j.amc.2018.05.013
|
| [5] |
B. Wang, Q. Zhu, S. Li, Stabilization of discrete-time hidden semi-Markov jump linear systems with partly unknown emission probability matrix, IEEE Trans. Autom. Control, 69 (2024), 1952–1959. http://doi.org/10.1109/TAC.2023.3272190 doi: 10.1109/TAC.2023.3272190
|
| [6] |
B. Wang, Q. Zhu, The stabilization problem for a class of discrete-time semi-Markov jump singular systems, Automatica, 171 (2025), 111960. http://doi.org/10.1016/j.automatica.2024.111960 doi: 10.1016/j.automatica.2024.111960
|
| [7] |
H. Shen, Y. Wang, J. Wang, J. H. Park, A fuzzy-model-based approach to optimal control for nonlinear Markov jump singularly perturbed systems: a novel integral reinforcement learning scheme, IEEE Trans. Fuzzy Syst., 31 (2023), 3734–3740. http://doi.org/10.1109/TFUZZ.2023.3265666 doi: 10.1109/TFUZZ.2023.3265666
|
| [8] |
K. Zhang, S. Luo, H. Wu, R. Su, Data-driven tracking control for non-affine yaw channel of helicopter via off-policy reinforcement learning, IEEE Trans. Aerosp. Electron. Syst., (2025), 1–13. http://doi.org/10.1109/TAES.2025.3539264 doi: 10.1109/TAES.2025.3539264
|
| [9] |
X. Song, S. Ma, Indefinite linear quadratic optimal control problem for continuous-time linear descriptor Markov jump systems, Int. J. Control Autom., 21 (2023), 485–498. http://doi.org/10.1007/s12555-021-0778-5 doi: 10.1007/s12555-021-0778-5
|
| [10] |
J. Wu, M. Tang, Q. Meng, A stochastic linear-quadratic optimal control problem with jumps in an infinite horizon, AIMS Math., 8 (2023), 4042–4078. http://doi.org/10.3934/math.2023202 doi: 10.3934/math.2023202
|
| [11] |
Y. Zhu, N. Xu, X. Chen, W. Zheng, $H_\infty$ control for continuous-time Markov jump nonlinear systems with piecewise-affine approximation, Automatica, 141 (2022), 110300. https://doi.org/10.1016/j.automatica.2022.110300 doi: 10.1016/j.automatica.2022.110300
|
| [12] |
H. Zhang, J. Xia, G. Zhuang, H. Shen, Robust interval stability/stabilization and $H_{\infty}$ feedback control for uncertain stochastic Markovian jump systems based on the linear operator, Sci. China Inf. Sci., 65 (2022), 142202. http://doi.org/10.1007/s11432-020-3087-1 doi: 10.1007/s11432-020-3087-1
|
| [13] |
S. Xing, W. Zheng, F. Deng, C. Chang, $H_{\infty}$ control for stochastic singular systems with time-varying delays via sampled-data controller, IEEE Trans. Cybern., 53 (2022), 7048–7057. http://doi.org/10.1109/TCYB.2022.3168273 doi: 10.1109/TCYB.2022.3168273
|
| [14] |
R. Dong, Z. Li, H. Shen, J. Wang, L. Su, Finite-time asynchronous $H_{\infty}$ control for Markov jump singularly perturbed systems with partially known probabilities, Appl. Math. Comput., 457 (2023), 128193. http://doi.org/10.1016/j.amc.2023.128193 doi: 10.1016/j.amc.2023.128193
|
| [15] |
M. Gao, L. Sheng, W. Zhang, Finite horizon $H_2/H_{\infty}$ control of time-varying stochastic systems with Markov jumps and ($x, u, v$)-dependent noise, IET Control Theory Appl., 8 (2014), 1354–1363. http://doi.org/10.1049/iet-cta.2013.1070 doi: 10.1049/iet-cta.2013.1070
|
| [16] |
M. Wang, Q. Meng, Y. Shen, $H_2/H_{\infty}$ control for stochastic jump-diffusion systems with Markovian switching, J. Syst. Sci. Complex., 34 (2021), 924–954. http://doi.org/10.1007/s11424-020-9131-y doi: 10.1007/s11424-020-9131-y
|
| [17] | X. Gao, F. Deng, P. Zeng, Zero-sum game-based security control of unknown nonlinear Markov jump systems under false data injection attacks, Int. J. Robust Nonlinear Control, 2022. http://doi.org/10.1002/rnc.6418 |
| [18] |
K. Zhang, Z. Zhang, X. Xie, J. D. J. Rubio, An unknown multiplayer nonzero-sum game: prescribed-time dynamic event-triggered control via adaptive dynamic programming, IEEE Trans. Autom. Sci. Eng., 22 (2024), 8317–8328. http://doi.org/10.1109/TASE.2024.3484412 doi: 10.1109/TASE.2024.3484412
|
| [19] |
Y. Liu, Z. Wang, X. Lin, Non-zero sum Nash game for discrete-time infinite Markov jump stochastic systems with applications, Axioms, 12 (2023), 882. http://doi.org/10.3390/axioms12090882 doi: 10.3390/axioms12090882
|
| [20] |
O. L. V. Costa, D. Z. Figueiredo, Stochastic stability of jump discrete-time linear systems with Markov chain in a general Borel space, IEEE T. Autom. Control, 59 (2014), 223–227. http://doi.org/10.1109/TAC.2013.2270031 doi: 10.1109/TAC.2013.2270031
|
| [21] |
H. Ma, Y. Jia, Stability analysis for stochastic differential equations with infinite Markovian switchings, J. Math. Anal. Appl., 435 (2016), 593–605. http://doi.org/10.1016/j.jmaa.2015.10.047 doi: 10.1016/j.jmaa.2015.10.047
|
| [22] |
T. Hou, Y. Liu, F. Deng, Stability for discrete-time uncertain systems with infinite Markov jump and time-delay, Sci. China Inf. Sci., 64 (2021), 152202. http://doi.org/10.1007/s11432-019-2897-9 doi: 10.1007/s11432-019-2897-9
|
| [23] |
Y. Liu, T. Hou, Infinite horizon LQ Nash Games for SDEs with infinite jumps, Asian J. Control, 23 (2021), 2431–2443. http://doi.org/10.1002/asjc.2371 doi: 10.1002/asjc.2371
|
| [24] |
Y. Liu, T. Hou, Robust $H_2/H_{\infty}$ fuzzy filtering for nonlinear stochastic systems with infinite Markov jump, J. Syst. Sci. Complex., 33 (2020), 1023–1039. http://doi.org/10.1007/s11424-020-8364-0 doi: 10.1007/s11424-020-8364-0
|
| [25] | Y. Liu, T. Hou, LQ optimal control for stochastic system with infinite Markovian jumps, in 2017 Chinese Automation Congress (CAC), (2017), 7107–7111. http://doi.org/10.1109/CAC.2017.8244060 |
| [26] |
J. Moon, A sufficient condition for linear-quadratic stochastic zero-sum differential games for Markov jump systems, IEEE Trans. Autom. Control, 64 (2019), 1619–1626. http://doi.org/10.1109/TAC.2018.2849945 doi: 10.1109/TAC.2018.2849945
|
| [27] | F. Wu, X. Li, X. Zhang, Open-loop and closed-loop solvabilities for zero-sum stochastic linear quadratic differential games of Markovian regime switching system, preprint, arXiv: 2409.01973. https://doi.org/10.48550/arXiv.2409.01973 |
| [28] |
S. Lv, Two-player zero-sum stochastic differential games with regime switching, Automatica, 114 (2020), 108819. http://doi.org/10.1016/j.automatica.2020.108819 doi: 10.1016/j.automatica.2020.108819
|
| [29] |
J. Moon, Linear–quadratic stochastic leader–follower differential games for Markov jump-diffusion models, Automatica, 147 (2023), 110713. http://doi.org/10.1016/j.automatica.2022.110713 doi: 10.1016/j.automatica.2022.110713
|
| [30] |
S. Lv, Z Wu, J Xiong, Linear quadratic nonzero-sum mean-field stochastic differential games with regime switching, Appl. Math. Optim., 90 (2024), 44. http://doi.org/10.1007/s00245-024-10188-5 doi: 10.1007/s00245-024-10188-5
|
| [31] |
T. Hou, W. Zhang, A game-based control design for discrete-time Markov jump systems with multiplicative noise, IET Control Theory Appl., 7 (2013), 773–783. http://doi.org/10.1049/iet-cta.2012.1018 doi: 10.1049/iet-cta.2012.1018
|
| [32] |
L. Sheng, W. Zhang, M. Gao, Relationship between Nash equilibrium strategies and $H_2/H_{\infty}$ control of stochastic Markov jump systems with multiplicative noise, IEEE Trans. Autom. Control, 59 (2014), 2592–2597. http://doi.org/10.1109/TAC.2014.2309274 doi: 10.1109/TAC.2014.2309274
|
| [33] |
T. Hou, Y. Liu, F. Deng, Finite horizon $H_2/H_{\infty}$ control for SDEs with infinite Markovian jumps, Nonlinear Anal. Hybrid Syst., 34 (2019), 108–120. http://doi.org/10.1016/j.nahs.2019.05.009 doi: 10.1016/j.nahs.2019.05.009
|
| [34] |
Y. Hu, X. Zhou, Indefinite stochastic Riccati equations, SIAM J. Control Optim., 42 (2003), 123–137. http://doi.org/10.1137/S0363012901391330 doi: 10.1137/S0363012901391330
|
| [35] |
Z. Yu, An optimal feedback control-strategy pair for zero-sum linear-quadratic stochastic differential game: the Riccati equation approach, SIAM J. Control Optim., 53 (2015), 2141–2167. http://doi.org/10.1137/130947465 doi: 10.1137/130947465
|
| [36] |
M. A. Rami, J. B. Moore, X. Zhou, Indefinite stochastic linear quadratic control and generalized differential Riccati equation, SIAM J. Control Optim., 40 (2001), 1296–1311. http://doi.org/10.1137/S0363012900371083 doi: 10.1137/S0363012900371083
|
| [37] | T. Basar, G. J. Olsder, Dynamic Noncooperative Game Theory, 2nd edition, SIAM, Philadelphia, 1999. http://doi.org/10.1137/1.9781611971132 |
| [38] |
X. Li, X. Zhou, Indefinite stochastic LQ control with Markovian jumps in a finite time horizon, Commun. Inf. Syst., 2 (2002), 265–282. http://doi.org/10.4310/CIS.2002.v2.n3.a4 doi: 10.4310/CIS.2002.v2.n3.a4
|
| [39] | V. Dragan, T. Morozan, A. M. Stoica, Mathematical Methods in Robust Control of Linear Stochastic Systems, 2nd edition, Springer, New York, 2013. http://doi.org/10.1007/978-1-4614-8663-3 |
| [40] |
B. S. Chen, W. Zhang, Stochastic $H_2/H_{\infty}$ control with state-dependent noise, IEEE Trans. Automat. Control, 49 (2004), 45–57. http://doi.org/10.1109/TAC.2003.821400 doi: 10.1109/TAC.2003.821400
|