It is well known that inhibitory interneurons in the cerebral cortex can be classified as parvalbumin (PV), somatostatin subtypes (SOM), and vasoactive intestinal polypeptide subtypes (VIP) based on chemical characteristics. However, in models based on a corticothalamic model containing heterogeneous interneurons, the mechanisms underlying the dynamics of internal neurons and external stimuli are not well understood, and there are some challenges in selecting appropriate stimulation strategies. In this study, we first investigated and confirmed that insufficient feed-forward inhibition associated with PV neurons triggered seizures; second, we applied an optogenetic control strategy to confirm the control effect of excitatory optogenetic stimulation which targets either the PV or the SOM subtypes. Finally, we used a control strategy by applying both optogenetics and an electromagnetic induction stimulation to study the multiple possibilities of the dynamic evolution of seizures. The results confirmed that electromagnetic induction exhibits context-dependent effects in epileptic seizures, similar to the dual-effect phenomenon observed in previous studies, though with distinct network-level mechanisms in our thalamocortical model. In addition, a comparative analysis of the stimulation effects was performed. This work introduces a control scheme by combining internal neuronal pathways and external stimulation, thus providing new theoretical foundations and insights for the future treatment of epileptic seizures.
Citation: Xiaojing Zhu, Yufan Liu, Suyuan Huang, Ranran Li, Yuan Chai. Modulation of epileptiform discharges by heterogeneous interneurons and external stimulation strategies in the thalamocortical model[J]. Electronic Research Archive, 2025, 33(4): 2391-2411. doi: 10.3934/era.2025106
It is well known that inhibitory interneurons in the cerebral cortex can be classified as parvalbumin (PV), somatostatin subtypes (SOM), and vasoactive intestinal polypeptide subtypes (VIP) based on chemical characteristics. However, in models based on a corticothalamic model containing heterogeneous interneurons, the mechanisms underlying the dynamics of internal neurons and external stimuli are not well understood, and there are some challenges in selecting appropriate stimulation strategies. In this study, we first investigated and confirmed that insufficient feed-forward inhibition associated with PV neurons triggered seizures; second, we applied an optogenetic control strategy to confirm the control effect of excitatory optogenetic stimulation which targets either the PV or the SOM subtypes. Finally, we used a control strategy by applying both optogenetics and an electromagnetic induction stimulation to study the multiple possibilities of the dynamic evolution of seizures. The results confirmed that electromagnetic induction exhibits context-dependent effects in epileptic seizures, similar to the dual-effect phenomenon observed in previous studies, though with distinct network-level mechanisms in our thalamocortical model. In addition, a comparative analysis of the stimulation effects was performed. This work introduces a control scheme by combining internal neuronal pathways and external stimulation, thus providing new theoretical foundations and insights for the future treatment of epileptic seizures.
| [1] |
O. C. Snead, Basic mechanisms of generalized absence seizures, Ann. Neurol., 37 (1995), 146–157. https://doi.org/10.1002/ana.410370204 doi: 10.1002/ana.410370204
|
| [2] |
C. P. Panayiotopoulos, Typical absence seizures and related epileptic syndromes: assessment of current state and directions for future research, Epilepsia, 49 (2008), 2131–2139. https://doi.org/10.1111/j.1528-1167.2008.01777.x doi: 10.1111/j.1528-1167.2008.01777.x
|
| [3] |
F. Marten, S. Rodrigues, O. Benjamin, M. P. Richardson, J. R. Terry, Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy, Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci., 367 (2009), 1145–1161. https://doi.org/10.1098/rsta.2008.0255 doi: 10.1098/rsta.2008.0255
|
| [4] |
P. Jain, Absence Seizures in Children: Usual and the Unusual, Indian J. Pediatr., 87 (2020), 1047–1056. https://doi.org/10.1007/s12098-019-03135-8 doi: 10.1007/s12098-019-03135-8
|
| [5] |
W. O. Tatum, S. Ho, S. R. Benbadis, Polyspike ictal onset absence seizures, J. Clin. Neurophysiol., 27 (2010), 93–99. https://doi.org/10.1097/WNP.0b013e3181d64b1d doi: 10.1097/WNP.0b013e3181d64b1d
|
| [6] |
J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin, et al., Optical magnetic detection of single-neuron action potentials using quantum defects in diamond, Proc. Natl. Acad. Sci., 113 (2016), 14133–14138. https://doi.org/10.1073/pnas.1601513113 doi: 10.1073/pnas.1601513113
|
| [7] |
J. Ma, J. Tang, A review for dynamics in neuron and neuronal network, Nonlinear Dyn., 89 (2017), 1569–1578. https://doi.org/10.1007/s11071-017-3565-3 doi: 10.1007/s11071-017-3565-3
|
| [8] |
M. Lv, J. Ma, Multiple modes of electrical activities in a new neuron model under electromagnetic radiation, Neurocomputing, 205 (2016), 375–381. https://doi.org/10.1016/j.neucom.2016.05.004 doi: 10.1016/j.neucom.2016.05.004
|
| [9] |
M. Lv, C. Wang, G. Ren, J. Ma, J. Song, Model of electrical activity in a neuron under magnetic flow effect, Nonlinear Dyn., 85 (2016), 1479–1490. https://doi.org/10.1007/s11071-016-2773-6 doi: 10.1007/s11071-016-2773-6
|
| [10] |
M. Ge, L. Lu, Y. Xu, X. Zhan, L. Yang, Y. Jia, Effects of electromagnetic induction on signal propagation and synchronization in multilayer Hindmarsh-Rose neural networks, Eur. Phys. J. Spec. Top., 228 (2019), 2455–2464. https://doi.org/10.1140/epjst/e2019-900049-0 doi: 10.1140/epjst/e2019-900049-0
|
| [11] |
N. Zandi-Mehran, S. Jafari, S. M. R. Hashemi Golpayegani, F. Nazarimehr, M. Perc, Different synaptic connections evoke different firing patterns in neurons subject to an electromagnetic field, Nonlinear Dyn., 100 (2020), 1809–1824. https://doi.org/10.1007/s11071-020-05568-9 doi: 10.1007/s11071-020-05568-9
|
| [12] |
F. Wu, H. Gu, Y. Li, Inhibitory electromagnetic induction current induces enhancement instead of reduction of neural bursting activities, Commun. Nonlinear Sci. Numer. Simul., 79 (2019), 104924. https://doi.org/10.1016/j.cnsns.2019.104924 doi: 10.1016/j.cnsns.2019.104924
|
| [13] |
F. Wu, J. Ma, G. Zhang, A new neuron model under electromagnetic field, Appl. Math. Comput., 347 (2019), 590–599. https://doi.org/10.1016/j.amc.2018.11.035 doi: 10.1016/j.amc.2018.11.035
|
| [14] |
L. Duan, Q. Cao, Z. Wang, J. Su, Dynamics of neurons in the pre-bötzinger complex under magnetic flow effect, Nonlinear Dyn., 94 (2018), 1961–1971. https://doi.org/10.1007/s11071-018-4467-8 doi: 10.1007/s11071-018-4467-8
|
| [15] |
Z. X. Yuan, P. H. Feng, M. M. Du, Y. Wu, Dynamical response of a neuron-astrocyte coupling system under electromagnetic induction and external stimulation, Chin. Phys. B, 29 (2020), 030504. https://doi.org/10.1088/1674-1056/ab69d0 doi: 10.1088/1674-1056/ab69d0
|
| [16] |
F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, K. Deisseroth, Circuit-breakers: optical technologies for probing neural signals and systems, Nat. Rev. Neurosci., 8 (2007), 577–581. https://doi.org/10.1038/nrn2192 doi: 10.1038/nrn2192
|
| [17] |
Z. Shen, Z. Deng, L. Yan, Y. Zhao, L. Du, H. Zhang, Transition dynamics and optogenetic control of epileptiform activity in a modified mean filed model of human cortex, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 106812. https://doi.org/10.1016/j.cnsns.2022.106812 doi: 10.1016/j.cnsns.2022.106812
|
| [18] | K. Nikolic, P. Degenaar, C. Toumazou, Modeling and engineering aspects of channelrhodopsin2 system for neural photostimulation, in 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, (2006), 1626–1629. https://doi.org/10.1109/IEMBS.2006.259737 |
| [19] |
P. Selvaraj, J. W. Sleigh, W. J. Freeman, H. E. Kirsch, A. J. Szeri, Open loop optogenetic control of simulated cortical epileptiform activity, J. Comput. Neurosci., 36 (2014), 515–525. https://doi.org/10.1007/s10827-013-0484-2 doi: 10.1007/s10827-013-0484-2
|
| [20] |
P. Selvaraj, J. W. Sleigh, H. E. Kirsch, A. J. Szeri, Closed-loop feedback control and bifurcation analysis of epileptiform activity via optogenetic stimulation in a mathematical model of human cortex, Phys. Rev. E, 93 (2016), 012416. https://doi.org/10.1103/PhysRevE.93.012416 doi: 10.1103/PhysRevE.93.012416
|
| [21] | X. Wang, Y. Yu, Q. Wang, Modeling the modulation of beta oscillations in the basal ganglia by dual-target optogenetic stimulation, Fundam. Res., (2024). https://doi.org/10.1016/j.fmre.2024.01.015 |
| [22] |
P. N. Taylor, Y. Wang, M. Goodfellow, J. Dauwels, F. Moeller, U. Stephani, et al., A computational study of stimulus driven epileptic seizure abatement, PLOS One, 9 (2014), e114316. https://doi.org/10.1371/journal.pone.0114316 doi: 10.1371/journal.pone.0114316
|
| [23] |
J. Zhao, Y. Yu, F. Han, Q. Wang, Regulating epileptiform discharges by heterogeneous interneurons in thalamocortical model, Chaos, 33 (2023), 083121. https://doi.org/10.1063/5.0156151 doi: 10.1063/5.0156151
|
| [24] |
J. Paz, T. Davidson, E. Frechette, B. Delord, L. Parada, K. Peng, Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury, Nat. Neurosci., 16 (2013), 64–70. https://doi.org/10.1038/nn.3269 doi: 10.1038/nn.3269
|
| [25] |
E. Krook-Magnuson, C. Armstrong, M. Oijala, I. Soltesz, On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy, Nat. Commun., 4 (2013), 1376. https://doi.org/10.1038/ncomms2376 doi: 10.1038/ncomms2376
|
| [26] |
K. Nikolic, N. Grossman, M. S. Grubb, J. Burrone, C. Toumazou, P. Degenaar, Photocycles of channelrhodopsin-2, Photochem. Photobiol., 85 (2009), 400–411. https://doi.org/10.1111/j.1751-1097.2008.00460.x doi: 10.1111/j.1751-1097.2008.00460.x
|
| [27] |
J. C. Williams, J. Xu, Z. Lu, A. Klimas, X. Chen, C. M. Ambrosi, et al., Computational optogenetics: Empirically-derived voltage- and light-sensitive channelrhodopsin-2 model, PLoS Comput. Biol., 9 (2013), e1003220. https://doi.org/10.1371/journal.pcbi.1003220 doi: 10.1371/journal.pcbi.1003220
|
| [28] | Y. Che, Distributed open-loop optogenetic control of cortical epileptiform activity in a Wilson-Cowan network, in 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), (2017), 469–472. https://doi.org/10.1109/NER.2017.8008389 |
| [29] |
H. Zhang, Z. Shen, Y. Zhao, L. Du, Z. Deng, Dynamical mechanism analysis of three neuroregulatory strategies on the modulation of seizures, Int. J. Mol. Sci., 23 (2022), 13652. https://doi.org/10.3390/ijms232113652 doi: 10.3390/ijms232113652
|
| [30] |
D. Fan, F. Liao, Q. Wang, The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles, Chaos, 27 (2017), 073103. https://doi.org/10.1063/1.4991869 doi: 10.1063/1.4991869
|
| [31] |
D. Fan, S. Liu, Q. Wang, Stimulus-induced epileptic spike-wave discharges in thalamocortical model with disinhibition, Sci. Rep., 6 (2016), 37703. https://doi.org/10.1038/srep37703 doi: 10.1038/srep37703
|
| [32] |
Y. Ge, Y. Cao, G. Yi, C. Han, Y. Qin, J. Wang, et al., Robust closed-loop control of spike-and-wave discharges in a thalamocortical computational model of absence epilepsy, Sci. Rep., 9 (2019), 9093. https://doi.org/10.1038/s41598-019-45647-5 doi: 10.1038/s41598-019-45647-5
|
| [33] |
S. Panthi, B. Leitch, Chemogenetic activation of feed-forward inhibitory parvalbumin-expressing interneurons in the cortico-thalamocortical network during absence seizures, Front. Cell. Neurosci., 15 (2021), 688905. https://doi.org/10.3389/fncel.2021.688905 doi: 10.3389/fncel.2021.688905
|
| [34] |
A. Brodovskaya, J. Kapur, Anticonvulsant dopamine type 2 receptor agonist activates inhibitory parvalbumin interneurons, Epilepsia, 62 (2021), e147–e152. https://doi.org/10.1111/epi.17024 doi: 10.1111/epi.17024
|
| [35] |
X. Jiang, A. Lupien-Meilleur, S. Tazerart, M. Lachance, E. Samarova, R. Araya, et al., Remodeled cortical inhibition prevents motor seizures in generalized epilepsy, Ann. Neurol., 84 (2018), 436–451. https://doi.org/10.1002/ana.25301 doi: 10.1002/ana.25301
|
| [36] |
C. Tai, Y. Abe, R. E. Westenbroek, T. Scheuer, W. A. Catterall, Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome, Proc. Natl. Acad. Sci. U. S. A., 111 (2014), E3139–E3148. https://doi.org/10.1073/pnas.1411131111 doi: 10.1073/pnas.1411131111
|
| [37] |
S. Liang, T. Zhang, S. Wu, Z. Chen, The dynamical role of electromagnetic induction in epileptic seizures: a double-edged sword, Nonlinear Dyn., 106 (2021), 975–988. https://doi.org/10.1007/s11071-021-06911-4 doi: 10.1007/s11071-021-06911-4
|
| [38] |
E. Krook-Magnuson, I. Soltesz, Beyond the hammer and the scalpel: selective circuit control for the epilepsies, Nat. Neurosci., 18 (2015), 331–338. https://doi.org/10.1038/nn.3943 doi: 10.1038/nn.3943
|