Research article Special Issues

Parameter estimation in the Farlie–Gumbel–Morgenstern bivariate Bilal distribution via multistage ranked set sampling

  • Received: 17 October 2024 Revised: 03 January 2025 Accepted: 17 January 2025 Published: 08 February 2025
  • MSC : 62G30, 62F10

  • Ranked set sampling is a well-known and efficient method compared to simple random sampling for estimating population parameters. In this study, we focus on the challenge of estimating the scale parameter of the primary variable Z using a multistage ranked set sample obtained by ordering the marginal observations of an auxiliary variable W, where the pair (W,Z) follows the Farlie–Gumbel–Morgenstern bivariate Bilal distribution. Assuming that the dependence parameter ϕ is known, we introduce the best linear unbiased estimator for the scale parameter of the primary variable, utilizing a multistage ranked set sample. We also compare the efficiency of the proposed estimator with that of the maximum likelihood estimator based on the same number of measured units. It is found that the suggested estimators are more efficient than the classical estimators considered in this study.

    Citation: S. P. Arun, M. R. Irshad, R. Maya, Amer I. Al-Omari, Shokrya S. Alshqaq. Parameter estimation in the Farlie–Gumbel–Morgenstern bivariate Bilal distribution via multistage ranked set sampling[J]. AIMS Mathematics, 2025, 10(2): 2083-2097. doi: 10.3934/math.2025098

    Related Papers:

    [1] Robert E. Beardmore, Rafael Peña-Miller . Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits. Mathematical Biosciences and Engineering, 2010, 7(4): 923-933. doi: 10.3934/mbe.2010.7.923
    [2] Robert E. Beardmore, Rafael Peña-Miller . Rotating antibiotics selects optimally against antibiotic resistance, in theory. Mathematical Biosciences and Engineering, 2010, 7(3): 527-552. doi: 10.3934/mbe.2010.7.527
    [3] Xiaxia Kang, Jie Yan, Fan Huang, Ling Yang . On the mechanism of antibiotic resistance and fecal microbiota transplantation. Mathematical Biosciences and Engineering, 2019, 16(6): 7057-7084. doi: 10.3934/mbe.2019354
    [4] Jing Jia, Yanfeng Zhao, Zhong Zhao, Bing Liu, Xinyu Song, Yuanxian Hui . Dynamics of a within-host drug resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(2): 2219-2231. doi: 10.3934/mbe.2023103
    [5] Michele L. Joyner, Cammey C. Manning, Brandi N. Canter . Modeling the effects of introducing a new antibiotic in a hospital setting: A case study. Mathematical Biosciences and Engineering, 2012, 9(3): 601-625. doi: 10.3934/mbe.2012.9.601
    [6] Avner Friedman, Najat Ziyadi, Khalid Boushaba . A model of drug resistance with infection by health care workers. Mathematical Biosciences and Engineering, 2010, 7(4): 779-792. doi: 10.3934/mbe.2010.7.779
    [7] Xiaoxiao Yan, Zhong Zhao, Yuanxian Hui, Jingen Yang . Dynamic analysis of a bacterial resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(12): 20422-20436. doi: 10.3934/mbe.2023903
    [8] Natalia L. Komarova . Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2011, 8(2): 289-306. doi: 10.3934/mbe.2011.8.289
    [9] Qimin Huang, Mary Ann Horn, Shigui Ruan . Modeling the effect of antibiotic exposure on the transmission of methicillin-resistant Staphylococcus aureus in hospitals with environmental contamination. Mathematical Biosciences and Engineering, 2019, 16(5): 3641-3673. doi: 10.3934/mbe.2019181
    [10] Hermann Mena, Lena-Maria Pfurtscheller, Jhoana P. Romero-Leiton . Random perturbations in a mathematical model of bacterial resistance: Analysis and optimal control. Mathematical Biosciences and Engineering, 2020, 17(5): 4477-4499. doi: 10.3934/mbe.2020247
  • Ranked set sampling is a well-known and efficient method compared to simple random sampling for estimating population parameters. In this study, we focus on the challenge of estimating the scale parameter of the primary variable Z using a multistage ranked set sample obtained by ordering the marginal observations of an auxiliary variable W, where the pair (W,Z) follows the Farlie–Gumbel–Morgenstern bivariate Bilal distribution. Assuming that the dependence parameter ϕ is known, we introduce the best linear unbiased estimator for the scale parameter of the primary variable, utilizing a multistage ranked set sample. We also compare the efficiency of the proposed estimator with that of the maximum likelihood estimator based on the same number of measured units. It is found that the suggested estimators are more efficient than the classical estimators considered in this study.





    [1] A. M. Abd-Elrahman, Utilizing ordered statistics in lifetime distributions production: a new lifetime distribution and applications, J. Probab. Stat. Sci., 11 (2013), 153–164.
    [2] D. Hinkley, On quick choice of power transformation, Appl. Stat., 26 (1977), 67–69. https://doi.org/10.2307/2346869 doi: 10.2307/2346869
    [3] M. E. Ghitany, B. Atieh, S. Nadarajah, Lindley distribution and its application, Math. comput. simul., 78 (2008), 493–506. https://doi.org/10.1016/j.matcom.2007.06.007 doi: 10.1016/j.matcom.2007.06.007
    [4] A. M. Abd-Elrahman, S. F. Niazi, Approximate Bayes estimators applied to the Bilal model, J. Egypt. Math. Soc., 25 (2017), 65–70. https://doi.org/10.1016/j.joems.2016.05.001 doi: 10.1016/j.joems.2016.05.001
    [5] A. M. Abd-Elrahman, A new two-parameter lifetime distribution with decreasing, increasing or upside-down bathtub-shaped failure rate, Commun. Stat.-Theory Methods, 46 (2017), 8865–8880. https://doi.org/10.1080/03610926.2016.1193198 doi: 10.1080/03610926.2016.1193198
    [6] R. Maya, M. R. Irshad, M. Ahammed, C. Chesneau, The Harris extended Bilal distribution with applications in hydrology and quality control, AppliedMath, 3 (2023), 221–242. https://doi.org/10.3390/appliedmath3010013 doi: 10.3390/appliedmath3010013
    [7] M. R. Irshad, M. Ahammed, R. Maya, A. I. Al-Omari, Marshal-Olkin Bilal distribution with associated minification process and accptance sampling plans, Hacet. J. Math. Stat., 53 (2023), 201–229. https://doi.org/10.15672/hujms.1143156 doi: 10.15672/hujms.1143156
    [8] R. Maya, M. R. Irshad, S. P. Arun, Farlie–Gumbel–Morgenstern bivariate Bilal distribution and its inferential aspects using concomitants of order statistics, J. Probab. Stat. Sci., 19 (2021), 1–20.
    [9] S. P. Arun, C. Chesneau, R. Maya, M. R. Irshad, Farlie–Gumbel–Morgenstern bivariate moment exponential distribution and its inferences based on concomitants of order statistics, Stats, 6 (2023), 253–267. https://doi.org/10.3390/stats6010015 doi: 10.3390/stats6010015
    [10] R. A. Johnson, D. W. Wichern, Applied multivariate statistical analysis, Pearson College Div, Subsequent edition, 2002.
    [11] G. A. McIntyre, A method for unbiased selective sampling using ranked sets, Australian J. Agr. Res., 3 (1952), 385–390. https://doi.org/10.1071/AR9520385 doi: 10.1071/AR9520385
    [12] K. Takahasi, K. Wakimoto, On unbiased estimates of the population mean based on the sample stratified by means of ordering, Ann. Inst. Stat. Math., 20 (1968), 1–31.
    [13] S. L. Stokes, Ranked set sampling with concomitant variables, Commun. Stat.-Theory Methods, 6 (1977), 1207–1211. https://doi.org/10.1080/03610927708827563 doi: 10.1080/03610927708827563
    [14] H. A. David, H. N. Nagaraja, Order statistics, 3 Eds., John Wiley and Sons, New York, 2003.
    [15] M. R. Irshad, R. Maya, A. I. Al-Omari, A. A. Hanadeh, S. P. Arun, Estimation of a parameter of Farlie–Gumbel–Morgenstern bivariate Bilal distribution by ranked set sampling, Reliability: Theory Appl., 18 (2023), 129–140.
    [16] M. F. Al-Saleh, M. Al-Kadiri, Double-ranked set sampling, Stat. Probabil. Lett., 48 (2000), 205–212. https://doi.org/10.1016/S0167-7152(99)00206-0
    [17] M. F. Al-Saleh, A. I. Al-Omari, Multistage ranked set sampling, J. Stat. plan. Infer., 102 (2002), 273–286. https://doi.org/10.1016/S0378-3758(01)00086-6 doi: 10.1016/S0378-3758(01)00086-6
    [18] M. F. Al-Saleh, Steady-state ranked set sampling and parametric estimation, J. Stat. plan. Infer., 123 (2004), 83–95. https://doi.org/10.1016/S0378-3758(03)00139-3 doi: 10.1016/S0378-3758(03)00139-3
    [19] A. A. Jemain, A. I. Al-Omari, Multistage percentile ranked set samples, Adv. Appl. Stat., 7 (2007), 127–139.
    [20] A. A. Jemain, A. I. Al-Omari, Multistage quartile ranked set samples, Pakistan J. Stat., 23 (2007), 11–22.
    [21] A. A. Jemain, A. I. Al-Omari, K. Ibrahim, Multistage median ranked set sampling for estimating the population median, J. Math. Stat., 3 (2007), 58–64.
    [22] A. I. Al-Omari, C. N. Bouza, Review of ranked set sampling: modifications and applications, Revista Investigacion Operacional, 35 (2014), 215–240.
    [23] A. Haq, J. Brown, E. Moltchanova, A. I. Al-Omari, Varied L ranked set sampling scheme, J. Stat. Theory Pract., 9 (2015), 741–767. https://doi.org/10.1080/15598608.2015.1008606 doi: 10.1080/15598608.2015.1008606
    [24] N. Koyuncu, A. I. Al-Omari, Generalized robust-regression-type estimators under different ranked set sampling, Math. Sci., 15 (2021), 29–40. https://doi.org/10.1007/s40096-020-00360-7 doi: 10.1007/s40096-020-00360-7
    [25] E. Zamanzade, E. Zamanzade, A. Parvardeh, Estimation of a decreasing mean residual life based on ranked set sampling with an application to survival analysis, Int. J. Biostat., 20 (2024), 571–583. https://doi.org/10.1515/ijb-2023-0051 doi: 10.1515/ijb-2023-0051
    [26] E. Zamanzade, M. Mahdizadeh, H. M. Samawi, Nonparametric estimation of mean residual lifetime in ranked set sampling with a concomitant variable, J. Appl. Stat., 51 (2024), 2512–2528. https://doi.org/10.1080/02664763.2023.2301334 doi: 10.1080/02664763.2023.2301334
    [27] E. Zamanzade, M. Asadi, A. Parvardeh, E. Zamanzade, A ranked-based estimator of the mean past lifetime with an application, Stat. Papers, 64 (2023), 161–177. https://doi.org/10.1007/s00362-022-01314-y doi: 10.1007/s00362-022-01314-y
  • This article has been cited by:

