Research article Special Issues

Global dynamics of a cytokine-enhanced viral infection model with distributed delays and optimal control analysis

  • Received: 21 February 2025 Revised: 16 April 2025 Accepted: 21 April 2025 Published: 24 April 2025
  • MSC : 34D20, 34D23, 92B05, 49J15

  • This paper analyzed a cytokine-enhanced viral infection model incorporating three distributed delays: (1) Intracellular delays in infected CD4+ T cells induced by inflammatory cytokines and viruses, (2) delays in CD4+ T cell activation at inflammatory sites and subsequent cytokine production, and (3) viral replication delays. By using Lyapunov functionals and LaSalle's invariance principle, we established that each equilibrium exhibits global asymptotic stability under certain conditions. Furthermore, we formulated an optimality system that incorporates delays and then characterized it using Pontryagin's Maximum Principle. Numerical simulations have confirmed the global asymptotic stability of all equilibrium points in the system. Furthermore, for the optimal control system, our simulations not only justified the necessity of incorporating time delay in modeling inflammatory cytokine production but also highlighted the critical importance of tailoring precise HIV treatment strategies according to specific time-delay values.

    Citation: Cuifang Lv, Xiaoyan Chen, Chaoxiong Du. Global dynamics of a cytokine-enhanced viral infection model with distributed delays and optimal control analysis[J]. AIMS Mathematics, 2025, 10(4): 9493-9515. doi: 10.3934/math.2025438

    Related Papers:

    [1] Yingke Li, Zhidong Teng, Shigui Ruan, Mingtao Li, Xiaomei Feng . A mathematical model for the seasonal transmission of schistosomiasis in the lake and marshland regions of China. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1279-1299. doi: 10.3934/mbe.2017066
    [2] Chunhua Shan, Hongjun Gao, Huaiping Zhu . Dynamics of a delay Schistosomiasis model in snail infections. Mathematical Biosciences and Engineering, 2011, 8(4): 1099-1115. doi: 10.3934/mbe.2011.8.1099
    [3] Kazeem Oare Okosun, Robert Smith? . Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences and Engineering, 2017, 14(2): 377-405. doi: 10.3934/mbe.2017024
    [4] Long-xing Qi, Yanwu Tang, Shou-jing Tian . Parameter estimation of modeling schistosomiasis transmission for four provinces in China. Mathematical Biosciences and Engineering, 2019, 16(2): 1005-1020. doi: 10.3934/mbe.2019047
    [5] Longxing Qi, Shoujing Tian, Jing-an Cui, Tianping Wang . Multiple infection leads to backward bifurcation for a schistosomiasis model. Mathematical Biosciences and Engineering, 2019, 16(2): 701-712. doi: 10.3934/mbe.2019033
    [6] Wahyudin Nur, Trisilowati, Agus Suryanto, Wuryansari Muharini Kusumawinahyu . Schistosomiasis model with treatment, habitat modification and biological control. Mathematical Biosciences and Engineering, 2022, 19(12): 13799-13828. doi: 10.3934/mbe.2022643
    [7] Xinya Yu, Zhuang Chen, Longxing Qi . Comparative study of SARIMA and NARX models in predicting the incidence of schistosomiasis in China. Mathematical Biosciences and Engineering, 2019, 16(4): 2266-2276. doi: 10.3934/mbe.2019112
    [8] Chunxiao Ding, Zhipeng Qiu, Huaiping Zhu . Multi-host transmission dynamics of schistosomiasis and its optimal control. Mathematical Biosciences and Engineering, 2015, 12(5): 983-1006. doi: 10.3934/mbe.2015.12.983
    [9] Tom Burr, Gerardo Chowell . The reproduction number Rt in structured and nonstructured populations. Mathematical Biosciences and Engineering, 2009, 6(2): 239-259. doi: 10.3934/mbe.2009.6.239
    [10] Shaoli Wang, Jianhong Wu, Libin Rong . A note on the global properties of an age-structured viral dynamic model with multiple target cell populations. Mathematical Biosciences and Engineering, 2017, 14(3): 805-820. doi: 10.3934/mbe.2017044
  • This paper analyzed a cytokine-enhanced viral infection model incorporating three distributed delays: (1) Intracellular delays in infected CD4+ T cells induced by inflammatory cytokines and viruses, (2) delays in CD4+ T cell activation at inflammatory sites and subsequent cytokine production, and (3) viral replication delays. By using Lyapunov functionals and LaSalle's invariance principle, we established that each equilibrium exhibits global asymptotic stability under certain conditions. Furthermore, we formulated an optimality system that incorporates delays and then characterized it using Pontryagin's Maximum Principle. Numerical simulations have confirmed the global asymptotic stability of all equilibrium points in the system. Furthermore, for the optimal control system, our simulations not only justified the necessity of incorporating time delay in modeling inflammatory cytokine production but also highlighted the critical importance of tailoring precise HIV treatment strategies according to specific time-delay values.





    [1] G. Pantaleo, C. Graziosi, A. S. Fauci, The immuno pathogenesis of human immunodeficiency virus infection, New Engl. J. Med., 328 (1993), 327–335. https://doi.org/10.1056/NEJM199302043280508 doi: 10.1056/NEJM199302043280508
    [2] A. A. Okoye, L. J. Picker, CD4+ T-cell depletion in HIV infection: Mechanisms of immunological failure, Immunol. Rev., 254 (2013), 54–64. https://doi.org/10.1111/imr.12066 doi: 10.1111/imr.12066
    [3] F. V. Atkinsonand, J. R. Haddock, On determining phase spaces for functional differential equations, Funkc. Ekvacioj, 31 (1988), 331–347.
    [4] G. Doitsh, N. Galloway, X. Geng, Z. Y. Yang, K. M. Monroe, O. Zepeda, et al., Pyroptosis drives CD4 T-cell depletion in HIV-1 infection, Nature, 505 (2014), 509–514. https://doi.org/10.1038/nature12940 doi: 10.1038/nature12940
    [5] A. L. Cox, R. F. Siliciano, HIV: Not-so-innocent bystanders, Nature, 505 (2014), 492–493. https://doi.org/10.1038/505492a doi: 10.1038/505492a
    [6] G. Doitsh, M. Cavrois, K. G. Lassen, O. Zepeda, Z. Y. Yang, M. L. Santiago, et al., Abortive HIV infection mediates CD4+ T cell depletion and inflammation in human lymphoid tissue, Cell, 143 (2010), 789–801. https://doi.org/10.1016/j.cell.2010.11.001 doi: 10.1016/j.cell.2010.11.001
    [7] S. P. Wang, P. Hottz, M. Schechter, L. B. Rong, Modeling the slow CD4+ T cell decline in HIV-infected individuals, PLoS. Comput. Biol., 11 (2015), 1004665. https://doi.org/10.1371/journal.pcbi.1004665 doi: 10.1371/journal.pcbi.1004665
    [8] W. Wang, T. Q. Zhang, Caspase-1-mediated pyroptosis of the predominance for driving CD4+ T cells death: A nonlocal spatial mathematical model, B. Math. Biol., 80 (2018), 540–582. https://doi.org/10.1007/s11538-017-0389-8 doi: 10.1007/s11538-017-0389-8
    [9] C. Chen, Y. G. Zhou, Z. J. Ye, Stability and optimal control of a cytokine-enhanced general HIV infection model with antibody immune response and CTLs immune response, Comput. Method. Biomec., 10 (2023), 1–32. https://doi.org/10.1080/10255842.2023.2275248 doi: 10.1080/10255842.2023.2275248
    [10] W. Wang, X. L. Lai, Global stability analysis of a viral infection model in a critical case, Math. Biosci. Eng., 17 (2020), 1442–1449. https://doi.org/10.3934/mbe.2020074 doi: 10.3934/mbe.2020074
    [11] J. H. Xu, Dynamic analysis of a cytokine-enhanced viral infection model with infection age, Math. Biosci. Eng., 20 (2023), 8666–8684. https://doi.org/10.3934/mbe.2023380 doi: 10.3934/mbe.2023380
    [12] M. F. Tan, G. J. Lan, C. J. Wei, Dynamic analysis of HIV infection model with CTL immune response and cell-to-cell transmission, Appl. Math. Lett., 156 (2024), 109140. https://doi.org/10.1016/j.aml.2024.109140 doi: 10.1016/j.aml.2024.109140
    [13] M. A. Alshaikh, N. H. AlShamrani, A. M. Elaiw, Stability of HIV/HTLV co-infection model with effective HIV-specific antibody immune response, Results Phys., 27 (2021), 104448. https://doi.org/10.1016/j.rinp.2021.104448 doi: 10.1016/j.rinp.2021.104448
    [14] Q. Y. Dong, Y. Wang, D. Q. Jiang, Dynamic analysis of an HIV model with CTL immune response and logarithmic Ornstein-Uhlenbeck process, Chaos Soliton. Fract., 191 (2025), 115789. https://doi.org/10.1016/j.chaos.2024.115789 doi: 10.1016/j.chaos.2024.115789
    [15] K. Qi, D. Q. Jiang, T. Hayat, A. Alsaedi, Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses, Math. Comput. Simulat., 188 (2021), 548–570. https://doi.org/10.1016/j.matcom.2021.05.009 doi: 10.1016/j.matcom.2021.05.009
    [16] Y. Jiang, T. Q. Zhang, Global stability of a cytokine-enhanced viral infection model with nonlinear incidence rate and time delays, Appl. Math. Lett., 132 (2022), 108110. https://doi.org/10.1016/j.aml.2022.108110 doi: 10.1016/j.aml.2022.108110
    [17] T. Q. Zhang, X. N. Xu, X. Z. Wang, Dynamic analysis of a cytokine-enhanced viral infection model with time delays and CTL immune response, Chaos Soliton. Fract., 170 (2023), 113357. https://doi.org/10.1016/j.chaos.2023.113357 doi: 10.1016/j.chaos.2023.113357
    [18] Y. Yang, L. Zou, S. G. Ruan, Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, Math. Biosci., 270 (2015), 183–191. https://doi.org/10.1016/j.mbs.2015.05.001 doi: 10.1016/j.mbs.2015.05.001
    [19] P. W. Nelson, A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179 (2002), 73–94. https://doi.org/10.1016/S0025-5564(02)00099-8 doi: 10.1016/S0025-5564(02)00099-8
    [20] R. Xu, Global dynamics of an HIV-1 infection model with distributed intracellular delays, Comput. Math. Appl., 61 (2011), 2799–2805. https://doi.org/10.1016/j.camwa.2011.03.050 doi: 10.1016/j.camwa.2011.03.050
    [21] A. Shohel, R. Sumaiya, M. Kamrujjaman, Optimal treatment strategies to control acute HIV infection, Infect. Dis. Model., 6 (2021), 1202–1219. https://doi.org/10.1016/j.idm.2021.09.004 doi: 10.1016/j.idm.2021.09.004
    [22] J. Danane, K. Allali, Optimal control of an HIV model with CTL cells and latently infected cells, Numer. Algebr. Control, 10 (2020), 207–225. https://doi.org/10.3934/naco.2019048 doi: 10.3934/naco.2019048
    [23] W. Man, A. Xamxinur, Z. D. Teng, Optimal control strategy analysis for an human-animal brucellosis infection model with multiple delays, Heliyon, 8 (2022), e12274. https://doi.org/10.1016/j.heliyon.2022.e12274 doi: 10.1016/j.heliyon.2022.e12274
    [24] H. Khalid, Y. Noura, Optimal control of a delayed HIV infection model with immune response using an efficient numerical method, ISRN Biomath., 11 (2012), 1–7. https://doi.org/10.5402/2012/215124 doi: 10.5402/2012/215124
    [25] H. T. Song, R. F. Wang, S. Q. Liu, Z. Jin, D. H. He, Global stability and optimal control for a COVID-19 model with vaccination and isolation delays, Results Phys., 42 (2022), 106011. https://doi.org/10.1016/j.rinp.2022.106011 doi: 10.1016/j.rinp.2022.106011
    [26] K. Allali, S. Harroudi, Optimal control of an HIV model with a trilinear antibody growth function, Discrete Cont. Dyn.-S, 15 (2022), 501–518. https://doi.org/10.3934/dcdss.2021148 doi: 10.3934/dcdss.2021148
    [27] J. K. Hale, S. M. V. Lunel, Introduction to functional differential equations, Springer Science and Business Media, 1993.
    [28] X. Q. Zhao, The linear stability and basic reproduction numbers for autonomous FDEs, Discrete Cont. Dyn.-S, 17 (2024), 708–719. https://doi.org/10.1016/j.jde.2020.03.027 doi: 10.1016/j.jde.2020.03.027
    [29] C. Zhang, J. W. Song, H. H. Huang, X. Fan, L. Huang, J. N. Deng, et al, NLRP3 inflammasome induces CD4+ T cell loss in chronically HIV-1-Cinfected patients, J. Clin. Invest., 6 (2021), e138861. https://doi.org/10.1172/JCI138861 doi: 10.1172/JCI138861
  • This article has been cited by:

    1. Winston Garira, Dephney Mathebula, Rendani Netshikweta, A mathematical modelling framework for linked within-host and between-host dynamics for infections with free-living pathogens in the environment, 2014, 256, 00255564, 58, 10.1016/j.mbs.2014.08.004
    2. Robert C. Spear, Shuo Wang, Exploring the Contribution of Host Susceptibility to Epidemiological Patterns of Schistosoma japonicum Infection Using an Individual-Based Model, 2015, 92, 0002-9637, 1245, 10.4269/ajtmh.14-0691
    3. M. A. Aziz-Alaoui, Jean M.-S. Lubuma, Berge Tsanou, Prevalence-based modeling approach of schistosomiasis: global stability analysis and integrated control assessment, 2021, 40, 2238-3603, 10.1007/s40314-021-01414-9
    4. Ruijun Zhao, Fabio Augusto Milner, A Mathematical Model of Schistosoma mansoni in Biomphalaria glabrata with Control Strategies, 2008, 70, 0092-8240, 1886, 10.1007/s11538-008-9330-5
    5. S. Mushayabasa, C. P. Bhunu, Modeling Schistosomiasis and HIV/AIDS Codynamics, 2011, 2011, 1748-670X, 1, 10.1155/2011/846174
    6. Stephanie J. Peacock, Juliette Bouhours, Mark A. Lewis, Péter K. Molnár, Macroparasite dynamics of migratory host populations, 2018, 120, 00405809, 29, 10.1016/j.tpb.2017.12.005
    7. Ignatius Ako, Owin Olowu, Causes of Backward Bifurcation in a Tuberculosis-Schistosomiasis Co-infection Dynamics, 2024, 2581-8147, 655, 10.34198/ejms.14424.655695
    8. Cheng Fang, Peng Wu, Yunfeng Geng, Spatiotemporal dynamics of a reaction-diffusion schistosomiasis model with seasonal and nonlocal transmissions, 2024, 0, 1531-3492, 0, 10.3934/dcdsb.2024174
    9. Chenkai Guo, Peng Wu, Yunfeng Geng, Spatiotemporal dynamics of a periodic reaction–advection–diffusion schistosomiasis model with intrinsic and infection incubation periods, 2024, 1598-5865, 10.1007/s12190-024-02276-0
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(300) PDF downloads(42) Cited by(1)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog