Research article

Sincere wide $ \tau $-tilting modules

  • Published: 18 April 2025
  • Enomoto and Sakai introduced wide $ \tau $-tilting modules, which are $ \tau $-tilting modules over functorially finite wide subcategories. They also proved that wide $ \tau $-tilting modules bijection with doubly functorially finite image-cokernel-extension-closed (ICE-closed) subcategories, which extended Adachi-Iyama-Reiten's result. In this paper, we show that this bijection can be restricted to the support sets. As a consequence, we establish bijections between sincere wide $ \tau $-tilting modules, sincere ICE-closed subcategories, and sincere epibricks, and then we show that its number is related to the little Schr$ \ddot{o} $der number for Nakayama algebras.

    Citation: Hanpeng Gao, Yunlong Zhou, Yuanfeng Zhang. Sincere wide $ \tau $-tilting modules[J]. Electronic Research Archive, 2025, 33(4): 2275-2284. doi: 10.3934/era.2025099

    Related Papers:

  • Enomoto and Sakai introduced wide $ \tau $-tilting modules, which are $ \tau $-tilting modules over functorially finite wide subcategories. They also proved that wide $ \tau $-tilting modules bijection with doubly functorially finite image-cokernel-extension-closed (ICE-closed) subcategories, which extended Adachi-Iyama-Reiten's result. In this paper, we show that this bijection can be restricted to the support sets. As a consequence, we establish bijections between sincere wide $ \tau $-tilting modules, sincere ICE-closed subcategories, and sincere epibricks, and then we show that its number is related to the little Schr$ \ddot{o} $der number for Nakayama algebras.



    加载中


    [1] T. Adachi, O. Iyama, I. Reiten, $\tau$-tilting theory, Compos. Math., 50 (2014), 415–452. https://doi.org/10.1112/S0010437X13007422 doi: 10.1112/S0010437X13007422
    [2] H. Enomoto, A. Sakai, ICE-closed subcategories and wide $\tau$-tilting modules, Math. Z., 300 (2022), 541–577. https://doi.org/10.1007/s00209-021-02796-6 doi: 10.1007/s00209-021-02796-6
    [3] P. Gabriel, Des cat$\acute{e}$gories ab$\acute{e}$liennes (French), Bull. Soc. Math. France, 90 (1962), 323–448. https://doi.org/10.24033/bsmf.1583 doi: 10.24033/bsmf.1583
    [4] C. M. Ringel, Representations of $K$-species and bimodules, J. Algebra, 41 (1976), 269–302. https://doi.org/10.1016/0021-8693(76)90184-8 doi: 10.1016/0021-8693(76)90184-8
    [5] S. Asai, Semibricks, Int. Math. Res. Not., 16 (2020), 4993–5054. https://doi.org/10.1093/imrn/rny150 doi: 10.1093/imrn/rny150
    [6] H. P. Gao, Semibricks over split-by-nilpotent extensions, Bull. Korean Math. Soc., 58 (2021), 183–193. https://doi.org/10.4134/BKMS.B200189 doi: 10.4134/BKMS.B200189
    [7] H. P. Gao, A note on wide $\tau$-tilting modules and epibricks, preprint.
    [8] H. Enomoto, Monobrick, a uniform approach to torsion-free classes and wide subcategories, Adv. Math., 393 (2021). https://doi.org/10.1016/j.aim.2021.108113 doi: 10.1016/j.aim.2021.108113
    [9] H. Enomoto, Rigid modules and ICE-closed subcategories in quiver representations, J. Algebra, 594 (2022), 364–388. https://doi.org/10.1016/j.jalgebra.2021.12.008 doi: 10.1016/j.jalgebra.2021.12.008
    [10] I. Assem, D. Simson, A. Skowronski, Elements of the Representation Theory of Associative Algebras, London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge, 2006. https://doi.org/10.1017/CBO9780511614309
    [11] The On-Line Encyclopedia of Integer Sequences, Available from: http://oeis.org.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(708) PDF downloads(37) Cited by(0)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog