Ordinary Portland Cement (OPC) is a crucial building component and a valuable strategic resource. The production of cement accounts for 5% to 10% of global carbon dioxide (CO2) emissions. Over the years, many researchers have been studying ways to reduce the amount of CO2 in the atmosphere caused by cement production. Due to its properties, biochar is found to be an interesting material to be utilised in the construction industry due to its effectiveness in CO2 sequestration. Biochar is a solid residue created by the thermal breakdown of biomass at moderate temperatures (350–700 ℃) without oxygen or with a small amount of oxygen, sometimes known as bio-carbon. Biochar has a wide range of uses, including those for heating and electricity generation, cleaning flue gases, metallurgy, animal husbandry, agriculture, construction materials, and even medicine. The objective of this paper is to review the potential of biochar as a cementitious material by evaluating its physical, chemical, mechanical, and durability properties. Using biochar as a cementitious material makes it possible to conclude that cement production will be reduced over time by partial replacement, which will also promote and encourage sustainable development in the future.
Citation: Pravina Kamini G., Kong Fah Tee, Jolius Gimbun, Siew Choo Chin. Biochar in cementitious material—A review on physical, chemical, mechanical, and durability properties[J]. AIMS Materials Science, 2023, 10(3): 405-425. doi: 10.3934/matersci.2023022
[1] | Reinhard Racke . Blow-up for hyperbolized compressible Navier-Stokes equations. Communications in Analysis and Mechanics, 2025, 17(2): 550-581. doi: 10.3934/cam.2025022 |
[2] | Huiyang Xu . Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials. Communications in Analysis and Mechanics, 2023, 15(2): 132-161. doi: 10.3934/cam.2023008 |
[3] | Yue Pang, Xiaotong Qiu, Runzhang Xu, Yanbing Yang . The Cauchy problem for general nonlinear wave equations with doubly dispersive. Communications in Analysis and Mechanics, 2024, 16(2): 416-430. doi: 10.3934/cam.2024019 |
[4] | Xiulan Wu, Yaxin Zhao, Xiaoxin Yang . On a singular parabolic p-Laplacian equation with logarithmic nonlinearity. Communications in Analysis and Mechanics, 2024, 16(3): 528-553. doi: 10.3934/cam.2024025 |
[5] | Yuxuan Chen . Global dynamical behavior of solutions for finite degenerate fourth-order parabolic equations with mean curvature nonlinearity. Communications in Analysis and Mechanics, 2023, 15(4): 658-694. doi: 10.3934/cam.2023033 |
[6] | Tingfu Feng, Yan Dong, Kelei Zhang, Yan Zhu . Global existence and blow-up to coupled fourth-order parabolic systems arising from modeling epitaxial thin film growth. Communications in Analysis and Mechanics, 2025, 17(1): 263-289. doi: 10.3934/cam.2025011 |
[7] | Isaac Neal, Steve Shkoller, Vlad Vicol . A characteristics approach to shock formation in 2D Euler with azimuthal symmetry and entropy. Communications in Analysis and Mechanics, 2025, 17(1): 188-236. doi: 10.3934/cam.2025009 |
[8] | Mahmoud El Ahmadi, Mohammed Barghouthe, Anass Lamaizi, Mohammed Berrajaa . Existence and multiplicity results for a kind of double phase problems with mixed boundary value conditions. Communications in Analysis and Mechanics, 2024, 16(3): 509-527. doi: 10.3934/cam.2024024 |
[9] | Ming Liu, Binhua Feng . Grand weighted variable Herz-Morrey spaces estimate for some operators. Communications in Analysis and Mechanics, 2025, 17(1): 290-316. doi: 10.3934/cam.2025012 |
[10] | Yang Liu, Xiao Long, Li Zhang . Long-time dynamics for a coupled system modeling the oscillations of suspension bridges. Communications in Analysis and Mechanics, 2025, 17(1): 15-40. doi: 10.3934/cam.2025002 |
Ordinary Portland Cement (OPC) is a crucial building component and a valuable strategic resource. The production of cement accounts for 5% to 10% of global carbon dioxide (CO2) emissions. Over the years, many researchers have been studying ways to reduce the amount of CO2 in the atmosphere caused by cement production. Due to its properties, biochar is found to be an interesting material to be utilised in the construction industry due to its effectiveness in CO2 sequestration. Biochar is a solid residue created by the thermal breakdown of biomass at moderate temperatures (350–700 ℃) without oxygen or with a small amount of oxygen, sometimes known as bio-carbon. Biochar has a wide range of uses, including those for heating and electricity generation, cleaning flue gases, metallurgy, animal husbandry, agriculture, construction materials, and even medicine. The objective of this paper is to review the potential of biochar as a cementitious material by evaluating its physical, chemical, mechanical, and durability properties. Using biochar as a cementitious material makes it possible to conclude that cement production will be reduced over time by partial replacement, which will also promote and encourage sustainable development in the future.
In this paper, we study the initial boundary value problem of the nonlinear viscoelastic hyperbolic problem with variable exponents:
{utt+△2u+△2utt−∫t0g(t−τ)△2u(τ)dτ+|ut|m(x)−2ut=|u|p(x)−2u,(x,t)∈Ω×(0,T),u(x,t)=∂u∂ν(x,t)=0,(x,t)∈∂Ω×(0,T),u(x,0)=u0(x), ut(x,0)=u1(x),x∈Ω, | (1.1) |
where Ω⊂Rn(n≥1) is a bounded domain in Rn with a smooth boundary ∂Ω, ν is the unit outer normal to ∂Ω, the exponents m(x) and p(x) are continuous functions on ¯Ω with the logarithmic module of continuity:
∀x,y∈Ω,|x−y|<1,|m(x)−m(y)|+|p(x)−p(y)|≤ω(|x−y|), | (1.2) |
where
limτ→0+supω(τ)ln1τ=C<∞. | (1.3) |
In addition to this condition, the exponents satisfy the following:
2≤m−:=essinfx∈Ωm(x)≤m(x)≤m+:=esssupx∈Ωm(x)<2(n−2)n−4, | (1.4) |
2≤p−:=essinfx∈Ωp(x)≤p(x)≤p+:=esssupx∈Ωp(x)<2(n−2)n−4, | (1.5) |
g:R+→R+ is a C1 function satisfying
g(0)>0, g′(τ)≤0,1−∫∞0g(τ)dτ=l>0. | (1.6) |
The equation of Problem (1.1) arises from the modeling of various physical phenomena such as the viscoelasticity and the system governing the longitudinal motion of a viscoelastic configuration obeying a nonlinear Boltzmann's model, or electro-rheological fluids, viscoelastic fluids, processes of filtration through a porous medium, and fluids with temperature-dependent viscosity and image processing which give rise to equations with nonstandard growth conditions, that is, equations with variable exponents of nonlinearities. More details on these problems can be found in previous studies [1,2,3,4,5,6].
When m(x) and p(x) are constants, Messaoudi [7] discussed the nonlinear viscoelastic wave equation
utt−△u+∫t0g(t−τ)△u(τ)dτ+|ut|m−2ut=|u|p−2u, |
he proved that any weak solution with negative initial energy blows up in finite time if p>m, and a global existence result for p≤m. The results were improved later by Messaoudi [8], where the blow-up result in finite time with positive initial energy was obtained. Moreover, Song [9] showed the finite-time blow-up of some solutions whose initial data had arbitrarily high initial energy. In the same year, Song [10] studied the initial-boundary value problem
|ut|ρutt−△u+∫t0g(t−τ)△u(τ)dτ+|ut|m−2ut=|u|p−2u, |
and proved the nonexistence of global solutions with positive initial energy. Cavalcanti, Domingos, and Ferreira [11] were concerned with the non-linear viscoelastic equation
|ut|ρutt−△u−△utt+∫t0g(t−τ)△u(τ)dτ−γ△ut=0, |
and proved the global existence of weak solutions. Moreover, they obtained the uniform decay rates of the energy by assuming a strong damping △ut acting in the domain and providing the relaxation function which decays exponentially.
In 2017, Messaoudi [12] considered the following nonlinear wave equation with variable exponents:
utt−△u+a|ut|m(x)−2ut=b|u|p(x)−2u, |
where a,b are positive constants. By using the Faedo−Galerkin method, the existence of a unique weak solution is established under suitable assumptions on the variable exponents m(x) and p(x). Then this paper also proved the finite-time blow-up of solutions and gave a two-dimensional numerical example to illustrate the blow up result. Park [13] showed the blow up of solutions for a viscoelastic wave equation with variable exponents
utt−△u+∫t0g(t−s)△u(s)ds+a|ut|m(x)−2ut=b|u|p(x)−2u, |
where the exponents of nonlinearity p(x) and m(x) are given functions and a,b>0 are constants. For nonincreasing positive function g, they prove the blow-up result for the solutions with positive initial energy as well as nonpositive initial energy. Alahyane [14] discussed the nonlinear viscoelastic wave equation with variable exponents
utt−△u+∫t0g(t−τ)△u(τ)dτ+μut=|u|p(x)−2u, |
where μ is a nonnegative constant and the exponent of nonlinearity p(x) and g are given functions. Under arbitrary positive initial energy and specific conditions on the relaxation function g, they prove a finite-time blow-up result and give some numerical applications to illustrate their theoretical results. Ouaoua and Boughamsa [15] considered the following boundary value problem:
utt+△2u−△u+|ut|m(x)−2ut=|u|p(x)−2u, |
the authors established the local existence by using the Faedo−Galerkin method with positive initial energy and suitable conditions on the variable exponents m(x) and r(x). In addition, they also proved that the local solution is global and obtained the stability estimate of the solution. Ding and Zhou [16] considered a Timoshenko-type equation
utt+△2u−M(||∇u||22)△u+|ut|p(x)−2ut=|u|q(x)−2u, |
they prove that the solutions blow up in finite time with positive initial energy. Therefore, the existence of finite-time blow-up solutions with arbitrarily high initial energy is established, and the upper and lower bounds of the blow-up time are derived. More related references can be found in [17,18,19,20,21,22].
Motivated by [7,13,14], we considered the existence of the solutions and their blow-up for the nonlinear damping and viscoelastic hyperbolic problem with variable exponents. Our aim in this work is to prove the existence of the weak solutions and to find sufficient conditions on m(x) and p(x) for which the blow-up takes place.
This article consists of three sections in addition to the introduction. In Section 2, we recall the definitions and properties of Lp(x)(Ω) and the Sobolev spaces W1,p(x)(Ω). In Section 3, we prove the existence of weak solutions for Problem (1.1). In Section 4, we state and prove the blow-up result for solutions with positive initial energy as well as nonpositive initial energy.
In this section, we review some results regarding Lebesgue and Sobolev spaces with variable exponents first. All of these results and a comprehensive study of these spaces can be found in [23]. Here (⋅,⋅) and ⟨⋅,⋅⟩ denote the inner product in space L2(Ω) and the duality pairing between H−2(Ω) and H20(Ω).
The variable exponent Lebesgue space Lp(x)(Ω) is defined by
Lp(x)(Ω)={u(x):uismeasurableinΩ, ρp(x)(u)=∫Ω|u|p(x)dx<∞}, |
this space is endowed with the norm
‖u‖p(x)=inf {λ>0:∫Ω|u(x)λ|p(x)dx≤1}. |
The variable exponent Sobolev space W1,p(x)(Ω) is defined by
W1,p(x)(Ω)={u∈Lp(x)(Ω) suchthat∇uexistsand|∇u|∈Lp(x)(Ω)}, |
the corresponding norm for this space is
‖u‖1,p(x)=‖u‖p(x)+‖∇u‖p(x), |
define W1,p(x)0(Ω) as the closure of C∞0(Ω) with respect to the W1,p(x)(Ω) norm. The spaces Lp(x)(Ω),W1,p(x)(Ω) and W1,p(x)0(Ω) are separable and reflexive Banach spaces when 1<p−≤p+<∞, where p−:=essinfΩp(x) and p+:=esssupΩp(x). As usual, we denote the conjugate exponent of p(x) by p′(x)=p(x)/(p(x)−1) and the Sobolev exponent by
p∗(x)={np(x)n−kp(x),if p(x)<n,∞,if p(x)≥n. |
Lemma 2.1. If p1(x), p2(x)∈C+(¯Ω)={h∈C(¯Ω):minx∈¯Ωh(x)>1}, p1(x)≤p2(x) for any x∈Ω, then there exists the continuous embedding Lp2(x)(Ω)↪Lp1(x)(Ω), whose norm does not exceed |Ω|+1.
Lemma 2.2. Let p(x), q(x)∈C+(¯Ω). Assuming that q(x)<p∗(x), there is a compact and continuous embedding Wk,p(x)(Ω)↪Lq(x)(Ω).
Lemma 2.3. (Hölder's inequality) [24] For any u∈Lp(x)(Ω) and v∈Lq(x)(Ω), then the following inequality holds:
|∫Ωuvdx|≤(1p−+1q−)||u||p(x)||v||q(x)≤2||u||p(x)||v||q(x). |
Lemma 2.4. For u∈Lp(x)(Ω), the following relations hold:
u≠0⇒(‖u‖p(x)=λ⇔ρp(x)(uλ)=1), |
‖u‖p(x)<1(=1;>1)⇔ρp(x)(u)<1(=1;>1), |
‖u‖p(x)>1⇒‖u‖p−p(x)≤ρp(x)(u)≤‖u‖p+p(x), |
‖u‖p(x)<1⇒‖u‖p+p(x)≤ρp(x)(u)≤‖u‖p−p(x). |
Next, we give the definition of the weak solution to Problem (1.1).
Definition 2.1. A function u(x, t) is called a weak solution for Problem (1.1), if u∈C(0,T;H20(Ω)) ∩C1(0,T;H20(Ω))∩C2(0,T;H−2(Ω)) with utt∈L2(0,T;H20(Ω)) and u satisfies the following conditions:
(1) For every ω∈H20(Ω) and for a.e.t∈(0,T)
⟨utt,ω⟩+(△u,△ω)+(△utt,△ω)−∫t0g(t−τ)(△u(τ),△ω)dτ+(|ut|m(x)−2ut,ω)=(|u|p(x)−2u,ω), |
(2) u(x,0)=u0(x)∈H20(Ω),ut(x,0)=u1(x)∈H20(Ω).
In this section, we prove the existence of a weak solution for Problem (1.1) by making use of the Faedo–Galerkin method and the contraction mapping principle. For a fixed T>0, we consider the space H=C(0,T;H20(Ω))∩C1(0,T;H20(Ω)) with the norm ||v||2H=max0≤t≤T(||△vt||22+l||△v||22).
Lemma 3.1. Assume that (1.4), (1.5), and (1.6) hold, let (u0,u1)∈H20(Ω)×H20(Ω), for any T>0, v∈H, then there exists u∈C(0,T;H20(Ω))∩C1(0,T;H20(Ω))∩C2(0,T;H−2(Ω)) with utt∈L2(0,T;H20(Ω)) satisfying
{utt+△2u+△2utt−∫t0g(t−τ)△2u(τ)dτ+|ut|m(x)−2ut=|v|p(x)−2v,(x,t)∈Ω×(0,T),u(x,t)=∂u∂ν(x,t)=0,(x,t)∈∂Ω×(0,T),u(x,0)=u0(x), ut(x,0)=u1(x),x∈Ω. | (3.1) |
Proof. Let {ωj}∞j=1 be the orthogonal basis of H20(Ω), which is the standard orthogonal basis in L2(Ω) such that
−△ωj=λjωj in Ω,ωj=0 on ∂Ω, |
we denote by Vk=span{ω1,ω2,⋅⋅⋅,ωk} the subspace generated by the first k vectors of the basis {ωj}∞j=1. By normalization, we have ||ωj||2=1. For all k≥1, we seek k functions ck1(t),ck2(t),…,ckk(t)∈C2[0,T] such that
uk(x,t)=k∑j=1ckj(t)ωj(x), |
satisfying the following approximate problem
{(uktt,ωi)+(△uk,△ωi)+(△uktt,△ωi)−∫t0g(t−τ)(△uk,△ωi)dτ+(|ukt|m(x)−2ukt,ωi)=∫Ω|v|p(x)−2vωidx,uk(0)=uk0, ukt(0)=uk1, i=1,2,…k, | (3.2) |
where
uk0=k∑i=1(u0,ωi)ωi→u0 in H20(Ω), |
uk1=k∑i=1(u1,ωi)ωi→u1 in H20(Ω), |
thus, (3.2) generates the initial value problem for the system of second-order differential equations with respect to cki(t):
{(1+λ2i)ckitt(t)+λ2icki(t)=Gi(ck1t(t),…,ckkt(t))+gi(cki(t)), i=1,2,…,k,cki(0)=∫Ωu0ωidx, ckit(0)=∫Ωu1ωidx, i=1,2,…,k. | (3.3) |
where
Gi(ck1t(t),…,ckkt(t))=−∫Ω|k∑j=1ckjt(t)ωj(x)|m(x)−2k∑j=1ckjt(t)ωj(x)ωi(x)dx, |
and
gi(cki(t))=λ2i∫t0g(t−τ)cki(τ)dτ+∫Ω|v|p(x)−2vωidx, |
by Peano's Theorem, we infer that the Problem (3.3) admits a local solution cki(t)∈C2[0,T].
The first estimate. Multiplying (3.2) by ckit(t) and summing with respect to i, we arrive at the relation
ddt(12||ukt||22+12||△uk||22+12||△ukt||22)+∫Ω|ukt|m(x)dx−∫t0g(t−τ)∫Ω△uk(τ)△uktdxdτ=∫Ω|v|p(x)−2vuktdx. | (3.4) |
By simple calculation, we have
−∫t0g(t−τ)∫ΩΔuk(τ)Δuktdxdτ=12ddt(g⋄△uk)−12(g′⋄△uk)−12ddt∫t0g(τ)dτ||Δuk||22+12g(t)||△uk||22, | (3.5) |
where
(φ⋄△ψ)=∫t0φ(t−τ)||△ψ(t)−△ψ(τ)||22dτ, |
inserting (3.5) into (3.4), using Hölder's inequality and Young's inequality, we obtain
ddt[12||ukt||22+12||△ukt||22+12(g⋄△uk)+12(1−∫t0g(τ)dτ)||Δuk||22]=12(g′⋄△uk)−12g(t)||△uk||22+∫Ω|v|p(x)−2vuktdx−∫Ω|ukt|m(x)dx≤∫Ω|v|p(x)−2vuktdx≤‖|v|p(x)−2v‖2||ukt||2≤η2∫Ω|v|2(p(x)−1)dx+12η||ukt||22, | (3.6) |
using the embedding H20(Ω)↪L2(p(x)−1)(Ω) and Lemma 2.4, we easily obtain
∫Ω|v|2(p(x)−1)dx≤max{||v||2(p−−1)2(p(x)−1),||v||2(p+−1)2(p(x)−1)}≤Cmax{||△v||2(p−−1)2,||△v||2(p+−1)2}≤C, | (3.7) |
where C is a positive constant. We denote by C various positive constants that may be different at different occurrences.
Combining (3.6) and (3.7), we obtain
ddt[12||ukt||22+12||△ukt||22+12(g⋄△uk)+12(1−∫t0g(τ)dτ)||Δuk||22]≤η2C+12η||ukt||22, |
by Gronwall's inequality, there exists a positive constant CT such that
||ukt||22+||△ukt||22+(g⋄△uk)+l||Δuk||22≤CT, | (3.8) |
therefore, there exists a subsequence of {uk}∞k=1, which we still denote by {uk}∞k=1, such that
uk∗⇀u weakly star in L∞(0,T;H20(Ω)),ukt∗⇀ut weakly star in L∞(0,T;H20(Ω)),uk⇀u weakly in L2(0,T;H20(Ω)),ukt⇀ut weakly in L2(0,T;H20(Ω)). | (3.9) |
The second estimate. Multiplying (3.2) by ckitt(t) and summing with respect to i, we obtain
||uktt||22+||Δuktt||22+ddt(∫Ω1m(x)|ukt|m(x)dx)=−∫Ω△uk△ukttdx+∫t0g(t−τ)∫ΩΔuk(τ)Δukttdxdτ+∫Ω|v|p(x)−2vukttdx. | (3.10) |
Note that we have the estimates for ε>0
|∫Ω△uk△ukttdx|≤ε||△uktt||22+14ε||△uk||22, | (3.11) |
∫Ω|v|p(x)−2vukttdx≤‖|v|p(x)−2v‖2‖uktt‖2≤ε||uktt||22+14ε∫Ω|v|2(p(x)−1)dx, | (3.12) |
and
|∫t0g(t−τ)∫Ω△uk(τ)△ukttdxdτ|≤14ε∫Ω(∫t0g(t−τ)△uk(τ)dτ)2dx+ε||△uktt||22≤ε||△uktt||22+14ε∫t0g(s)ds∫t0g(t−τ)∫Ω|△uk(τ)|2dxdτ≤ε||△uktt||22+(1−l)g(0)4ε∫t0||△uk(τ)||22dτ, | (3.13) |
similar to (3.6) and (3.7), from H20(Ω)↪L2(Ω), we have
∫Ω|v|p(x)−2vukttdx≤εC||△uktt||22+C4ε. | (3.14) |
Taking into account (3.10)−(3.14), we obtain
||uktt||22+(1−2ε−Cε)||△uktt||22+ddt(∫Ω1m(x)|ukt|m(x)dx)≤14ε||△uk||22+(1−l)g(0)4ε∫t0||△uk(τ)||22dτ+C4ε, | (3.15) |
integrating (3.15) over (0,t), we obtain
∫t0||uktt||22dτ+(1−2ε−Cε)∫t0||△uktt||22dτ+∫Ω1m(x)|ukt|m(x)dx≤C4ε∫t0(||△uk||22+∫τ0||△uk(s)||22ds)dτ+CT, | (3.16) |
taking ε small enough in (3.16), for some positive constant CT, we obtain
∫t0||uktt||22dτ+∫t0||△uktt||22dτ≤CT, | (3.17) |
we observe that estimate (3.17) implies that there exists a subsequence of {uk}∞k=1, which we still denote by {uk}∞k=1, such that
uktt⇀utt weakly in L2(0,T;H20(Ω)). | (3.18) |
In addition, from (3.9), we have
(uktt,ωi)=ddt(ukt,ωi)∗⇀ddt(ut,ωi)=(utt,ωi) weakly star in L∞(0,T;H−2(Ω)). | (3.19) |
Next, we will deal with the nonlinear term. Combining (3.9), (3.18), and Aubin–Lions theorem [25], we deduce that there exists a subsequence of {uk}∞k=1 such that
ukt→ut strongly in C(0,T;L2(Ω)), | (3.20) |
then
|ukt|m(x)−2ukt→|ut|m(x)−2ut a.e. (x,t)∈Ω×(0,T), | (3.21) |
using the embedding H20(Ω)↪L2(m(x)−1)(Ω) and Lemma 2.4, we have
‖|ukt|m(x)−2ukt‖22=∫Ω|ukt|2(m(x)−1)dx≤max{||△ukt||2(m−−1)2,||△ukt||2(m+−1)2}≤C, | (3.22) |
hence, using (3.21) and (3.22), we obtain
|ukt|m(x)−2ukt∗⇀|ut|m(x)−2ut weakly star in L∞(0,T;L2(Ω)). | (3.23) |
Setting up k→∞ in (3.2), combining with (3.9), (3.18), (3.19), and (3.23), we obtain
⟨utt,ω⟩+(△u,△ω)+(△utt,△ω)−∫t0g(t−τ)(△u(τ),△ω)dτ+(|ut|m(x)−2ut,ω)=(|v|p(x)−2v,ω). |
To handle the initial conditions. From (3.9) and Aubin–Lions theorem, we can easily get uk→u in C(0,T;L2(Ω)), thus uk(0)→u(0) in L2(Ω), and we also have that uk(0)=uk0→u0 in H20(Ω), hence u(0)=u0 in H20(Ω). Similarly, we get that ut(0)=u1.
Uniqueness. Suppose that (3.1) has solutions u and z, then ω=u−z satisfies
{ωtt+△2ω+△2ωtt−∫t0g(t−τ)△2ω(τ)dτ+|ut|m(x)−2ut−|zt|m(x)−2zt=0,(x,t)∈Ω×(0,T),ω(x,t)=∂ω∂ν(x,t)=0,(x,t)∈∂Ω×(0,T),ω(x,0)=0, ωt(x,0)=0,x∈Ω. |
Multiplying the first equation of Problem (3.1) by ωt and integrating over Ω, we have
12ddt[||ωt||22+(1−∫t0g(τ)dτ)||△ω||22+||△ωt||22+(g⋄△ω)]+12g(t)||△ω||22=−∫Ω(|ut|m(x)−2ut−|zt|m(x)−2zt)(ut−zt)dx+12(g′⋄△ω), |
from the inequality
(|a|m(x)−2a−|b|m(x)−2b)(a−b)≥0, | (3.24) |
for all a,b∈Rn and a.e. x∈Ω, we obtain
||ωt||22+l||△ω||22+||△ωt||22=0, |
which implies that ω=0. This completes the proof.
Theorem 3.1. Assume that (1.4) and (1.6) hold, let the initial date (u0,u1)∈H20(Ω)×H20(Ω), and
2≤p−≤p(x)≤p+≤2(n−3)n−4, |
then there exists a unique local solution of Problem (1.1).
Proof. For any T>0, consider MT={u∈H:u(0)=u0,ut(0)=u1,||u||H≤M}. Lemma 3.1 implies that for ∀v∈MT, there exists u=S(v) such that u is the unique solution to Problem 3.1. Next, we prove that for a suitable T>0, S is a contractive map satisfying S(MT)⊂MT.
Multiplying the first equation of the Problem (3.1) by ut and integrating it over (0,t), we obtain
||ut||22+||△ut||22+(g⋄△u)+l||Δu||22≤||u1||22+||△u1||22+||Δu0||22+2∫t0∫Ω|v|p(x)−2vutdxdτ, | (3.25) |
using Hölder's inequality and Young's inequality, we have
|∫Ω|v|p(x)−2vutdx|≤γ||ut||22+14γ∫Ω|v|2p(x)−2dx≤γ||ut||22+14γ[∫Ω|v|2p−−2dx+∫Ω|v|2p+−2dx]≤γ||ut||22+C4γ[||△v||2p−−22+||△v||2p+−22], |
thus, (3.25) becomes
||ut||22+||△ut||22+l||Δu||22≤λ0+2∫t0∫Ω|v|p(x)−2vutdxdτ≤λ0+2γTsup(0,T)||ut||22+TC2γsup(0,T)[||△v||2p−−22+||△v||2p+−22], |
hence, we have
sup(0,T)||ut||22+sup(0,T)||△ut||22+lsup(0,T)||Δu||22≤λ0+2γTsup(0,T)||ut||22+TC2γsup(0,T)[||v||2p−−2H+||v||2p+−2H], |
where λ0=||u1||22+||△u1||22+||Δu0||22, choosing γ=12T such that
||u||2H≤λ0+T2Csup(0,T)[||v||2p−−2H+||v||2p+−2H]. |
For any v∈MT, by choosing M large enough so that
||u||2H≤λ0+2T2CM2(p+−1)≤M2, |
and T>0, sufficiently small so that
T≤√M2−λ02CM2(p+−1), |
we obtain ||u||H≤M, which shows that S(MT)⊂MT.
Let v1,v2∈MT,u1=S(v1),u2=S(v2),u=u1−u2, then u satisfies
{utt+△2u+△2utt−∫t0g(t−τ)△2u(τ)dτ+|u1t|m(x)−2u1t−|u2t|m(x)−2u2t=|v1|p(x)−2v1−|v2|p(x)−2v2,(x,t)∈Ω×(0,T),u(x,t)=∂u∂ν(x,t)=0,(x,t)∈∂Ω×(0,T),u(x,0)=0, ut(x,0)=0,x∈Ω. |
Multiplying by ut and integrating over Ω×(0,t), we obtain
12||ut||22+12(1−∫t0g(τ)dτ)||△u||22+12||△ut||22+12(g⋄△u)+∫t0∫Ω[|u1t|m(x)−2u1t−|u2t|m(x)−2u2t](u1t−u2t)dxdτ≤∫t0∫Ω(f(v1)−f(v2))utdxdτ, | (3.26) |
where f(v)=|v|p(x)−2v. From (1.6) and (3.24), we obtain
12||ut||22+l2||△u||22+12||△ut||22+12(g⋄△u)≤∫t0∫Ω(f(v1)−f(v2))utdxdτ. | (3.27) |
Now, we evaluate
I=∫Ω|(f(v1)−f(v2))||ut|dx=∫Ω|f′(ξ)||v||ut|dx, |
where v=v1−v2 and ξ=αv1+(1−α)v2, 0≤α≤1. Thanks to Young's inequality and Hölder's inequality, we have
I≤δ2||ut||22+12δ∫Ω|f′(ξ)|2|v|2dx≤δ2||ut||22+(p+−1)22δ∫Ω|ξ|2(p(x)−2)|v|2dx≤δ2||ut||22+(p+−1)22δ(∫Ω|v|2nn−2dx)n−2n[∫Ω|ξ|n(p(x)−2)dx]2n≤δ2||ut||22+(p+−1)22δ(∫Ω|v|2nn−2dx)n−2n[(∫Ω|ξ|n(p+−2)dx)2n+(∫Ω|ξ|n(p−−2)dx)2n]≤δ2||ut||22+(p+−1)2C2δ||Δv||22[||△ξ||2(p+−2)2+||△ξ||2(p−−2)2]≤δ2||ut||22+(p+−1)2C2δ||Δv||22(M2(p+−2)+M2(p−−2)). | (3.28) |
Inserting (3.28) into (3.27), choosing δ small enough, we obtain
||u||2H≤(p+−1)2CTδ(M2(p−−2)+M2(p+−2))||v||2H, |
taking T small enough so that (p+−1)2CTδ(M2(p−−2)+M2(p+−2))<1, we conclude
||u||2H=||S(v1)−S(v2)||2H≤||v1−v2||2H, |
thus, the contraction mapping principle ensures the existence of a weak solution to Problem (1.1). This completes the proof.
In this section, we show that the solution to Problem (1.1) blows up in finite time when the initial energy lies in positive as well as nonpositive. For this task, we define
E(t)=12||ut||22+12(1−∫t0g(τ)dτ)||△u||22+12||△ut||22+12(g⋄△u)−∫Ω1p(x)|u|p(x)dx, | (4.1) |
by the definition of E(t), we also have
E′(t)=−∫Ω|ut|m(x)dx+12(g′⋄△u)−12g(t)||△u||22≤0. | (4.2) |
Now, we set
B1=max{1,Bl12}, λ1=(B21)−2p−−2, E1=(12−1p−)(B21)−p−p−−2, |
and
H(t)=E2−E(t), | (4.3) |
where the constant E2∈(E(0),E1) will be discussed later, and B is the best constant of the Sobolev embedding H20(Ω)↪Lp(x)(Ω). It follows from (4.2) that
H′(t)=−E′(t)≥0, | (4.4) |
and H(t) is a non−decreasing function.
To prove Theorem 4.1, we need the following two lemmas:
Lemma 4.1. Suppose that (1.6) holds and the exponents m(x) and p(x) satisfy condition (1.4) and (1.5). Assume further that
E(0)<E1 and λ1<λ(0)=B21l||△u0||22, |
then there exists a constant λ2>λ1 such that
B21l||△u||22≥λ2, t≥0. | (4.5) |
Proof. Using (1.6), (4.1), Lemma 2.4, and the embedding H20(Ω)↪Lp(x)(Ω), we find that
E(t)≥12(1−∫t0g(τ)dτ)||△u||22−∫Ω1p(x)|u|p(x)dx≥l2||△u||22−1p−∫Ω|u|p(x)dx≥l2||△u||22−1p−max{||u||p−p(x),||u||p+p(x)}≥l2||△u||22−1p−max{Bp−||△u||p−2,Bp+||△u||p+2}≥l2||△u||22−1p−max{Bp−1lp−2||△u||p−2,Bp+1lp+2||△u||p+2}≥12B21λ−1p−max{λp−2,λp+2}:=G(λ), | (4.6) |
where λ:=λ(t)=B21l||△u||22. Analyzing directly the properties of G(λ), we deduce that G(λ) satisfies the following properties:
G′(λ)={12B21−p+2p−λp+−22<0, λ>1,12B21−12λp−−22, 0<λ<1, |
G′+(1)=12B21−p+2p−<0, G′−(1)=12B21−12<0, |
G′(λ1)=0, 0<λ1<1. |
It is easily verified that G(λ) is strictly increasing for 0<λ<λ1, strictly decreasing for λ1<λ, G(λ)→−∞ as λ→+∞, and G(λ1)=E1. Since E(0)<E1, there exists a λ2>λ1 such that G(λ2)=E(0). By (4.6), we see that G(λ(0))≤E(0)=G(λ2), which implies λ(0)≥λ2 since the condition λ(0)>λ1. To prove (4.5), we suppose by contradiction that for some t0>0, λt0=B21l||△u(t0)||22<λ2. The continuity of B21l||△u||22 illustrates that we could choose t0 such that λ1<λt0<λ2, then we have E(0)=G(λ2)<G(λt0)≤E(t0). This is a contradiction. The proof is completed.
Lemma 4.2. Let the assumption in Lemma 4.1 be satisfied. For t∈[0,T), we have
0<H(0)≤H(t)≤1p−ρp(x)(u). |
Proof. (4.4) indicates that H(t) is nondecreasing with respect to t, thus
H(t)≥H(0)=E2−E(0)>0, ∀t∈[0,T). |
It follows from (1.6), (4.1), and Lemma 4.1 that
H(t)=E2−E(t)=E2−12||ut||22−12(1−∫t0g(τ)dτ)||△u||22−12(g⋄△u)−12||△ut||22+∫Ω1p(x)|u|p(x)dx≤E1−l2||△u||22+∫Ω1p(x)|u|p(x)dx≤E1−12B21λ2+∫Ω1p(x)|u|p(x)dx≤E1−12B21λ1+∫Ω1p(x)|u|p(x)dx≤∫Ω1p(x)|u|p(x)dx≤1p−ρp(x)(u). |
The proof is completed.
Our blow-up result reads as follows:
Theorem 4.3. Suppose that
2≤m−≤m(x)≤m+<p−≤p(x)≤p+≤2(n−3)n−4, |
and
1−l=∫∞0g(τ)dτ<p−2−1p−2−1+12p−, | (4.7) |
hold, if the following conditions
E(0)<12(12−1p−)(1−1p−(p−−2)1−ll)(B21)−p−p−−2 and λ1<λ(0)=B21l||△u0||22, |
are satisfied, then there exists T∗<+∞ such that
limt→T∗−(||ut||22+||△ut||22+||△u||22+||u||p+p+)=+∞. | (4.8) |
Proof. Assume by contradiction that (4.8) does not hold true, then for ∀T∗<+∞ and all t∈[0,T∗], we get
||ut||22+||△ut||22+||△u||22+||u||p+p+≤C∗, | (4.9) |
where C∗ is a positive constant.
Now, we define L(t) as follows:
L(t)=H1−α(t)+ϵ∫Ωutudx+ϵ∫Ω△ut△udx, | (4.10) |
where ε>0, small enough to be chosen later, and
0≤α≤min{p−−m+p−(m+−1),p−−22p−}. |
The remaining proof will be divided into two steps.
Step 1: Estimate for L'(t). By taking the derivative of (4.10) and using (1.1), we obtain
L′(t)=(1−α)H−α(t)[∫Ω|ut|m(x)dx−12(g′⋄△u)+12g(t)||△u||22]+ϵ||ut||22+ϵ∫Ω△utt△udx+ϵ||△ut||22−ϵ||△u||22+ϵ∫Ω∫t0g(t−τ)△u(τ)dτ△udx−ϵ∫Ω|ut|m(x)−2utudx+ϵ∫Ω|u|p(x)dx−ϵ∫Ω△utt△udx≥(1−α)H−α(t)∫Ω|ut|m(x)dx+ϵ||ut||22−ϵ||△u||22+ϵ∫Ω∫t0g(t−τ)△u(τ)dτ△udx−ϵ∫Ω|ut|m(x)−2utudx+ϵ∫Ω|u|p(x)dx+ϵ||Δut||22, |
applying Hölder's inequality and Young's inequality, we have
ϵ∫Ω∫t0g(t−τ)Δu(τ)Δu(t)dτdx=ϵ∫Ω∫t0g(t−τ)Δu(t)(Δu(τ)−Δu(t))dτdx+ϵ∫t0g(t−τ)dτ||Δu||22≥−ϵ∫t0g(t−τ)||Δu(τ)−Δu(t)||2||Δu(t)||2dτ+ϵ∫t0g(t−τ)dτ||Δu||22≥−ϵp−(1−ε1)2(g⋄△u)+ϵ(1−12p−(1−ε1))∫t0g(τ)dτ||Δu||22, |
where 0<ε1<p−−2p−, then
L′(t)≥(1−α)H−α(t)∫Ω|ut|m(x)dx+ϵ||ut||22−ϵ||Δu||22+ϵ||Δut||22−ϵ∫Ω|ut|m(x)−2utudx+ϵ∫Ω|u|p(x)dx−ϵp−(1−ε1)2(g⋄△u)+ϵ(1−12p−(1−ε1))∫t0g(τ)dτ||Δu||22, |
rewriting (4.7) to (p−2−1)l−12p−(1−l)>0, using (4.1) and (4.3) to substitute for (g⋄△u), choosing ε1>0 sufficiently small, we obtain
L′(t)≥(1−α)H−α(t)∫Ω|ut|m(x)dx+ϵp−(1−ε1)H(t)+(ϵ+ϵp−(1−ε1)2)(||ut||22+||△ut||22)+ϵ{(p−(1−ε1)2−1)(1−∫t0g(τ)dτ)−12p−(1−ε1)∫t0g(τ)dτ}||△u||22−ϵp−(1−ε1)E2−ϵ∫Ω|ut|m(x)−2utudx+ϵε1∫Ω|u|p(x)dx≥(1−α)H−α(t)∫Ω|ut|m(x)dx+ϵp−(1−ε1)H(t)+(ϵ+ϵp−(1−ε1)2)(||ut||22+||△ut||22)+ϵ{(p−(1−ε1)2−1)l2−12p−(1−ε1)1−l2}lλ2B21−ϵp−(1−ε1)E2−ϵ∫Ω|ut|m(x)−2utudx+ϵ{(p−(1−ε1)2−1)l2−12p−(1−ε1)1−l2}||△u||22+ϵε1∫Ω|u|p(x)dx.≥(1−α)H−α(t)∫Ω|ut|m(x)dx+ϵp−(1−ε1)H(t)+(ϵ+ϵp−(1−ε1)2)(||ut||22+||△ut||22)+ϵ{(p−(1−ε1)2−1)l2−12p−(1−ε1)1−l2}l(B21)−p−p−−2−ϵp−(1−ε1)E2−ϵ∫Ω|ut|m(x)−2utudx+ϵ{(p−(1−ε1)2−1)l2−12p−(1−ε1)1−l2}||△u||22+ϵε1∫Ω|u|p(x)dx. | (4.11) |
Step 1.1: Estimate for ϵ{(p−(1−ε1)2−1)l2−12p−(1−ε1)1−l2}l(B21)−p−p−−2−ϵp−(1−ε1)E2. It follows from the condition in Theorem 3.1 that
E(0)<12(12−1p−)(1−1−lp−(p−−2)l)(B21)−p−p−−2=(p−2−1)l2−12p−(1−l)2lp−(B21)−p−p−−2<E1, |
here, we can take ε1>0 sufficiently small and choose E2∈(E(0),E1) sufficiently close to E(0) such that
ϵ(p−(1−ε1)2−1)l2−12p−(1−ε1)(1−l)2l(B21)−p−p−−2−ϵ(1−ε1)p−E2≥ϵ(p−(1−ε1)2−1)l2−12p−(1−ε1)(1−l)2l(B21)−p−p−−2−ϵ(1−ε1)p−(p−2−1)l2−12p−(1−l)2lp−(B21)−p−p−−2≥0. | (4.12) |
Therefore, we obtain by combining (4.11) and (4.12),
L′(t)≥(1−α)H−α(t)∫Ω|ut|m(x)dx+ϵp−(1−ε1)H(t)+(ϵ+ϵp−(1−ε1)2)(||ut||22+||△ut||22)+ϵε1∫Ω|u|p(x)dx+ϵ{(p−(1−ε1)2−1)l2−12p−(1−ε1)1−l2}||△u||22−ϵ∫Ω|ut|m(x)−2utudx. | (4.13) |
Step 1.2: Estimate for −ϵ∫Ω|ut|m(x)−2utudx. Applying Young's inequality with ε2>1, the embedding Lp(x)(Ω)↪Lm(x)(Ω), Lemma 2.4 and Lemma 4.2, we easily have
|∫Ω|ut|m(x)−2utudx|≤∫Ω|ut|m(x)−1H−αm(x)−1m(x)(t)Hαm(x)−1m(x)(t)|u|dx≤ε2H−α(t)∫Ω|ut|m(x)dx+1εm−−12∫Ω|u|m(x)Hα(m(x)−1)(t)dx≤ε2H−α(t)∫Ω|ut|m(x)dx+2Cα(m−−m+)1εm−−12Hα(m+−1)(t)∫Ω|u|m(x)dx≤ε2H−α(t)∫Ω|ut|m(x)dx+C2εm−−12Hα(m+−1)(t)max{||u||m+p(x),||u||m−p(x)}, | (4.14) |
where C1=min{H(0),1}, C2=2(1+|Ω|)m+Cα(m−−m+)1. Next, we have
||u||m+p(x)≤max{(∫Ω|u|p(x)dx)m+p+,(∫Ω|u|p(x)dx)m+p−}≤max{[p−H(t)]m+p+−m+p−,1}(∫Ω|u|p(x)dx)m+p−, |
and
||u||m−p(x)≤max{[p−H(t)]m−p+−m+p−,[p−H(t)]m−−m+p−}(∫Ω|u|p(x)dx)m+p−, |
which illustrate
max{||u||m+p(x),||u||m−p(x)}≤C3(∫Ω|u|p(x)dx)m+p−, |
where C3=2min{p−H(0),1}m−p+−m+p−. Recalling 0<α≤p−−m+p−(m+−1) and Lemma 4.2, apparently,
Hα(m+−1)(t)max{||u||m+p(x),||u||m−p(x)}≤C3Hα(m+−1)(t)(∫Ω|u|p(x)dx)m+p−≤C3Hα(m+−1)+m+p−−1(t)Hα(m+−1)+m+p−−1(0)H1−m+p−(t)Hα(m+−1)+m+p−−1(0)(∫Ω|u|p(x)dx)m+p−≤C3(1p−)1−m+p−(∫Ω|u|p(x)dx)1−m+p−Hα(m+−1)+m+p−−1(0)(∫Ω|u|p(x)dx)m+p−≤C3(1p−)1−m+p−Cα(m+−1)+m+p−−11∫Ω|u|p(x)dx, | (4.15) |
it follows from (4.13), (4.14), and (4.15) that
L′(t)≥(1−α−ϵε2)H−α(t)∫Ω|ut|m(x)dx+(ϵ+ϵp−(1−ε1)2)(||ut||22+||△ut||22)+ϵ(1−ε1)p−H(t)+ϵ(ε1−Cα(m+−1)+m+p−−11C2C3(1p−)1−m+p−εm−−12)∫Ω|u|p(x)dx+ϵ{(p−(1−ε1)2−1)l2−12p−(1−ε1)1−l2}||△u||22, |
let us fix the constant ε2 so that
ε1>Cα(m+−1)+m+p−−11C2C3(1p−)1−m+p−εm−−12, |
and then choose ϵ so small that 1−α>ϵε1. Therefore, we obtain
L′(t)≥M1(H(t)+||△u||22+||ut||22+||△ut||22+∫Ω|u|p(x)dx), | (4.16) |
where
M1=ϵmin{(1+p−(1−ε1)2),(1−ε1)p−,ε1−Cα(m+−1)+m+p−−11C2C3(1p−)1−m+p−εm−−12,,(p−(1−ε1)2−1)l2−12p−(1−ε1)1−l2}. |
Inequalities (4.16) and Lemma 4.2 imply L(t)≥L(0). Therefore, for a sufficiently small ϵ, we have
L(0)=H1−α(0)+ϵ∫Ωu1u0dx+ϵ∫Ω△u1△u0dx>0. |
Step 2: A differential inequality for L(t). Applying Hölder's inequality, Young's inequality and the embedding Lp(x)(Ω)↪L2(Ω), we easily obtain
|∫Ωutudx|11−α≤(‖ut‖2‖u‖2)11−α≤(1+|Ω|)11−α||ut||11−α2||u||11−αp(x)≤(1+|Ω|)11−αμ||ut||11−αμ2+(1+|Ω|)11−αν||u||11−ανp(x), | (4.17) |
where 1μ+1ν=1. Choosing μ=2(1−α)>1, then ν=2(1−α)2(1−α)−1, further, (4.17) can be rewritten as
|∫Ωutudx|11−α≤(1+|Ω|)11−αμ||ut||22+(1+|Ω|)11−αν||u||22(1−α)−1p(x), | (4.18) |
recalling 0<α<p−−22p−, we obtain
||u||22(1−α)−1p(x)≤max{(∫Ω|u|p(x)dx)2p−[2(1−α)−1],(∫Ω|u|p(x)dx)2p+[2(1−α)−1]}≤{[p−H(t)]2−p−[2(1−α)−1]p−[2(1−α)−1],[p−H(t)]2−p+[2(1−α)−1]p+[2(1−α)−1]}∫Ω|u|p(x)dx≤C4∫Ω|u|p(x)dx, | (4.19) |
with C4=min{p−H(0),1}2−p+[2(1−α)−1]p+[2(1−α)−1]. Inserting (4.19) into (4.18), we obtain
|∫Ωutudx|11−α≤(1+|Ω|)11−αμ||ut||22+(1+|Ω|)11−ανC4∫Ω|u|p(x)dx. | (4.20) |
We now estimate
|∫Ω△ut△udx|11−α≤||△ut||11−α2||Δu||11−α2≤C11−α∗≤C11−α∗H(0)H(t), | (4.21) |
therefore, combining (4.20) and (4.21), we obtain
L11−α(t)=(H1−α(t)+ϵ∫Ωutudx+ϵ∫Ω△ut△udx)11−α≤M2(H(t)+||ut||22+||△ut||22+||△u||22+∫Ω|u|p(x)dx), | (4.22) |
where
M2=max{211−α(211−α+ϵ11−αC11−α∗H(0)), 221−αϵ11−α(1+|Ω|)11−αμ, 221−αϵ11−α(1+|Ω|)11−ανC4}. |
Combining (4.16) and (4.22), we arrive at
L′(t)≥M1M2L11−α(t),∀t≥0. | (4.23) |
A simple integration of (4.23) over (0,t) yields
Lα1−α(t)≥1Lαα−1(0)−M1M2α1−αt, |
this shows that L(t) blows up in finite time
T∗≤M2M11−ααLαα−1(0), |
furthermore, one gets from (4.22) that
limt→T∗−(H(t)+||ut||22+||△ut||22+||△u||22+∫Ω|u|p(x)dx)=+∞, |
it easily follows that
∫Ω|u|p(x)dx≤∫{|u|≥1}|u|p+dx+∫{|u|<1}|u|p−dx≤||u||p+p++|Ω|, |
and using Lemma 4.2, we obtain
limt→T∗−(||ut||22+||△ut||22+||△u||22+||u||p+p+)=+∞, |
this leads to a contradiction with (4.9). Thus, the solution to Problem (1.1) blows up in finite time.
Ying Chu: Methodology, Wring-original draft, Writing-review editing; Bo Wen and Libo Cheng: Methodology, Writing-original draft.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors express their heartfelt thanks to the editors and referees who have provided some important suggestions. This work was supported by Science and Technology Development Plan Project of Jilin Province, China (20240101307JC).
The authors declare there is no conflict of interest.
[1] |
Imbabi MS, Carrigan C, McKenna S (2012) Trends and developments in green cement and concrete technology. Int J Sustain Built Environ 1: 194–216. https://doi:10.1016/J.ijsbe.2013.05.001. doi: 10.1016/J.ijsbe.2013.05.001
![]() |
[2] |
Dunuweera SP, Rajapakse RMG (2018) Cement types, composition, uses and advantages of nanocement, environmental impact on cement production, and possible solutions. Adv Mater Sci 2018: 4158682. https://doi:10.1155/2018/4158682 doi: 10.1155/2018/4158682
![]() |
[3] | Czigler T, Reiter S, Schulze P, et al. (2020) Laying the foundation for zero-carbon cement. Available from: https://www.mckinsey.com/industries/chemicals/our-insights/laying-the-foundation-for-zero-carbon-cement#. |
[4] |
Shanks W, Dunant CF, Drewniok MP, et al. (2019) How much cement can we do without? Lessons from cement material flows in the UK. Resour Conserv Recycl 141: 441–454. https://doi:10.1016/J.Resconrec.2018.11.002 doi: 10.1016/J.Resconrec.2018.11.002
![]() |
[5] |
Miller SA, Myers RJ (2019) Environmental impacts of alternative cement binders. Environ Sci Technol 54: 677–686. https://doi:10.1021/acs.est.9b05550 doi: 10.1021/acs.est.9b05550
![]() |
[6] | United States Environmental Protection Agency (EPA), 2019. Available from: https://www.epa.gov. |
[7] |
Fennell PS, Davis SJ, Mohammed A (2021) Decarbonizing cement production. Joule 5: 1305–1311. https://doi:10.1016/J.Joule.2021.04.011 doi: 10.1016/J.Joule.2021.04.011
![]() |
[8] |
Ishak SA, Hashim H (2015) Low carbon measures for cement plant—a review. J Clean Prod 103: 260–274. https://doi:10.1016/j.jclepro.2014.11.003 doi: 10.1016/j.jclepro.2014.11.003
![]() |
[9] |
Ahmed AK, Ahmad MI, Yusup Y (2020) Issues, impacts, and mitigations of carbon dioxide emissions in the building sector. Sustainability 12: 7427. https://doi:10.3390/SU12187427. doi: 10.3390/SU12187427
![]() |
[10] |
Klufallah MM, Nuruddin MF, Khamidi MF, et al. (2014) Assessment of carbon emission reduction for buildings projects in Malaysia-A comparative analysis. E3S Web Conf 3: 01016. https://doi:10.1051/E3SCONF/20140301016 doi: 10.1051/E3SCONF/20140301016
![]() |
[11] | Yoro KO, Daramola MO (2020) CO2 emission sources, greenhouse gases, and the global warming effect, Advances in Carbon Capture: Methods, Technologies and Applications, Woodhead Publishing, 3–28. https://doi:10.1016/B978-0-12-819657-1.00001-32 |
[12] |
Ahmed M, Bashar I, Alam ST, el al. (2021) An overview of Asian cement industry: Environmental impacts, research methodologies and mitigation measures. Sustain Prod Consum 28: 1018–1039. https://doi:10.1016/j.spc.2021.07.024 doi: 10.1016/j.spc.2021.07.024
![]() |
[13] |
Ishak SA, Hashim H (2015) Low carbon measures for cement plant—a review. J Clean Prod 103: 260–274. https://doi:10.1016/j.jclepro.2014.11.003 doi: 10.1016/j.jclepro.2014.11.003
![]() |
[14] | World Health Organization (WHO), 2022. Available from: https://www.who.int/health-topics/air-pollution. |
[15] |
Mensah RA, Shanmugam V, Narayanan S, el al. (2021) Biochar-added cementitious materials—A review on mechanical, thermal, and environmental properties. Sustainability 13: 9336. https://doi:10.3390/su13169336 doi: 10.3390/su13169336
![]() |
[16] |
Tun TZ, Bonnet S, Gheewala SH (2021) Emission reduction pathways for a sustainable cement industry in Myanmar. Sustain Prod Consum 27: 449–461. https://doi:10.1016/j.spc.2021.01.016 doi: 10.1016/j.spc.2021.01.016
![]() |
[17] |
Hasanbeigi A, Morrow W, Masanet E, et al. (2013) Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China. Energy Policy 57: 287–297. https://doi:10.1016/j.enpol.2013.01.053 doi: 10.1016/j.enpol.2013.01.053
![]() |
[18] |
Su TL, Chan DYL, Hung CY, et al. (2013) The status of energy conservation in Taiwan's cement industry. Energy Policy 60: 481–486. https://doi:10.1016/j.enpol.2013.04.002 doi: 10.1016/j.enpol.2013.04.002
![]() |
[19] |
Benhelal E, Zahedi G, Shamsaei E, et al. (2013) Global strategies and potentials to curb CO2 emissions in cement industry. J Clean Prod 51: 142–161. https://doi:10.1016/j.jclepro.2012.10.049 doi: 10.1016/j.jclepro.2012.10.049
![]() |
[20] |
Wang S, Han X (2012) Sustainable cement production with improved energy efficiency and emerging CO2 mitigation. ASEC 2: 123–128. https://doi:10.4236/aces.2012.21015. doi: 10.4236/aces.2012.21015
![]() |
[21] |
Schneider M, Romer M, Tschudin M, et al. (2011) Sustainable cement production—present and future. Cem Concr Res 41: 642–650. https://doi:10.1016/j.cemconres.2011.03.019 doi: 10.1016/j.cemconres.2011.03.019
![]() |
[22] |
Patrizio P, Fajardy M, Bui M, et al. (2021) CO2 mitigation or removal: The optimal uses of biomass in energy system decarbonization. IScience 24: 102765. https://doi:10.1016/J.ISCI.2021.102765. doi: 10.1016/J.ISCI.2021.102765
![]() |
[23] |
Chew, KW, Chia SR, Chia WY, et al. (2021) Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy. Environ Pollut 278: 116836. https://doi:10.1016/j.envpol.2021.116836 doi: 10.1016/j.envpol.2021.116836
![]() |
[24] |
Kumar A, Kumar K, Kaushik N, et al. (2010) Renewable energy in India: current status and future potentials. Renew Sust Energ Rev 14: 2434–2442. https://doi:10.1016/J.RSER.2010.04.003 doi: 10.1016/J.RSER.2010.04.003
![]() |
[25] |
Jacobson MZ (2014) Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. J Geophys Res Atmos 119: 8980–9002. https://doi:10.1002/2014JD021861 doi: 10.1002/2014JD021861
![]() |
[26] |
Chen J, Li C, Ristovski Z, et al. (2017) A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci Total Environ 579: 1000–1034. https://doi:10.1016/j.scitotenv.2016.11.025 doi: 10.1016/j.scitotenv.2016.11.025
![]() |
[27] |
Palanivelu K, Ramachandran A, Raghavan V (2021) Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—a review. Biomass Convers Biorefin 1: 2247–2267. https://doi:10.1007/s13399-020-00604-5 doi: 10.1007/s13399-020-00604-5
![]() |
[28] |
Thomas BS, Yang J, Mo KH, et al. (2021). Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: A comprehensive review. J Build Eng 40: 102332. https://doi:10.1016/j.jobe.2021.102332 doi: 10.1016/j.jobe.2021.102332
![]() |
[29] |
Gunarathne V, Ashiq A, Ramanayaka S, et al. (2019) Biochar from municipal solid waste for resource recovery and pollution remediation. Environ Chem Lett 17: 1225–1235. https://doi:10.1007/S10311-019-00866-0 doi: 10.1007/S10311-019-00866-0
![]() |
[30] |
Liu WJ, Jiang H, Yu HQ (2019) Emerging applications of biochar-based materials for energy storage and conversion. Energy Environ Sci 12: 1751–1779. https://doi:10.1039/C9EE00206E doi: 10.1039/C9EE00206E
![]() |
[31] | Baidoo I, Sarpong DB, Bolwig S, et al. (2016) Biochar amended soils and crop productivity: A critical and meta-analysis of literature. Int J Sustain Dev 5: 414–432. Available from: www.isdsnet.com/ijds. |
[32] |
Woolf D, Amonette JE, Street-Perrott FA, et al. (2010). Sustainable biochar to mitigate global climate change. Nat Commun 1: 1–9. https://doi:10.1038/NCOMMS1053 doi: 10.1038/NCOMMS1053
![]() |
[33] |
Pariyar P, Kumari K, Jain MK, et al. (2020) Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Sci Total Environ 713: 136433. https://doi:10.1016/j.scitotenv.2019.136433 doi: 10.1016/j.scitotenv.2019.136433
![]() |
[34] |
Kim S, Lee Y, Lin KYA, et al. (2020) The valorization of food waste via pyrolysis. J Clean Prod 259: 120816. https://doi:10.1016/J.JCLEPRO.2020.120816 doi: 10.1016/J.JCLEPRO.2020.120816
![]() |
[35] |
Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Source 24: 471–482. https://doi:10.1080/00908310252889979 doi: 10.1080/00908310252889979
![]() |
[36] |
Maschio G, Koufopanos C, Lucchesi A (1992) Pyrolysis, a promising route for biomass utilization. Bioresour Technol (United Kingdom) 42: 219–231. https://doi.org/10.1016/0960-8524(92)90025-S doi: 10.1016/0960-8524(92)90025-S
![]() |
[37] |
Li Y, Xing B, Ding Y, et al. (2020) A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresour Technol 312: 123614. https://doi:10.1016/J.BIORTECH.2020.123614 doi: 10.1016/J.BIORTECH.2020.123614
![]() |
[38] |
Leng L, Huang H, Li H, et al. (2019) Biochar stability assessment methods: a review. Sci Total Environ 647: 210–222. https://doi: 10.1016/j.scitotenv.2018.07.402 doi: 10.1016/j.scitotenv.2018.07.402
![]() |
[39] |
Leng L, Huang H (2018) An overview of the effect of pyrolysis process parameters on biochar stability. Bioresour Technol 270: 627–642. https://doi:10.1016/j.biortech.2018.09.030 doi: 10.1016/j.biortech.2018.09.030
![]() |
[40] |
Tang J, Zhu, W, Kookana R, et al. (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116: 653–659. https://doi:10.1016/j.jbiosc.2013.05.035 doi: 10.1016/j.jbiosc.2013.05.035
![]() |
[41] |
Ahmad MR, Chen B, Duan H (2020) Improvement effect of pyrolyzed agro-food biochar on the properties of magnesium phosphate cement. Sci Total Environ 718: 137422. https://doi:10.1016/J.SCITOTENV.2020.137422 doi: 10.1016/J.SCITOTENV.2020.137422
![]() |
[42] |
Bhatia SK, Palai AK, Kumar A, et al. (2021) Trends in renewable energy production employing biomass-based biochar. Bioresour Technol 340: 125644. https://doi:10.1016/J.BIORTECH.2021.125644 doi: 10.1016/J.BIORTECH.2021.125644
![]() |
[43] |
Weber K, Quicker P (2018) Properties of biochar. Fuel 217: 240–261. https://doi:10.1016/j.fuel.2017.12.054 doi: 10.1016/j.fuel.2017.12.054
![]() |
[44] |
Yang S, Wi S, Lee J, et al. (2019) Biochar-red clay composites for energy efficiency as eco-friendly building materials: Thermal and mechanical performance. J Hazard Mater 373: 844–855. https://doi:10.1016/J.JHAZMAT.2019.03.079 doi: 10.1016/J.JHAZMAT.2019.03.079
![]() |
[45] |
Sirico A, Bernardi P, Sciancalepore C et al. (2021) Biochar from wood waste as additive for structural concrete. Constr Build Mater 303: 124500. Available from: https://doi:10.1016/j.conbuildmat.2021.124500 doi: 10.1016/j.conbuildmat.2021.124500
![]() |
[46] | Turovaara M (2022) The effect of high-ratio biochar replacement in concrete on performance properties: Experimental study of biochar addition to concrete mixture[Master's Thesis]. Luleå University of Technology, Sweden. |
[47] | Corwin CH (2008) Laboratory manual for Introductory Chemistry: Concepts and Connections, Pearson Higher Ed. |
[48] | Lehmann J, Joseph S (2015) Biochar for Environmental Management: Science, Technology and Implementation, Routledge. https://doi:10.4324/9781849770552 |
[49] |
Brewer C, Chuang VJ, Masiello CA, et al. (2014) New approaches to measuring biochar density and porosity. Biomass Bioenerg 66: 176–185. https://doi:10.1016/j.biombioe.2014.03.059 doi: 10.1016/j.biombioe.2014.03.059
![]() |
[50] |
Gupta S, Kashani A (2021) Utilization of biochar from unwashed peanut shell in cementitious building materials—Effect on early age properties and environmental benefits. Fuel Process Technol 218: 106841. https://doi:10.1016/j.fuproc.2021.106841 doi: 10.1016/j.fuproc.2021.106841
![]() |
[51] |
Blanco-Canqui H (2017) Biochar and soil physical properties. Soil Sci Soc Am J 81: 687–711. https://doi:10.2136/SSSAJ2017.01.0017 doi: 10.2136/SSSAJ2017.01.0017
![]() |
[52] |
Werdin J, Fletcher TD, Rayner JP, et al. (2020) Biochar made from low density wood has greater plant available water than biochar made from high density wood. Sci Total Environ 705: 135856. https://doi:10.1016/J.SCITOTENV.2019.135856 doi: 10.1016/J.SCITOTENV.2019.135856
![]() |
[53] |
Leng L, Xiong Q, Yang L, et al. (2021) An overview on engineering the surface area and porosity of biochar. Sci Total Environ 763: 144204. https://doi:10.1016/j.scitotenv.2020.144204 doi: 10.1016/j.scitotenv.2020.144204
![]() |
[54] |
Muthukrishnan S, Gupta S, Kua HW (2019) Application of rice husk biochar and thermally treated low silica rice husk ash to improve physical properties of cement mortar. Theor Appl Fract Mech 104: 102376. https://doi:10.1016/j.tafmec.2019.102376 doi: 10.1016/j.tafmec.2019.102376
![]() |
[55] |
Gupta S, Kua HW, Dai Pang S (2018) Biochar-mortar composite: Manufacturing, evaluation of physical properties and economic viability. Constr Build Mater 167: 874–889. https://doi:10.1016/j.conbuildmat.2018.02.104 doi: 10.1016/j.conbuildmat.2018.02.104
![]() |
[56] |
Gupta S, Kua HW, Koh HJ (2018) Application of biochar from food and wood waste as green admixture for cement mortar. Sci Total Environ 619: 419–435. https://doi:10.1016/J.scitotenv.2017.11.044 doi: 10.1016/J.scitotenv.2017.11.044
![]() |
[57] |
Wijitkosum S, Jiwnok P (2019) Elemental composition of biochar obtained from agricultural waste for soil amendment and carbon sequestration. App Sci 9: 3980. https://doi:10.3390/app9193980 doi: 10.3390/app9193980
![]() |
[58] |
Liu W, Li K, Xu S (2022) Utilizing bamboo biochar in cement mortar as a bio-modifier to improve the compressive strength and crack-resistance fracture ability. Constr Build Mater 327: 126917. https://doi:10.1016/j.conbuildmat.2022.126917 doi: 10.1016/j.conbuildmat.2022.126917
![]() |
[59] |
Graber ER, Tsechansky L, Gerstl Z, et al. (2012) High surface area biochar negatively impacts herbicide efficacy. Plant Soil 353: 95–106. https://doi:10.1007/s11104-011-1012-7 doi: 10.1007/s11104-011-1012-7
![]() |
[60] |
Peterson SC, Jackson MA, Kim S, et al (2012) Increasing biochar surface area: Optimization of ball milling parameters. Powder Technol 228: 115–120. https://doi:10.1016/J.POWTEC.2012.05.005 doi: 10.1016/J.POWTEC.2012.05.005
![]() |
[61] |
Xu D, Cao J, Li Y, et al. (2019) Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: A case study on ammonium adsorption capacity. Waste Manage 87: 652–660. https://doi:10.1016/j.wasman.2019.02.049 doi: 10.1016/j.wasman.2019.02.049
![]() |
[62] |
Wani I, Sharma A, Kushvaha V, et al. (2020). Effect of pH, volatile content, and pyrolysis conditions on surface area and O/C and H/C ratios of biochar: towards understanding performance of biochar using simplified approach. J Hazard Toxic Radioact Waste 24: 04020048. https://doi:10.1061/(asce)hz.2153-5515.0000545 doi: 10.1061/(asce)hz.2153-5515.0000545
![]() |
[63] |
Gao Y, Zhang Y, Li A, et al. (2018) Facile synthesis of high-surface area mesoporous biochar for energy storage via in-situ template strategy. Mater Lett 230: 183–186. https://doi:10.1016/j.matlet.2018.07.106 doi: 10.1016/j.matlet.2018.07.106
![]() |
[64] |
Chia CH, Gong B, Joseph SD, et al. (2012) Imaging of mineral-enriched biochar by FTIR, Raman and SEM–EDX. Vib Spectrosc 62: 248–257. https://doi:10.1016/J.VIBSPEC.2012.06.006 doi: 10.1016/J.VIBSPEC.2012.06.006
![]() |
[65] | Danish A, Mosaberpanah MA, Salim MU, et al. (2021) Reusing biochar as a filler or cement replacement material in cementitious composites: A review. Constr Build Mater 300: 124295. https://doi.10.1016/j.conbuildmat.2021.124295 |
[66] | Khiari B, Ghouma I, Ferjani AI, et al. (2020) Kenaf stems: Thermal characterization and conversion for biofuel and biochar production. Fuel 262: 116654. https://doi.10.1016/j.fuel.2019.116654 |
[67] |
Gupta S, Krishnan P, Kashani A, et al. (2020) Application of biochar from coconut and wood waste to reduce shrinkage and improve physical properties of silica fume-cement mortar. Constr Build Mater 262: 120688. https://doi:10.1016/j.conbuildmat.2020.120688 doi: 10.1016/j.conbuildmat.2020.120688
![]() |
[68] |
Elnour AY, Alghyamah AA, Shaikh HM, et al. (2019) Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites. Appl Sci 9: 1149. https://doi.org/10.3390/app9061149. doi: 10.3390/app9061149
![]() |
[69] |
Gupta S, Kua HW, Koh HJ (2018) Application of biochar from food and wood waste as green admixture for cement mortar. Sci Total Environ 619: 419–435. https://doi:10.1016/j.scitotenv.2017.11.044 doi: 10.1016/j.scitotenv.2017.11.044
![]() |
[70] |
Ahmad MR, Chen B, Duan H (2020) Improvement effect of pyrolyzed agro-food biochar on the properties of magnesium phosphate cement. Sci Total Environ 718: 137422. https://doi:10.1016/j.scitotenv.2020.137422 doi: 10.1016/j.scitotenv.2020.137422
![]() |
[71] |
Zeidabadi ZA, Bakhtiari S, Abbaslou H, et al. (2018) Synthesis, characterization and evaluation of biochar from agricultural waste biomass for use in building materials. Constr Build Mater 181: 301–308. https://doi:10.1016/j.conbuildmat.2018.05.271 doi: 10.1016/j.conbuildmat.2018.05.271
![]() |
[72] |
Maljaee H, Madadi R, Paiva H, et al. (2021) Sustainable lightweight mortar using biochar as sand replacement. Eur J Environ Civ Eng 26: 8263–8279. https://doi:10.1080/19648189.2021.2021998 doi: 10.1080/19648189.2021.2021998
![]() |
[73] |
Maljaee H, Paiva H, Madadi R, et al. (2021) Effect of cement partial substitution by waste-based biochar in mortars properties. Constr Build Mater 301: 124074. https://doi:10.1016/j.conbuildmat.2021.124074 doi: 10.1016/j.conbuildmat.2021.124074
![]() |
[74] |
Ahmed MB, Zhou JL, Ngo HH, et al. (2016) Insight into biochar properties and its cost analysis. Biomass Bioenerg 84: 76–86. https://doi:10.1016/j.biombioe.2015.11.002 doi: 10.1016/j.biombioe.2015.11.002
![]() |
[75] |
Li C, Hayashi JI, Sun Y, et al. (2021) Impact of heating rates on the evolution of function groups of the biochar from lignin pyrolysis. J Anal Appl Pyrolysis 155: 105031. https://doi:10.1016/J.JAAP.2021.105031 doi: 10.1016/J.JAAP.2021.105031
![]() |
[76] |
Claoston N, Samsuri AW, Ahmad Husni MH, et al. (2014) Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Manag Res 32: 331–339. https://doi:10.1177/0734242X14525822 doi: 10.1177/0734242X14525822
![]() |
[77] |
Zhang Y, Ma Z, Zhang Q, et al. (2017) Comparison of the physicochemical characteristics of bio-char pyrolyzed from moso bamboo and rice husk with different pyrolysis temperatures. BioResources 12: 4652–4669. https://doi:10.15376/BIORES.12.3.4652-4669 doi: 10.15376/BIORES.12.3.4652-4669
![]() |
[78] |
Crombie K, Mašek O, Sohi SP, et al. (2013) The effect of pyrolysis conditions on biochar stability as determined by three methods. Gcb Bioenergy 5: 122–131. https://doi:10.1111/GCBB.12030 doi: 10.1111/GCBB.12030
![]() |
[79] |
He M, Xu Z, Sun Y, et al. (2021) Critical impacts of pyrolysis conditions and activation methods on application-oriented production of wood waste-derived biochar. Bioresource Technol 341: 125811. https://doi:10.1016/J.biortech.2021.125811 doi: 10.1016/J.biortech.2021.125811
![]() |
[80] |
Ye L, Zhang J, Zhao J, et al. (2015) Properties of biochar obtained from pyrolysis of bamboo shoot shell. J Anal Appl Pyrolysis 114: 172–178. https://doi: 10.1016/j.jaap.2015.05.016. doi: 10.1016/j.jaap.2015.05.016
![]() |
[81] |
Liu Z, Fei B, Jiang Z (2014) Combustion characteristics of bamboo-biochars. Bioresource Technol 167: 94–99. https://doi:10.1016/j.biortech.2014.05.023 doi: 10.1016/j.biortech.2014.05.023
![]() |
[82] |
Al-Wabel MI, Al-Omran A, El-Naggar AH, et al. (2013) Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technol 131: 374–379. https://doi.org/10.1016/j.biortech.2012.12.165 doi: 10.1016/j.biortech.2012.12.165
![]() |
[83] |
Akhtar A, Sarmah AK (2018) Novel biochar-concrete composites: Manufacturing, characterization and evaluation of the mechanical properties. Sci Total Environ 616: 408–416. https://doi:10.1016/j.scitotenv.2017.10.319 doi: 10.1016/j.scitotenv.2017.10.319
![]() |
[84] |
Zhao C, Liu X, Chen A, et al. (2020) Characteristics evaluation of bio-char produced by pyrolysis from waste hazelnut shell at various temperatures. Energ Source Part A 1–11. https://doi.org/10.1080/15567036.2020.1754530 doi: 10.1080/15567036.2020.1754530
![]() |
[85] |
Gupta S, Kua HW (2020) Application of rice husk biochar as filler in cenosphere modified mortar: Preparation, characterization and performance under elevated temperature. Constr Build Mater 253: 119083. https://doi:10.1016/j.conbuildmat.2020.119083 doi: 10.1016/j.conbuildmat.2020.119083
![]() |
[86] | ASTM International (2003) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM 619-03. |
[87] |
Zeidabadi ZA, Bakhtiari S, Abbaslou H, et al. (2018) Synthesis, characterization and evaluation of biochar from agricultural waste biomass for use in building materials. Constr Build Mater 181: 301–308. https://doi:10.1016/j.conbuildmat.2018.05.271 doi: 10.1016/j.conbuildmat.2018.05.271
![]() |
[88] | ASTM International (2019) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM 619-19. |
[89] |
Jeon J, Kim HI, Park JH, et al. (2021) Evaluation of thermal properties and acetaldehyde adsorption performance of sustainable composites using waste wood and biochar. Environ Res 196: 110910. https://doi:10.1016/j.envres.2021.110910 doi: 10.1016/j.envres.2021.110910
![]() |
[90] |
Ngo T, Khudur LS, Hakeem IG, et al. (2022) Wood biochar enhances the valorisation of the anaerobic digestion of chicken manure. Clean Technol Environ Policy 4: 420–439. https://doi:10.3390/cleantechnol4020026 doi: 10.3390/cleantechnol4020026
![]() |
[91] |
Dixit A, Gupta S, Dai Pang S, et al. (2019) Waste valorisation using biochar for cement replacement and internal curing in ultra-high performance concrete. J Clean Prod 238: 117876. https://doi.org/10.1016/j.jclepro.2019.117876 doi: 10.1016/j.jclepro.2019.117876
![]() |
[92] |
Rehrah D, Bansode RR, Hassan O, et al. (2016) Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment. J Anal Appl Pyrolysis 118: 42–53. https://doi:10.1016/J.JAAP.2015.12.022. doi: 10.1016/J.JAAP.2015.12.022
![]() |
[93] |
Silber A, Levkovitch I, Graber ER (2010) pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications. Environ Sci Technol 44: 9318–9323. https://doi.org/10.1021/es101283d. doi: 10.1021/es101283d
![]() |
[94] |
Gonzalez J, Sargent P, Ennis C (2021) Sewage treatment sludge biochar activated blast furnace slag as a low carbon binder for soft soil stabilisation. J Clean Prod 311: 127553. https://doi:10.1016/j.jclepro.2021.127553. doi: 10.1016/j.jclepro.2021.127553
![]() |
[95] |
Yuan JH, Xu RK (2011) The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manag 27: 110–115. https://doi:10.1111/j.1475-2743.2010.00317.x doi: 10.1111/j.1475-2743.2010.00317.x
![]() |
[96] |
Cosentino I, Restuccia L, Ferro GA, et al. (2019) Type of materials, pyrolysis conditions, carbon content and size dimensions: The parameters that influence the mechanical properties of biochar cement-based composites. Theor Appl Fract Mech 103: 102261. https://doi:10.1016/j.tafmec.2019.102261. doi: 10.1016/j.tafmec.2019.102261
![]() |
[97] |
Malhotra HL (1956) The effect of temperature on the compressive strength of concrete. Mag Concr Res 8: 85–94. https://doi.org/10.1680/macr.1956.8.23.85 doi: 10.1680/macr.1956.8.23.85
![]() |
[98] |
Khoury GA (1992) Compressive strength of concrete at high temperatures: a reassessment. Mag Concr Res 44: 291–309. https://doi:10.1680/MACR.1992.44.161.291 doi: 10.1680/MACR.1992.44.161.291
![]() |
[99] |
Jang JG, Lee HK (2016) Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement. Cem Concr Res 82: 50–57. https://doi:10.1016/j.cemconres.2016.01.001 doi: 10.1016/j.cemconres.2016.01.001
![]() |
[100] |
Han T (2020) Application of peanut biochar as admixture in cement mortar. IOP Conf Ser-Earth Environ Sci 531: 012061. https://doi:10.1088/1755-1315/531/1/012061 doi: 10.1088/1755-1315/531/1/012061
![]() |
[101] |
Gupta S, Kua HW (2018) Effect of water entrainment by pre-soaked biochar particles on strength and permeability of cement mortar. Constr Build Mater 159: 107–125. https://doi:10.1016/j.conbuildmat.2017.10.095 doi: 10.1016/j.conbuildmat.2017.10.095
![]() |
[102] |
Sirico A, Bernardi P, Belletti B, et al. (2020) Mechanical characterization of cement-based materials containing biochar from gasification. Constr Build Mater 246: 118490. https://doi:10.1016/j.conbuildmat.2020.118490 doi: 10.1016/j.conbuildmat.2020.118490
![]() |
[103] |
Wang L, Chen L, Tsang DC, et al. (2020) Biochar as green additives in cement-based composites with carbon dioxide curing. J Clean Prod 258: 120678. https://doi:10.1016/j.jclepro.2020.120678 doi: 10.1016/j.jclepro.2020.120678
![]() |
[104] |
Birchall JD, Howard AJ, Kendall K (1981) Flexural strength and porosity of cements. Nature 289: 388–390. https://doi:10.1038/289388a0 doi: 10.1038/289388a0
![]() |
[105] |
Bowlby LK, Saha GC, Afzal MT (2018) Flexural strength behavior in pultruded GFRP composites reinforced with high specific-surface-area biochar particles synthesized via microwave pyrolysis. Composites Part A-Appl S 110: 190–196. https://doi:10.1016/j.compositesa.2018.05.003 doi: 10.1016/j.compositesa.2018.05.003
![]() |
[106] |
Cosentino I, Restuccia L, Ferro GA (2019) Type of materials, pyrolysis conditions, carbon content and size dimensions: The parameters that influence the mechanical properties of biochar cement-based composites. Theor Appl Fract Mech 103: 102261. https://doi:10.1016/j.tafmec.2019.102261 doi: 10.1016/j.tafmec.2019.102261
![]() |
[107] |
Das O, Kim NK, Kalamkarov AL, et al. (2017). Biochar to the rescue: Balancing the fire performance and mechanical properties of polypropylene composites. Polym Degrad Stab 144: 485–496. https://doi: 10.1016/j.polymdegradstab.2017.09.006 doi: 10.1016/j.polymdegradstab.2017.09.006
![]() |
[108] |
Ahmad S, Tulliani JM, Ferro GA, et al. (2015) Crack path and fracture surface modifications in cement composites. Frat ed Integrita Strutt 9: 34. https://doi:10.3221/igf-esis.34.58 doi: 10.3221/igf-esis.34.58
![]() |
[109] |
Gupta S, Kua HW, Low CY (2018) Use of biochar as carbon sequestering additive in cement mortar. Cem Concr Compos 87: 110–129. https://doi:10.1016/j.cemconcomp.2017.12.009 doi: 10.1016/j.cemconcomp.2017.12.009
![]() |
[110] |
Chen B, Li C, Chen L (2009) Experimental study of mechanical properties of normal-strength concrete exposed to high temperatures at an early age. Fire Saf J 44: 997–1002. https://doi:10.1016/j.firesaf.2009.06.007 doi: 10.1016/j.firesaf.2009.06.007
![]() |
[111] |
Gupta S, Kua HW, Dai Pang S (2020) Effect of biochar on mechanical and permeability properties of concrete exposed to elevated temperature. Constr Build Mater 234: 117338. https://doi:10.1016/j.conbuildmat.2019.117338 doi: 10.1016/j.conbuildmat.2019.117338
![]() |
[112] |
Chen X, Wu S, Zhou J (2013) Influence of porosity on compressive and tensile strength of cement mortar. Constr Build Mater 40: 869–874. https://doi:10.1016/J.CONBUILDMAT.2012.11.072 doi: 10.1016/J.CONBUILDMAT.2012.11.072
![]() |
[113] |
Hossain MM, Karim MR, Hasan M, et al. (2016) Durability of mortar and concrete made up of pozzolans as a partial replacement of cement: A review. Constr Build Mater 116: 128–140. https://doi:10.1016/j.conbuildmat.2016.04.147 doi: 10.1016/j.conbuildmat.2016.04.147
![]() |
[114] |
Gupta S, Muthukrishnan S, Kua HW (2021) Comparing influence of inert biochar and silica rich biochar on cement mortar–Hydration kinetics and durability under chloride and sulfate environment. Constr Build Mater 268: 121142. https://doi:10.1016/j.conbuildmat.2020.121142 doi: 10.1016/j.conbuildmat.2020.121142
![]() |
[115] |
Zanotto F, Sirico A, Merchiori S, et al. (2022) Durability of reinforced concrete containing biochar and recycled polymers. Key Eng Mater 919: 188–196. https://doi.org/10.4028/p-mwn300 doi: 10.4028/p-mwn300
![]() |
[116] |
Cuthbertson D, Berardi U, Briens C, et al. (2019) Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties. Biomass Bioenerg 120: 77–83. https://doi:10.1016/j.biombioe.2018.11.007 doi: 10.1016/j.biombioe.2018.11.007
![]() |
[117] |
Wang L, Chen L, Tsang DC, et al. (2019) The roles of biochar as green admixture for sediment-based construction products. Cem Concr Compos 104: 103348. https://doi:10.1016/j.cemconcomp.2019.103348 doi: 10.1016/j.cemconcomp.2019.103348
![]() |
[118] |
Legan M, Gotvajn AŽ, Zupan K (2022) Potential of biochar use in building materials. J Environ Manage 309: 114704. https://doi:10.1016/j.jenvman.2022.114704 doi: 10.1016/j.jenvman.2022.114704
![]() |
[119] |
Berardi U, Naldi M (2017) The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance. Energ Buildings 144: 262–275. https://doi:10.1016/j.enbuild.2017.03.052 doi: 10.1016/j.enbuild.2017.03.052
![]() |
[120] |
Tan K, Qin Y, Wang J (2022) Evaluation of the properties and carbon sequestration potential of biochar-modified pervious concrete. Constr Build Mater 314: 125648. https://doi:10.1016/j.conbuildmat.2021.125648 doi: 10.1016/j.conbuildmat.2021.125648
![]() |
[121] |
Gupta S, Kua HW (2017) Factors determining the potential of biochar as a carbon capturing and sequestering construction material: critical review. J Mater Civ Eng 29: 04017086. https://doi:10.1061/(asce)mt.1943-5533.0001924 doi: 10.1061/(asce)mt.1943-5533.0001924
![]() |
[122] |
Maljaee H, Madadi R, Paiva H, et al. (2021) Sustainable lightweight mortar using biochar as sand replacement. Eur J Environ Civ Eng 26: 8263–8279. https://doi.org/10.1080/19648189.2021.2021998 doi: 10.1080/19648189.2021.2021998
![]() |
[123] |
Gupta S, Kua HW (2020) Combination of biochar and silica fume as partial cement replacement in mortar: Performance evaluation under normal and elevated temperature. Waste Biomass Valori 11: 2807–2824. https://doi:10.1007/s12649-018-00573-x. doi: 10.1007/s12649-018-00573-x
![]() |
[124] |
Restuccia L, Ferro GA (2016) Promising low cost carbon-based materials to improve strength and toughness in cement composites. Constr Build Mater 126: 1034–1043. https://doi:10.1016/j.conbuildmat.2016.09.101 doi: 10.1016/j.conbuildmat.2016.09.101
![]() |
[125] |
Mrad R, Chehab, G (2019). Mechanical and microstructure properties of biochar-based mortar: An internal curing agent for PCC. Sustainability 11: 2491. https://doi.org/10.3390/su11092491 doi: 10.3390/su11092491
![]() |
[126] |
Maljaee H, Madadi R, Paiva H, et al. (2021) Incorporation of biochar in cementitious materials: A roadmap of biochar selection. Constr Build Mater 283: 122757. https://doi.org/10.1016/j.conbuildmat.2021.122757 doi: 10.1016/j.conbuildmat.2021.122757
![]() |
[127] |
Restuccia, L, Ferro GA, Suarez-Riera D, et al. (2020). Mechanical characterization of different biochar-based cement composites. Procedia Struct Integr 25: 226–233. https://doi.org/10.1016/j.prostr.2020.04.027 doi: 10.1016/j.prostr.2020.04.027
![]() |
1. | Tahir Boudjeriou, Ngo Tran Vu, Nguyen Van Thin, High Energy Blowup for a Class of Wave Equations With Critical Exponential Nonlinearity, 2025, 0170-4214, 10.1002/mma.10873 |