    1. Pleun J van Duijn, Marc JM Bonten, Antibiotic rotation strategies to reduce antimicrobial resistance in Gram-negative bacteria in European intensive care units: study protocol for a cluster-randomized crossover controlled trial, 2014, 15, 1745-6215, 10.1186/1745-6215-15-277
    2. Hildegard Uecker, Sebastian Bonhoeffer, Modeling antimicrobial cycling and mixing: Differences arising from an individual-based versus a population-based perspective, 2017, 294, 00255564, 85, 10.1016/j.mbs.2017.09.002
    3. Nicolas Houy, Julien Flaig, Optimal dynamic empirical therapy in a health care facility: A Monte-Carlo look-ahead method, 2021, 198, 01692607, 105767, 10.1016/j.cmpb.2020.105767
    4. Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits, 2010, 7, 1551-0018, 923, 10.3934/mbe.2010.7.923
    5. Nicolas Houy, Julien Flaig, Hospital-wide surveillance-based antimicrobial treatments: a Monte-Carlo look-ahead method, 2021, 01692607, 106050, 10.1016/j.cmpb.2021.106050
    6. Daniel Nichol, Peter Jeavons, Alexander G. Fletcher, Robert A. Bonomo, Philip K. Maini, Jerome L. Paul, Robert A. Gatenby, Alexander R.A. Anderson, Jacob G. Scott, Rustom Antia, Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance, 2015, 11, 1553-7358, e1004493, 10.1371/journal.pcbi.1004493
    7. François Blanquart, Evolutionary epidemiology models to predict the dynamics of antibiotic resistance, 2019, 12, 1752-4571, 365, 10.1111/eva.12753
    8. Nienke L Plantinga, Bastiaan HJ Wittekamp, Pleun J van Duijn, Marc JM Bonten, Fighting antibiotic resistance in the intensive care unit using antibiotics, 2015, 10, 1746-0913, 391, 10.2217/fmb.14.146
    9. Roger D. Kouyos, Pia Abel zur Wiesch, Sebastian Bonhoeffer, Christophe Fraser, Informed Switching Strongly Decreases the Prevalence of Antibiotic Resistance in Hospital Wards, 2011, 7, 1553-7358, e1001094, 10.1371/journal.pcbi.1001094
    10. Roderich Roemhild, Hinrich Schulenburg, Evolutionary ecology meets the antibiotic crisis, 2019, 2019, 2050-6201, 37, 10.1093/emph/eoz008
    11. Antonio L. C. Gomes, James E. Galagan, Daniel Segrè, James M. McCaw, Resource Competition May Lead to Effective Treatment of Antibiotic Resistant Infections, 2013, 8, 1932-6203, e80775, 10.1371/journal.pone.0080775
    12. Gabriel G. Perron, Sergey Kryazhimskiy, Daniel P. Rice, Angus Buckling, Multidrug Therapy and Evolution of Antibiotic Resistance: When Order Matters, 2012, 78, 0099-2240, 6137, 10.1128/AEM.01078-12
    13. D. E. Ramsay, J. Invik, S. L. Checkley, S. P. Gow, N. D. Osgood, C. L. Waldner, Application of dynamic modelling techniques to the problem of antibacterial use and resistance: a scoping review, 2018, 146, 0950-2688, 2014, 10.1017/S0950268818002091
    14. Xiao‐Jin Li, Yong Liu, Liang Du, Yan Kang, The Effect of Antibiotic‐Cycling Strategy on Antibiotic‐Resistant Bacterial Infections or Colonization in Intensive Care Units: A Systematic Review and Meta‐Analysis, 2020, 17, 1545-102X, 319, 10.1111/wvn.12454
    15. Hildegard Uecker, Sebastian Bonhoeffer, Antibiotic treatment protocols revisited: the challenges of a conclusive assessment by mathematical modelling, 2021, 18, 1742-5662, 20210308, 10.1098/rsif.2021.0308
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(714) PDF downloads(60) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog