Research article

Propagation of smallness for solutions of elliptic equations in the plane

  • Current address: Department of Mathematics, University of Chicago, Chicago, Illinois 60637, USA
  • Published: 14 January 2025
  • We explore quantitative propagation of smallness for solutions of two-dimensional elliptic equations from sets of positive $ \delta $-dimensional Hausdorff content for any $ \delta > 0 $. In particular, the gradients of solutions to divergence form equations with Hölder continuous coefficients, as well as those of nondivergence form equations with measurable coefficients, can be quantitatively estimated from the small sets.

    Citation: Yuzhe Zhu. Propagation of smallness for solutions of elliptic equations in the plane[J]. Mathematics in Engineering, 2025, 7(1): 1-12. doi: 10.3934/mine.2025001

    Related Papers:

  • We explore quantitative propagation of smallness for solutions of two-dimensional elliptic equations from sets of positive $ \delta $-dimensional Hausdorff content for any $ \delta > 0 $. In particular, the gradients of solutions to divergence form equations with Hölder continuous coefficients, as well as those of nondivergence form equations with measurable coefficients, can be quantitatively estimated from the small sets.



    加载中


    [1] G. Alessandrini, L. Escauriaza, Null-controllability of one-dimensional parabolic equations, ESAIM: Control Optim. Calc. Var., 14 (2008), 284–293. https://doi.org/10.1051/cocv:2007055 doi: 10.1051/cocv:2007055
    [2] J. Apraiz, L. Escauriaza, Null-control and measurable sets, ESAIM: Control Optim. Calc. Var., 19 (2013), 239–254. https://doi.org/10.1051/cocv/2012005 doi: 10.1051/cocv/2012005
    [3] K. Astala, T. Iwaniec, G. Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Vol. 48, Princeton Mathematical Series, Princeton: Princeton University Press, 2009. https://doi.org/10.1515/9781400830114
    [4] G. Alessandrini, The length of level lines of solutions of elliptic equations in the plane, Arch. Rational Mech. Anal., 102 (1988), 183–191. https://doi.org/10.1007/BF00251498 doi: 10.1007/BF00251498
    [5] G. Alessandrini, R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM J. Math. Anal., 25 (1994), 1259–1268. https://doi.org/10.1137/S0036141093249080 doi: 10.1137/S0036141093249080
    [6] L. Bers, F. John, M. Schechter, Partial differential equations, Lectures in Applied Mathematics, American Mathematical Society, 1979.
    [7] N. Burq, I. Moyano, Propagation of smallness and control for heat equations, J. Eur. Math. Soc., 25 (2023), 1349–1377. https://doi.org/10.4171/jems/1213 doi: 10.4171/jems/1213
    [8] L. Bers, L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, Conv. Int. Equazioni Lineari Deriv. Parziali, Trieste, 1954,111–140.
    [9] B. V. Boyarskiǐ, Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients, Mat. Sb., 43 (1957), 451–503.
    [10] A. Brudnyi, On a BMO-property for subharmonic functions, J. Fourier Anal. Appl., 8 (2002), 603–612. https://doi.org/10.1007/s00041-002-0029-y doi: 10.1007/s00041-002-0029-y
    [11] B. Foster, Results on gradients of harmonic functions on Lipschitz surfaces, arXiv, 2023. https://doi.org/10.48550/arXiv.2304.11344
    [12] O. Friedland, Y. Yomdin, $(s, p)$-valent functions, In: B. Klartag, E. Milman, Geometric aspects of functional analysis, Lecture Notes in Mathematics, Cham: Springer, 2169 (2017), 123–136. https://doi.org/10.1007/978-3-319-45282-1_8
    [13] O. Friedland, Y. Yomdin, $(s, p)$-valent functions, arXiv, 2015. https://doi.org/10.48550/arXiv.1503.00325
    [14] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Vol. 224, Berlin: Springer-Verlag, 1983.
    [15] Q. Han, Singular sets of solutions to elliptic equations, Indiana Univ. Math. J., 43 (1994), 983–1002.
    [16] R. Hardt, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, N. Nadirashvili, Critical sets of solutions to elliptic equations, J. Differ. Geom., 51 (1999), 359–373. https://doi.org/10.4310/jdg/1214425070 doi: 10.4310/jdg/1214425070
    [17] O. Y. Imanuvilov, Controllability of parabolic equations, Mat. Sb., 186 (1995), 879–900. https://doi.org/10.1070/SM1995v186n06ABEH000047 doi: 10.1070/SM1995v186n06ABEH000047
    [18] O. Kovrijkine, Some results related to the Logvinenko-Sereda theorem, Proc. Amer. Math. Soc., 129 (2001), 3037–3047. https://doi.org/10.1090/S0002-9939-01-05926-3 doi: 10.1090/S0002-9939-01-05926-3
    [19] A. Logunov, E. Malinnikova, Quantitative propagation of smallness for solutions of elliptic equations, Proc. Int. Congress Math. (ICM 2018), 2018, 2391–2411. https://doi.org/10.1142/9789813272880_0143
    [20] A. Logunov, E. Malinnikova, Review of Yau's conjecture on zero sets of Laplace eigenfunctions, Curr. Dev. Math., 2018,179–212.
    [21] G. Lebeau, L. Robbiano, Contrôle exact de l'équation de la chaleur, Commun. Part. Diff. Eq., 20 (1995), 335–356. https://doi.org/10.1080/03605309508821097 doi: 10.1080/03605309508821097
    [22] E. Malinnikova, Propagation of smallness for solutions of generalized Cauchy-Riemann systems, Proc. Edinburgh Math. Soc., 47 (2004), 191–204. https://doi.org/10.1017/S0013091503000245 doi: 10.1017/S0013091503000245
    [23] P. Mattila, Geometry of sets and measures in Euclidean spaces: fractals and rectifiability, Vol. 44, Cambridge: Cambridge University Press, 1995. https://doi.org/10.1017/CBO9780511623813
    [24] K. Miller, Nonunique continuation for uniformly parabolic and elliptic equations in self-adjoint divergence form with Hölder continuous coefficients, Arch. Rational Mech. Anal., 54 (1974), 105–117. https://doi.org/10.1007/BF00247634 doi: 10.1007/BF00247634
    [25] A. Naber, D. Valtorta, Volume estimates on the critical sets of solutions to elliptic PDEs, Commun. Pure Appl. Math., 70 (2017), 1835–1897. https://doi.org/10.1002/cpa.21708 doi: 10.1002/cpa.21708
    [26] A. Pliś, On non-uniqueness in Cauchy problem for an elliptic second order differential equation, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 11 (1963), 95–100.
    [27] H. Renelt, Elliptic systems and quasiconformal mappings, Pure and Applied Mathematics, John Wiley & Sons, 1988.
    [28] J. Zhu, Upper bound of critical sets of solutions of elliptic equations in the plane, Vietnam J. Math., 51 (2023), 799–810. https://doi.org/10.1007/s10013-023-00614-6 doi: 10.1007/s10013-023-00614-6
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2720) PDF downloads(730) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog