Processing math: 96%
Research article Special Issues

High-order numerical algorithm for fractional-order nonlinear diffusion equations with a time delay effect

  • In this paper, we examine and provide numerical solutions to the nonlinear fractional order time-space diffusion equations with the influence of temporal delay. An effective high-order numerical scheme that mixes the so-called Alikhanov L21σ formula side by side to the power of the Galerkin method is presented. Specifically, the time-fractional component is estimated using the uniform L21σ difference formula, while the spatial fractional operator is approximated using the Legendre-Galerkin spectral approximation. In addition, Taylor's approximations are used to discretize the term of the nonlinear source function. It has been shown theoretically that the suggested scheme's numerical solution is unconditionally stable, with a second-order time-convergence and a space-convergent order of exponential rate. Furthermore, a suitable discrete fractional Grönwall inequality is then utilized to quantify error estimates for the derived solution. Finally, we provide a numerical test that closely matches the theoretical investigation to assess the efficacy of the suggested method.

    Citation: A. K. Omran, V. G. Pimenov. High-order numerical algorithm for fractional-order nonlinear diffusion equations with a time delay effect[J]. AIMS Mathematics, 2023, 8(4): 7672-7694. doi: 10.3934/math.2023385

    Related Papers:

    [1] Najmeddine Attia . Some remarks on recursive sequence of fibonacci type. AIMS Mathematics, 2024, 9(9): 25834-25848. doi: 10.3934/math.20241262
    [2] Faik Babadağ, Ali Atasoy . A new approach to Leonardo number sequences with the dual vector and dual angle representation. AIMS Mathematics, 2024, 9(6): 14062-14074. doi: 10.3934/math.2024684
    [3] Adnan Karataş . Dual Leonardo numbers. AIMS Mathematics, 2023, 8(12): 30527-30536. doi: 10.3934/math.20231560
    [4] Faik Babadağ, Ali Atasoy . On hyper-dual vectors and angles with Pell, Pell-Lucas numbers. AIMS Mathematics, 2024, 9(11): 30655-30666. doi: 10.3934/math.20241480
    [5] Xin-Jiang He, Sha Lin . Analytical formulae for variance and volatility swaps with stochastic volatility, stochastic equilibrium level and regime switching. AIMS Mathematics, 2024, 9(8): 22225-22238. doi: 10.3934/math.20241081
    [6] Faik Babadağ . A new approach to Jacobsthal, Jacobsthal-Lucas numbers and dual vectors. AIMS Mathematics, 2023, 8(8): 18596-18606. doi: 10.3934/math.2023946
    [7] Ümit Tokeşer, Tuğba Mert, Yakup Dündar . Some properties and Vajda theorems of split dual Fibonacci and split dual Lucas octonions. AIMS Mathematics, 2022, 7(5): 8645-8653. doi: 10.3934/math.2022483
    [8] Haichao Yu, Yong Zhang . The law of iterated logarithm for a class of random variables satisfying Rosenthal type inequality. AIMS Mathematics, 2021, 6(10): 11076-11083. doi: 10.3934/math.2021642
    [9] Yixin Ren, Huaning Liu . On the correlation of k symbols. AIMS Mathematics, 2024, 9(8): 21455-21470. doi: 10.3934/math.20241042
    [10] Shuang Guo, Yong Zhang . Moderate deviation principle for m-dependent random variables under the sub-linear expectation. AIMS Mathematics, 2022, 7(4): 5943-5956. doi: 10.3934/math.2022331
  • In this paper, we examine and provide numerical solutions to the nonlinear fractional order time-space diffusion equations with the influence of temporal delay. An effective high-order numerical scheme that mixes the so-called Alikhanov L21σ formula side by side to the power of the Galerkin method is presented. Specifically, the time-fractional component is estimated using the uniform L21σ difference formula, while the spatial fractional operator is approximated using the Legendre-Galerkin spectral approximation. In addition, Taylor's approximations are used to discretize the term of the nonlinear source function. It has been shown theoretically that the suggested scheme's numerical solution is unconditionally stable, with a second-order time-convergence and a space-convergent order of exponential rate. Furthermore, a suitable discrete fractional Grönwall inequality is then utilized to quantify error estimates for the derived solution. Finally, we provide a numerical test that closely matches the theoretical investigation to assess the efficacy of the suggested method.



    Uncertainty can be present in nearly every aspect of contemporary problems. To deal with the uncertainties, numerous uncertainty theories are available, including the fuzzy set (FS) [1], the intuitionistic FS (IFS) [2], the Pythagorean FS (PFS) [3,4], the neutrosophic set (NSS) [5], and the Fermatean fuzzy set (FFS) [6]. An element of a fuzzy set (FS), introduced by Zadeh [1], has a corresponding membership degree (MD). Later, Atanassov [2] introduced the concept of an IFS. According to Yager [4], the concept of PFSs was originally established in 2014, and it is classified by an MD and degree of non-membership (NMD) that satisfy the criterion, "that the sum of the squares of its MD and NMD is less than 1". Unfortunately, if the square sum of the MD and NMD of a certain property exceeds 1, decision making (DM) becomes problematic. Senapati et al. [6] proposed the concept of an FFS in 2019 and condition that the cubic total of the MD and NMD cannot exceed 1. Rahman et al. [7] utilized geometric AOs on interval-valued PFS (IVPFS) to approach DM problems in various geometric AOs on IVPFS. Rahman et al. [8] developed a method for MAGDM employing induced IVPFS with Einstein AO.

    The TOPSIS process requires obtaining a preference order that is prioritized by relative proximity, calculating distances to the different ideal solutions, and combining these two distance measures. In 2018, Akram et al. [9] proposed the bipolar FS employing TOPSIS for group decision making (GDM). Adeel et al. [10] proposed the m-polar fuzzy linguistic TOPSIS technique for MCGDM. In 2018, Peng and Dai [11] generated the concept of single-valued neutrosophic set (NSS) using MABAC and TOPSIS. Zhang and Xu [12] reported an extension of PFS using TOPSIS. Hwang et al. [13] offered a practical explanation of the MADM concept. Jana et al. [14] discussed PFS using Dombi aggregating operators (AOs) in 2019. Ullah et al. [15] talked about complex PFS and the usage of pattern recognition in 2019. Jana et al. [16] for developed the Trapezoidal NSS using AOs and their application to the MADM in 2020. Jana et al. [17] proposed the idea of the MCDM technique based on SVTrN Dombi AOs. Yang et al. [18] described fuzzy c-numbers clustering algorithms for fuzzy data in 1996. Palanikumar et al. [19] investigated several algebraic structures and their applications in several studies. NSS is a recent theory that is attributed to Smarandache [5]. The term neutrosophy is defined as knowledge of the neutral mind and the neutrality that differentiates FS from IFS. Each element's of truth degree (TD), indeterminacy degree (ID) and false degree (FD) are represented by NSS, and they range from 0 to 1. The NSS approach generalizes the FS and IVFS. Smarandache et al. [20] established a new concept for Pythagorean neutrosophic sets with an interval-valued set. Using context analysis [21] and the NSS, a medical diagnosis can be made using the single-valued NSS [22]. The distances for IFSs, such as Hamming distance (HD), Euclidean distance (ED) normalized HD, and normalized ED, were expanded by Ejegwa [23]. It has been demonstrated that a NSS generalizes a classical set, FS and IVFS. The Pythagorean neutrosophic interval-valued set (PyNSIVS) was developed by Smarandache et al. [20]. The single-valued NSS is discussed using context analysis [21] and medical diagnosis [22]. Ejegwa [23] extended the distance measures for IFSs, such as HD, ED normalized HD and normalized ED. Recently, Palanikumar et al. [24] discussed the MADM using spherical vague normal operators and their applications for the selection of farmers. Recently, Garg et al. [25] discussed the new notion of confidence levels-based cubic Fermatean fuzzy AOs and their application to MCDM problems. Chakraborty et al. [26] discussed the real life applications based on Fermatean fuzzy Bonferroni mean AOs for selecting optimal health care waste treatment technology. Zeb et al. [27] interacted with the Fermatean fuzzy soft AOs and their application in symptomatic treatment of COVID-19. Khan et al. [28] discussed the concept of generalized neutrosophic cubic AOs using MADM method.

    In order to better understand Type-Ⅱ Fermatean normal number (Type-Ⅱ FNN) information, this study will expand on the idea of Type-Ⅱ Fermatean information. We can get Type-Ⅱ FN data from AOs. This paper consists of seven sections. In Section 2, you will find a concise overview of Type-Ⅱ Fermatean information. A Type-Ⅱ FNN MADM is discussed in Section 3 for different AOs. For various AOs, Type-Ⅱ FNN MADM is discussed in Section 4. Section 5 presents an example, analysis, and discussion of a method based on Type-Ⅱ FNN. In Section 6, a conclusion is presented. In decision making, we may have one problem

    0(τtΞ(ε))2+(τiΞ(ε))2+(τfΞ(ε))2>2.

    So, we introduced the condition that

    0(τtΞ(ε))3+(τiΞ(ε))3+(τfΞ(ε))32.

    Consequently, this work makes the following contributions:

    (1) It has been established that Type-Ⅱ FNN satisfy some basic algebraic operations, such as associative, distributive and idempotent laws.

    (2) We introduced HD and ED for Type-Ⅱ FNNs. In order to calculate the ED between two Type-Ⅱ FNNs. Furthermore, there is a discussion regarding converting Type-Ⅱ FNNs to NFNs.

    (3) It is demonstrated numerically how MADMs and AOs are applied in Type-Ⅱ FNN to real-world scenarios. A Type-Ⅱ FNN algorithm needs to be developed. We also need to determine a normalized decision matrix using a Type-Ⅱ FNN algorithm.

    (4) In relation to Type-Ⅱ FNWA, Type-Ⅱ FNWG, Type-Ⅱ GFNWA, and Type-Ⅱ GFNWG. We determined the ideal value of each concept.

    (5) By using the Type-Ⅱ FNWA, Type-Ⅱ FNWG, Type-Ⅱ GFNWA, and Type-Ⅱ GFNWG operators, different ranking results of alternatives can be derived flexibly, so that a decision-maker may select the ranking result according to his or her preferences. Due to its strong flexibility, the method proposed in this paper is appealing. The results of the DM are based on integer δ.

    We discuss some common definitions in this section.

    Definition 2.1. [4] Let Θ be a universe. The PyFS Ξ in Θ is Ξ={ε,τtΞ(ε),τfΞ(ε)|εΘ}, where τtΞ:Θ[0,1] and τfΞ:Θ[0,1] denotes the MD and NMD of εΘ to Ξ, respectively, and 0(τtΞ(ε))2+(τfΞ(ε))21. For convenience, Ξ=τtΞ,τfΞ is called the Pythagorean fuzzy number (PyFN).

    Definition 2.2. [5] The NSS Ξ in Θ is Ξ={ε,τtΞ(ε),τiΞ(ε),τfΞ(ε)|εΘ}, where τtΞ:Θ[0,1], τiΞ:Θ[0,1] and τfΞ:Θ[0,1] denotes the TD, ID and FD of εΘ to Ξ, respectively and 0τtΞ(ε)+τiΞ(ε)+τfΞ(ε)3. Here, Ξ=τtΞ,τiΞ,τfΞ represents a neutrosophic number (NSN).

    Definition 2.3. [20] The Pythagorean NSS (PyNSS) Ξ in Θ is Ξ={ε,τtΞ(ε),τiΞ(ε),τfΞ(ε)|εΘ}, where τtΞ:Θ[0,1], τiΞ:Θ[0,1] and τfΞ:Θ[0,1] denotes the TD, ID and FD of εΘ to Ξ, respectively, and 0(τtΞ(ε))2+(τiΞ(ε))2+(τfΞ(ε))22. Here, Ξ=τtΞ,τiΞ,τfΞ represents a Pythagorean neutrosophic number (PyNSN).

    Definition 2.4. [6] A FFS Ξ in Θ is Ξ={ε,τtΞ(ε),τfΞ(ε)|εΘ}, where τtΞ(ε) and τfΞ(ε) denotes MD and NMD of u respectively, where τtΞ:Θ[0,1] and τfΞ:Θ[0,1] and 0(τtΞ(ε))3+(τfΞ(ε))31. Here, Ξ=τtΞ,τfΞ represents a Fermatean fuzzy number (FFN).

    Definition 2.5. [6] For any FFNs, Ξ=τt,τf, Ξ1=τt1,τf1 and Ξ2=τt2,τf2. Let τt,τf denote MD and NMD of u, respectively, and δ is a positive integer. Then,

    (1) Ξ1Ξ2=(3(τt1)3+(τt2)3(τt1)3(τt2)3,(τf1τf2)).

    (2) Ξ1Ξ2=((τt1τt2),3(τf1)3+(τf2)3(τf1)3(τf2)3).

    (3) δΞ=(31(1(τt)3)δ,(τf)δ).

    (4) Ξδ=((τt)δ,31(1(τf)3)δ).

    Definition 2.6. [6] Let Ξ=τt,τf be a FFN. Then, S(Ξ)=(τt)3(τf)3,S(Ξ)[1,1], is called the score function, and H(Ξ)=(τt)3+(τf)3,H(Ξ)[0,1], is called the accuracy function.

    Definition 2.7. [18] Let M1=(υ1,ς1) and M2=(υ2,ς2) and then the distance between M1 and M2 is (M1,M2)=2(υ1υ2)2+12(ς1ς2)2.

    Definition 2.8. [18] Let M(x)=e(xυς)2,(ς>0), be a fuzzy number (FN). It is said to be a normal fuzzy number (NFN) if M=(υ,ς), and N.

    We discuss the distance between two Type-Ⅱ Fermatean normal numbers (Type-Ⅱ FNNs) in this section.

    Definition 3.1. A Type-II Fermatean set Ξ in Θ is Ξ={ε,τtΞ(ε),τiΞ(ε),τfΞ(ε) |εΘ}, where τtΞ(ε), τiΞ(ε) and τfΞ(ε) are called TD, ID and FD of Ξ, respectively. The mapping τtΞ:Θ[0,1], τiΞ:Θ[0,1], τfΞ:Θ[0,1], and 0(τtΞ(ε))3+(τiΞ(ε))3+(τfΞ(ε))32. Here, Ξ=τtΞ,τiΞ,τfΞ represents a Type-II Fermatean number (Type-II FN).

    Definition 3.2. Let (υ,ς)N, Ξ=(υ,ς);τt,τi,τf is a Type-II FNN, where its TD, ID and FD are defined as τtΞ=τtΞe(xυς)3, τiΞ=τiΞe(xυς)3 and τfΞ=1(1τfΞ)e(xυς)3, xX, respectively, where X is a non-empty set, τtΞ,τiΞ,τfΞ[0,1], and 0(τtΞ(x))3+(τiΞ(x))3+(τfΞ(x))32.

    Definition 3.3. If Ξ1=(υ1,ς1);τt1,τi1,τf1 and Ξ2=(υ2,ς2);τt2,τi2,τf2 are any two Type-II FNNs, and δ is a positive integer. Then,

    (1) Ξ1Ξ2=((υ1+υ2,ς1+ς2);3δ(τt1)3δ+(τt2)3δ(τt1)3δ(τt2)3δ,δ(τi1)δ+(τi2)δ(τi1)δ(τi2)δ,(τf1τf2)).

    (2) Ξ1Ξ2=((υ1υ2,ς1ς2);(τt1τt2),δ(τi1)δ+(τi2)δ(τi1)δ(τi2)δ,3δ(τf1)3δ+(τf2)3δ(τf1)3δ(τf2)3δ).

    (3) δΞ1=((δυ1,δς1);3δ1(1(τt1)3δ)δ,(τi1)δ,(τf1)δ).

    (4) Ξδ1=((υδ1,ςδ1);(τt1)δ,(τi1)δ,3δ1(1(τf1)3δ)δ).

    We now define the ensuing theorem in terms of the operator mentioned earlier.

    Theorem 3.1. Let Ξ1=(υ1,ς1);τt1,τi1,τf1, Ξ2=(υ2,ς2);τt2,τi2,τf2 and Ξ3=(υ3,ς3);τt3,τi3,τf3 be the Type-II FNNs. Then,

    (1) Ξ1Ξ2=Ξ2Ξ1.

    (2) (Ξ1Ξ2)Ξ3=Ξ1(Ξ2Ξ3).

    (3) Ξ1Ξ2=Ξ2Ξ1.

    (4) (Ξ1Ξ2)Ξ3=Ξ1(Ξ2Ξ3).

    Proof. The proofs are straightforward.

    Definition 3.4. Let Ξ1=(υ1,ς1);τt1,τi1,τf1 and Ξ2=(υ2,ς2);τt2,τi2,τf2 be the Type-II FNNs. Then, the ED between Ξ1 and Ξ2 is

    E(Ξ1,Ξ2)=3(1+(τt1)3+(τi1)3(τf1)33υ11+(τt2)3+(τi2)3(τf2)33υ2)3+13(1+(τt1)3+(τi1)3(τf1)33ς11+(τt2)3+(τi2)3(τf2)33ς2)3.

    The HD between Ξ1 and Ξ2 is

    H(Ξ1,Ξ2)=(|1+(τt1)3+(τi1)3(τf1)33υ11+(τt2)3+(τi2)3(τf2)33υ2|+13|1+(τt1)3+(τi1)3(τf1)33ς11+(τt2)3+(τi2)3(τf2)33ς2|).

    Theorem 3.2. Let Ξ1=(υ1,ς1);τt1,τi1,τf1, Ξ2=(υ2,ς2);τt2,τi2,τf2 and Ξ3=(υ3,ς3);τt3,τi3,τf3 be any three Type-II FNNs. Then,

    (1) E(Ξ1,Ξ2)=0 if and only if Ξ1=Ξ2.

    (2) E(Ξ1,Ξ3)E(Ξ1,Ξ2)+E(Ξ2,Ξ3).

    Proof. We will prove (2). Now,

    (E(Ξ1,Ξ2)+E(Ξ2,Ξ3))3=(3(1+(τt1)3+(τi1)3(τf1)33υ11+(τt2)3+(τi2)3(τf2)33υ2)3+13(1+(τt1)3+(τi1)3(τf1)33ς11+(τt2)3+(τi2)3(τf2)33ς2)3+3(1+(τt2)3+(τi2)3(τf2)33υ21+(τt3)3+(τi3)3(τf3)33υ3)3+13(1+(τt2)3+(τi2)3(τf2)33ς21+(τt3)3+(τi3)3(τf3)33ς3)3)3=(((Φ1υ1Φ2υ2)3+13(Φ1ς1Φ2ς2)3)+((Φ2υ2Φ3υ3)3+13(Φ2ς2Φ3ς3)3)+3(3[(Φ1υ1Φ2υ2)3+13(Φ1ς1Φ2ς2)3]2×3(Φ2υ2Φ3υ3)3+13(Φ2ς2Φ3ς3)3)+3(3(Φ1υ1Φ2υ2)3+13(Φ1ς1Φ2ς2)3×3[(Φ2υ2Φ3υ3)3+13(Φ2ς2Φ3ς3)3]2))=(((Φ1υ1Φ2υ2)3+13(Φ1ς1Φ2ς2)3)+((Φ2υ2Φ3υ3)3+13(Φ2ς2Φ3ς3)3)+3(3([(Φ1υ1Φ2υ2)3+13(Φ1ς1Φ2ς2)3]2)×((Φ2υ2Φ3υ3)3+13(Φ2ς2Φ3ς3)3))+3(3((Φ1υ1Φ2υ2)3+13(Φ1ς1Φ2ς2)3)×([(Φ2υ2Φ3υ3)3+13(Φ2ς2Φ3ς3)3]2)))(((Φ1υ1Φ2υ2)3+13(Φ1ς1Φ2ς2)3)+((Φ2υ2Φ3υ3)3+13(Φ2ς2Φ3ς3)3)+3(3((Φ1υ1Φ2υ2)2(Φ2υ2Φ3υ3))3+((Φ1ς1Φ2ς2)2(Φ2ς2Φ3ς3))3)+3(3((Φ1υ1Φ2υ2)(Φ2υ2Φ3υ3)2)3+((Φ1ς1Φ2ς2)(Φ2ς2Φ3ς3)2)3))
    (((Φ1υ1Φ2υ2)3+13(Φ1ς1Φ2ς2)3)+((Φ2υ2Φ3υ3)3+13(Φ2ς2Φ3ς3)3)+3(((Φ1υ1Φ2υ2)2(Φ2υ2Φ3υ3))+13((Φ1ς1Φ2ς2)2(Φ2ς2Φ3ς3)))+3(((Φ1υ1Φ2υ2)(Φ2υ2Φ3υ3)2)+13((Φ1ς1Φ2ς2)(Φ2ς2Φ3ς3)2)))=((Φ1υ1Φ2υ2)3+13(Φ1ς1Φ2ς2)3+(Φ2υ2Φ3υ3)3+13(Φ2ς2Φ3ς3)3+3((Φ1υ1Φ2υ2)2(Φ2υ2Φ3υ3))+((Φ1ς1Φ2ς2)2(Φ2ς2Φ3ς3))+3((Φ1υ1Φ2υ2)(Φ2υ2Φ3υ3)2)+((Φ1ς1Φ2ς2)(Φ2ς2Φ3ς3)2))=((Φ1υ1Φ2υ2+Φ2υ2Φ3υ3)3+13(Φ1ς1Φ2ς2+Φ2ς2Φ3ς3)3)=((Φ1υ1Φ3υ3)3+13(Φ1ς1Φ3ς3)3)=E(Ξ1,Ξ3)3.

    Here, Φ1=1+(τt1)3+(τi1)3(τf1)33,Φ2=1+(τt2)3+(τi2)3(τf2)33 and Φ3=1+(τt3)3+(τi3)3(τf3)33.

    Thus, E(Ξ1,Ξ3)E(Ξ1,Ξ2)+E(Ξ2,Ξ3).

    Theorem 3.3. For any three Type-II FNNs Ξ1=(υ1,ς1);τt1,τi1,τf1, Ξ2=(υ2,ς2);τt2,τi2,τf2 and Ξ3=(υ3,ς3);τt3,τi3,τf3,

    (1) H(Ξ1,Ξ2)=0 if and only if Ξ1=Ξ2.

    (2) H(Ξ1,Ξ2)=H(Ξ2,Ξ1).

    (3) H(Ξ1,Ξ3)H(Ξ1,Ξ2)+H(Ξ2,Ξ3).

    Remark 3.1. Since Ξ1=τt1,τi1,τf1=1,1,0, Ξ2=τt2,τi2,τf2=1,1,0. Then, the distance between Type-II FNN is transformed to the distance between NFN.

    We introduced the new AOs for Type-Ⅱ FNN in this section.

    Definition 4.1. Let Ξp=(υp,ςp);τtp,τip,τfp be the Type-II FNNs, where p=1,2,...,n, ξp be a weight of Ξp and ξp0, np=1ξp=1. Then, Type-II FNWA(Ξ1,Ξ2,...,Ξn)=np=1ξpΞp.

    Theorem 4.1. Let Ξp=(υp,ςp);τtp,τip,τfp be Type-II FNNs, where p=1,2,...,n. Then,

    TypeIIFNWA(Ξ1,Ξ2,...,Ξn)=((np=1ξpυp,np=1ξpςp);3δ1np=1(1(τtp)3δ)ξp,δ1np=1(1(τip)δ)ξp,np=1(τfp)ξp).

    Proof. The mathematical induction method yields the proof.

    If n=2, Type-Ⅱ FNWA(Ξ1,Ξ2)=ξ1Ξ1ξ2Ξ2, where,

    ξ1Ξ1=((ξ1υ1,ξ1ς1);3δ1(1(τt1)3δ)ξ1,δ1(1(τi1)δ)ξ1,(τf1)ξ1)

    and

    ξ2Ξ2=((ξ2υ2,ξ2ς2);3δ1(1(τt2)3δ)ξ2,δ1(1(τi2)δ)ξ2,(τf2)ξ2).

    Using Definition 3.3, we get

    ξ1Ξ1ξ2Ξ2=((ξ1υ1+ξ2υ2,ξ1ς1+ξ2ς2);3δ(1(1(τt1)3δ)ξ1)+(1(1(τt2)3δ)ξ2)(1(1(τt1)3δ)ξ1)(1(1(τt2)3δ)ξ2),δ(1(1(τi1)δ)ξ1)+(1(1(τi2)δ)ξ2)(1(1(τi1)δ)ξ1)(1(1(τi2)δ)ξ2),(τf1)ξ1(τf2)ξ2)=((2p=1ξpυp,2p=1ξpςp);3δ12p=1(1(τtp)3δ)ξp,δ12p=1(1(τip)δ)ξp,2p=1(τfp)ξp).

    Using induction, n3,

    TypeIIFNWA(Ξ1,Ξ2,...,Ξk)=((kp=1ξpυp,kp=1ξpςp);3δ1kp=1(1(τtp)3δ)ξp,δ1kp=1(1(τip)δ)ξp,kp=1(τfp)ξp).

    If n=k+1,

    TypeIIFNWA(Ξ1,Ξ2,...,Ξk,Ξk+1)=((kp=1ξpυp+ξk+1υk+1,kp=1ξpςp+ξk+1ςk+1);3δkp=1(1(1(τtp)3δ)ξp)+(1(1(τtk+1)3δ)ξk+1)kp=1(1(1(τtp)3δ)ξp)(1(1(τtk+1)3δ)ξk+1),δkp=1(1(1(τip)δ)ξp)+(1(1(τik+1)δ)ξk+1)kp=1(1(1(τip)δ)ξp)(1(1(τik+1)δ)ξk+1),kp=1(τfp)ξp(τfk+1)ξk+1)
    =((k+1p=1ξpυp,k+1p=1ξpςp);3δ1kp=1(1(τtp)3δ)ξp(1(τtk+1)3δ)ξk+1,δ1kp=1(1(τip)δ)ξp(1(τik+1)δ)ξk+1,k+1p=1(τfp)ξp)=((k+1p=1ξpυp,k+1p=1ξpςp);3δ1k+1p=1(1(τtp)3δ)ξp,δ1k+1p=1(1(τip)δ)ξp,k+1p=1(τfp)ξp).

    It holds for any k.

    Theorem 4.2. If Ξp=(υp,ςp);τtp,τipτfp are Type-II FNNs, and Ξp=Ξ, then Type-II FNWA (Ξ1,Ξ2,...,Ξn)=Ξ, where p=1,2,...,n.

    Proof. Given that, (υp,ςp)=(υ,ς), (τtp,τip,τfp)=(τt,τi,τf), for p=1,2,...,n and np=1ξp=1. By using Definition 3.3, we get,

    TypeIIFNWA(Ξ1,Ξ2,...,Ξn)=((np=1ξpυp,np=1ξpςp);3δ1np=1(1(τt)3δ)ξp,δ1np=1(1(τi)δ)ξp,np=1(τf)ξp)=((υnp=1ξp,ςnp=1ξp);3δ1(1(τt)3δ)np=1ξp,δ1(1(τi)δ)np=1ξp,(τf)np=1ξp)=((υ,ς);3δ1(1(τt)3δ),δ1(1(τi)δ),(τf))=((υ,ς);τt,τi,τf)=Ξ.

    We define the Type-Ⅱ FN weighted geometric operator (Type-Ⅱ FNWG) in this section.

    Definition 4.2. Let Ξp=(υp,ςp);τtp,τip,τfp be the Type-II FNNs and ξp be a weight of Ξp. Then Type-II FNWG (Ξ1,Ξ2,...,Ξn)=np=1Ξξpp, where p=1,2,...,n.

    Theorem 4.3. If Ξp=(υp,ςp);τtp,τfp are Type-II FNNs where p=1,2,...,n, then

    TypeIIFNWG(Ξ1,Ξ2,...,Ξn)=((np=1υξpp,np=1ςξpp);np=1(τtp)ξp,δ1np=1(1(τip)δ)ξp,3δ1np=1(1(τfp)3δ)ξp).

    Proof. The mathematical induction method yields the proof.

    If n=2, Type-Ⅱ FNWG(Ξ1,Ξ2)=Ξξ11Ξξ22, where,

    Ξξ11=((υξ11,ςξ11);(τt1)ξ1,δ1(1(τi1)δ)ξ1,3δ1(1(τf1)3δ)ξ1).Ξξ22=((υξ22,ςξ22);(τt2)ξ2,δ1(1(τi2)δ)ξ2,3δ1(1(τf2)3δ)ξ2).

    By using Definition 3.3, we get,

    Ξξ11Ξξ22=((υξ11υξ22,ςξ11ςξ22);(τt1)ξ1(τt2)ξ2,δ(1(1(τi1)δ)ξ1)+(1(1(τi2)δ)ξ2)(1(1(τi1)δ)ξ1)(1(1(τi2)δ)ξ2),3δ(1(1(τf1)3δ)ξ1)+(1(1(τf2)3δ)ξ2)(1(1(τf1)3δ)ξ1)(1(1(τf2)3δ)ξ2))=((υξ11υξ22,ςξ11ςξ22);(τt1)ξ1(τt2)ξ2,δ1(1(τi1)δ)ξ1(1(τi2)δ)ξ2,3δ1(1(τf1)3δ)ξ1(1(τf2)3δ)ξ2).

    Hence,

    TypeIIFNWG(Ξ1,Ξ2)=((2p=1υξpp,2p=1ςξpp);2p=1(τtp)ξp,δ12p=1(1(τip)δ)ξp,3δ12p=1(1(τfp)3δ)ξp).

    For n=k3,

    TypeIIFNWG(Ξ1,Ξ2,...,Ξk)=((kp=1υξpp,kp=1ςξpp);kp=1(τtp)ξp,δ1kp=1(1(τip)δ)ξp,3δ1kp=1(1(τfp)3δ)ξp).

    If n=k+1,

    TypeIIFNWG(Ξ1,...,Ξk,Ξk+1)=((kp=1υξppυξk+1k+1,kp=1ςξppςξk+1k+1);kp=1(τtp)ξp(τtk+1)ξk+1,δkp=1(1(1(τip)δ)ξp)+(1(1(τik+1)δ)ξk+1)kp=1(1(1(τip)δ)ξp)(1(1(τik+1)δ)ξk+1),3δkp=1(1(1(τfp)3δ)ξp)+(1(1(τfk+1)3δ)ξk+1)kp=1(1(1(τfp)3δ)ξp)(1(1(τfk+1)3δ)ξk+1))=((k+1p=1υξpp,k+1p=1ςξpp);k+1p=1(τtp)ξp,δ1kp=1(1(τip)δ)ξp(1(τik+1)δ)ξk+1,3δ1kp=1(1(τfp)3δ)ξp(1(τfk+1)3δ)ξk+1)=((k+1p=1υξpp,k+1p=1ςξpp);k+1p=1(τtp)ξp,δ1k+1p=1(1(τip)δ)ξp,3δ1k+1p=1(1(τfp)3δ)ξp).

    Corollary 4.1. Let Ξp=(υp,ςp);τtp,τipτfp be Type-II FNNs, and all are equal with Ξp=Ξ. Then Type-II FNWG(Ξ1,Ξ2,...,Ξn)=Ξ.

    We define the Type-Ⅱ generalized FNWA operator in this section.

    Definition 4.3. Let Ξp=(υp,ςp);τtp,τip,τfp be Type-II FNNs and ξp be a weight of Ξp for p=1,2,...,n. Then, Type-II GFNWA(Ξ1,Ξ2,...,Ξn)=(np=1ξpΞδp)1/δ.

    Theorem 4.4. Let Ξp=(υp,ςp);τtp,τip,τfp be the Type-II FNNs. Then,

    TypeIIGFNWA(Ξ1,Ξ2,...,Ξn)=(((np=1ξpυδp)1/δ,(np=1ξpςδp)1/δ);(3δ1np=1(1((τtp)δ)3δ)ξp)1/δ,(δ1np=1(1((τip)δ)δ)ξp)1/δ,3δ1(1(np=1(3δ1(1(τfp)3δ)δ)ξp)3δ)1/δ).

    Proof. The mathematical induction procedure leads to the proof. Let us first demonstrate that,

    np=1ξpΞδp=(((np=1ξpυδp),(np=1ξpςδp));3δ1np=1(1((τtp)δ)3δ)ξp,δ1np=1(1((τip)δ)δ)ξp,np=1(3δ1(1(τfp)3δ)δ)ξp).

    If n=2, then

    ξ1Ξδ1=((ξ1υδ1,ξ1ςδ1);3δ1(1((τt1)δ)3δ)ξ1,δ1(1((τi1)δ)δ)ξ1(3δ1(1(τf1)3δ)δ)ξ1)

    and

    ξ2Ξδ2=((ξ2υδ2,ξ2ςδ2);3δ1(1((τt2)δ)3δ)ξ1,δ1(1((τi2)δ)δ)ξ1,(3δ1(1(τf2)3δ)δ)ξ1).

    By using Definition 3.3, we get,

    ξ1Ξ1ξ2Ξ2=((ξ1υδ1+ξ2υδ2,ξ1ςδ1+ξ2ςδ2),3δ(3δ1(1((τt1)δ)3δ)ξ1)3δ+(3δ1(1((τt2)δ)3δ)ξ1)3δ,(3δ1(1((τt1)δ)3δ)ξ1)3δ(3δ1(1((τt2)δ)3δ)ξ1)3δδ(δ1(1((τi1)δ)δ)ξ1)δ+(δ1(1((τi2)δ)δ)ξ1)δ,(δ1(1((τi1)δ)δ)ξ1)δ(δ1(1((τi2)δ)δ)ξ1)δ(3δ1(1(τf1)3δ)δ)ξ1(3δ1(1(τf2)3δ)δ)ξ1)=((2p=1ξpυδp,2p=1ξpςδp),3δ12p=1(1((τt1)δ)3δ)ξp,δ12p=1(1((τi1)δ)δ)ξp,2p=1(3δ1(1(τfp)3δ)δ)ξp).

    In general,

    kp=1ξpΞδp=((kp=1ξpυδp,kp=1ξpςδp);3δ1kp=1(1((τt1)δ)3δ)ξp,δ1kp=1(1((τi1)δ)δ)ξp,kp=1(3δ1(1(τfp)3δ)δ)ξp).

    If n=k+1,kp=1ξpΞδp+ξk+1Ξδk+1=k+1p=1ξpΞδp.

    Hence,

    kp=1ξpΞδp+ξk+1Ξδk+1=ξ1Ξδ1ξ2Ξδ2...ξkΞδkξk+1Ξδk+1=((k+1p=1ξpυδp,k+1p=1ξpςδp);3δ1k+1p=1(1((τt1)δ)3δ)ξp,δ1k+1p=1(1((τi1)δ)δ)ξp,k+1p=1(3δ1(1(τfp)3δ)δ)ξp)

    and

    k+1p=1(ξpΞδp)1/δ=(((k+1p=1ξpυδp)1/δ,(k+1p=1ξpςδp)1/δ);(3δ1k+1p=1(1((τtp)δ)3δ)ξp)1/δ,(δ1k+1p=1(1((τip)δ)δ)ξp)1/δ,3δ1(1(k+1p=1(3δ1(1(τfp)3δ)δ)ξp)3)1/δ).

    This theorem holds for any kN.

    Remark 4.1. If δ=1, then the Type-Ⅱ GFNWA is converted to the Type-II FNWA.

    Corollary 4.2. Let Ξp=(υp,ςp);τtp,τipτfp, where p=1,2,...,n, be Type-II FNNs, and all are equal with Ξ. Prove that Type-II GFNWA (Ξ1,Ξ2,...,Ξn)=Ξ.

    We define the Type-Ⅱ generalized FNWG operator in this section.

    Definition 4.4. Let Ξp=(υp,ςp);τtp,τip,τfp be Type-II FNNs and ξp be a weight of Ξp, where p=1,2,...,n. Then, Type-II GFNWG(Ξ1,Ξ2,...,Ξn)=1δ(np=1(δΞp)ξp).

    Theorem 4.5. Let Ξp=(υp,ςp);τtp,τip,τfp be a collection of Type-II FNNs. Then,

    TypeIIGFNWG(Ξ1,Ξ2,...,Ξn)=((1δnp=1(δυp)ξp,1δnp=1(δςp)ξp);3δ1(1(np=1(3δ1(1(τtp)3δ)δ)ξp)3δ)1/δ,(δ1np=1(1((τip)δ)δ)ξp)1/δ,(3δ1np=1(1((τfp)δ)3δ)ξp)1/δ).

    Proof. Mathematical induction leads to the proof. Let us first demonstrate that

    np=1(δΞp)ξp=((np=1(δυp)ξp,np=1(δςp)ξp);np=1(3δ1(1(τtp)3δ)δ)ξp,δ1np=1(1((τip)δ)δ)ξp,3δ1np=1(1((τfp)δ)3δ)ξp).

    If n=2, then

    (δΞ1)ξ1=(((δυ1)ξ1,(δς1)ξ1);(3δ1(1(τt1)3δ)δ)ξ1,δ1(1((τi1)δ)δ)ξ13δ1(1((τf1)δ)3δ)ξ1)

    and

    (δΞ2)ξ2=(((δυ2)ξ2,(δς2)ξ2);(3δ1(1(τt2)3δ)δ)ξ1,δ1(1((τi2)δ)δ)ξ13δ1(1((τf2)δ)3δ)ξ1).

    By using Definition 3.3, we get

    (δΞ1)ξ1(δΞ2)ξ2=(((δυ1)ξ1(δυ2)ξ2,(δς1)ξ1(δς2)ξ2);(3δ1(1(τt1)3δ)δ)ξ1(3δ1(1(τt2)3δ)δ)ξ1,δ(δ1(1((τi1)δ)δ)ξ1)δ+(δ1(1((τi2)δ)δ)ξ1)δ(δ1(1((τi1)δ)δ)ξ1)δ(δ1(1((τi2)δ)δ)ξ1)δ,3δ(3δ1(1((τf1)δ)3δ)ξ1)3δ+(3δ1(1((τf2)δ)3δ)ξ1)3δ(3δ1(1((τf1)δ)3δ)ξ1)3δ(3δ1(1((τf2)δ)3δ)ξ1)3δ)=((2p=1(δυp)ξp,2p=1(δςp)ξp);2p=1(3δ1(1(τtp)3δ)δ)ξp,δ12p=1(1((τip)δ)δ)ξp,3δ12p=1(1((τfp)δ)3δ)ξp).

    If n=k,

    kp=1(δυp)ξp=((kp=1(δυp)ξp,kp=1(δςp)ξp);kp=1(3δ1(1(τtp)3δ)δ)ξp,δ1kp=1(1((τip)δ)δ)ξp,3δ1kp=1(1((τfp)δ)3δ)ξp).

    If n=k+1, then

    kp=1(δΞp)ξp(δΞk+1)ξk+1=k+1p=1(δΞp)ξp.

    Now,

    kp=1(δΞp)ξp(δΞk+1)ξk+1=(δΞ1)ξ1(δΞ2)ξ2...(δΞk)ξk(δΞk+1)ξk+1=((kp=1(δυp)ξp(δυk+1)ξk+1,kp=1(δςp)ξp(δςk+1)ξk+1);kp=1(3δ1(1(τtp)3δ)δ)ξp(3δ1(1(τtk+1)3δ)δ)ξ1,δ(δ1kp=1(1((τip)δ)δ)ξp)δ+(δ1(1((τik+1)δ)δ)ξ1)δ(δ1kp=1(1((τip)δ)δ)ξp)δ(δ1(1((τik+1)δ)δ)ξ1)δ,3δ(3δ1kp=1(1((τfp)δ)3δ)ξp)3δ+(3δ1(1((τfk+1)δ)3δ)ξ1)3δ(3δ1kp=1(1((τfp)δ)3δ)ξp)3δ(3δ1(1((τfk+1)δ)3δ)ξ1)3δ)=((k+1p=1(δυp)ξp,k+1p=1(δςp)ξp),k+1p=1(3δ1(1(τtp)3δ)δ)ξp,δ1k+1p=1(1((τi1)δ)δ)ξp,3δ1k+1p=1(1((τf1)δ)3δ)ξp).
    1δ(k+1p=1(δΞp)ξp)=((1δ(k+1p=1(δυp)ξp),1δ(k+1p=1(δςp)ξp));3δ1(1(k+1p=1(3δ1(1(τtp)3δ)δ)ξp)3δ)1/δ,(δ1k+1p=1(1((τip)δ)δ)ξp)1/δ,(3δ1k+1p=1(1((τfp)δ)3δ)ξp)1/δ).

    Remark 4.2. If δ=1, the Type-II GFNWG is converted to the Type-II FNWG.

    Corollary 4.3. Let Ξp=(υp,ςp);τtp,τipτfp be a finite collection of Type-II FNNs, and all are equal. Prove that Type-II GFNWG (Ξ1,Ξ2,...,Ξn)=Ξ.

    Let ={1,2,...,n} be the set of n alternatives, A={κ1,κ2,...,κm} represents a set of m attributes, w={ξ1,ξ2,...,ξm} represents weights, and ij=(υij,ςij);τtij,τiijτfij is the Type-Ⅱ FNN of alternative p in attribute κp. We consider τtij,τiij,τfij[0,1] and 0(τtij(ε))3+(τiij(ε))3+(τfij(ε))32, i=1,2,...,n and p=1,2,...,m. Here, the decision matrix =(ij)n×m.

    This section contains the algorithm for Type-Ⅱ FN information. The best option is chosen according to this algorithm.

    Step 1: Enter the decision values for Type-Ⅱ FN.

    Step 2: Construct a normalized decision matrix. Here, =(ij)n×m is normalized into ˆ=(^ij)n×m; put ^ij=(^υij,^ςij);^τtij,^τiij,^τfij and ^υij=υijsupj(υij),^ςij=ςijsupj(ςij)ςijυij,^τtij=τtij,^τiij=τiij,^τfij=τfij.

    Step 3: For each attribute ej in j, ^ij=(^υij,^ςij);^τtij,^τiij,^τfij is aggregated into ^j=(^υj,^ςj);^τtj,^τij,^τfj.

    Step 4: Calculate the optimal values using both positive and negative Type-Ⅱ FNN.

    ^+=sup1in^υij,inf1in^ςij,1,1,0

    and

    ^=inf1in^υij,sup1in^ςij,0,0,1.

    Step 5: Calculate the HDs using two ideal values with each choice.

    +j=H(^i,^+);j=H(^i,^).

    Step 6: Ranking the choices based on relative closeness values.

    j=j+j+j.

    Step 7: In order to find the best solution to the problem, the output yields are determined by supj.

    Sensors on robots are used to monitor a robot's condition and environmental conditions by passing these signals to a controller. In robots, sensors are based on the sensory organs of humans. It is imperative that robots have extensive knowledge of their environment in order to function properly. It is possible to measure a physical quantity with a sensor. These inputs can be converted into electrical signals to be recorded and monitored. In order to choose the right sensor, one must consider the robot's use and the environment in which it is operating. Sensor that measure the same input can differ in accuracy, precision, and sensitivity. It is important to keep this in mind when designing robots. There is a wide array of inputs that sensors can measure. Among these are the environment, force, speed, pressure, temperature, vibration, rotation, imaging, light, biometrics, acceleration, current, orientation, gravity and speech. Automation of robotics requires sensors. It is not possible for a robot to function without them. As a robot interacts with its environment through sensors, it overcomes obstacles and obtains information from the environment. A sensor can be selected according to its characteristics, and the characteristics of a sensor determine the type of sensor to be used for a given application.

    (1) Light sensor (1): The light sensor is a transducer that detects light and creates a voltage difference that reflects the intensity of light falling on it. Generally, robots use photovoltaic cells and photo resistors as light sensors. There are a few other kinds of light sensors in use, such as photo transistors and photo tubes. In robotics, the following types of light sensors are used: A photo resistor is a type of resistor that detects light. The resistance of a photo-resistor changes with the intensity of light. As the resistance of a photo resistor increases, a current passing through it decreases. A photo resistor can also be known as a light dependent resistor (LDR). A photovoltaic cell is a device that converts solar radiation into electricity. It is used for building solar robots. Photovoltaic cells are considered energy sources by themselves; however, they can be converted to sensors when combined with capacitors and transistors.

    (2) Proximity sensor (2): A proximity sensor detects nearby objects without physical contact. Proximity sensors are simple devices. Electromagnetic radiation is transmitted by a proximity sensor, and a return signal is received and analyzed for interruptions by the receiver. Therefore, the amount of light a receiver receives from its surroundings can be used to detect nearby objects. In robotics, proximity sensors are used in the following ways: A transceiver transmits infrared (IR) light via LEDs, but if it encounters an obstacle, the beam of IR light is reflected back, which is captured by a receiver. In ultrasonic sensors, high frequency sound waves are sent out by a transmitter, and the received echo pulse indicates that an object has been interrupted. In robotic systems, ultrasonic sensors are used to measure distance.

    (3) Acceleration sensor (3): The acceleration sensor measures acceleration as well as tilt. Using an accelerometer, you can measure acceleration. An accelerometer is affected by two types of forces: An object's frictional force is called static force. It is possible to determine how much tilt the robot is experiencing by measuring the gravitational force. In this measurement, robots are able to balance themselves, or determine whether they are driving flat or uphill. Dynamic force can be measured using an accelerometer to determine robot velocity and speed.

    (4) Temperature sensor (4): Temperature sensors measure the temperature change around them. According to theory, a change in voltage will provide the equivalent temperature value of a change in temperature. The following are some commonly used temperature sensor ICs: LM34, LM35, TMP35, TMP37 etc.

    (5) Sound sensor (5): It is generally a microphone that detects sound and returns a voltage corresponding to the sound level. Using sound sensors, a simple robot can navigate by listening to sounds. Unlike light sensors, sound sensors generate a very small voltage difference which will be amplified to produce measurable voltage changes.

    A set of selection criteria for sensors is given. In order to compare the sensors, you should consider the following factors:

    (1) Resolution (e1): The smallest change that can be detected by the sensor. There is no guarantee that high is always positive. It would pick up even very minute fluctuations, requiring additional processing if it is too high.

    (2) Sensitivity (e2): An indicator of the ratio of change in output to change in input. Sensitivity that is too high can be problematic. It is also true that in most cases, the higher the sensitivities are the higher the costs.

    (3) Error (e3): The difference between the true value and the measured value. You want this value to be as low as possible. Is that margin of error allowed in your application?

    (4) Environment (e4): Extreme conditions are one of the most significant parameters since not every sensor can withstand them. It is possible for sensors to be affected by conditions that are not ideal (such as temperature, humidity, etc.) and may result in an insufficient measure of output.

    A sensor is scored according to the following attributes: A={κ1:Resolution,  κ2:Sensitivity, κ3:Error, κ4:Environment} and their corresponding weights are w={0.35,0.27,0.23,0.15}. The following are the DM details:

    Step 1: Table 1 is created using the DM data.

    Table 1.  Decision values.
    e1 e2 e3 e4
    1 (0.85,0.5);0.88,0.8,0.8 (0.55,0.5);0.85,0.7,0.9 (0.65,0.6);0.8,0.8,0.85 (0.6,0.55);0.7,0.85,0.9
    2 (0.7,0.65);0.75,0.95,0.75 (0.65,0.45);0.85,0.65,0.95 (0.5,0.4);0.7,0.85,0.9 (0.8,0.65);0.85,0.95,0.65
    3 (0.75,0.6);0.8,0.7,0.85 (0.75,0.7);0.9,0.85,0.8 (0.65,0.5);0.75,0.9,0.8 (0.65,0.5);0.8,0.7,0.95
    4 (0.5,0.4);0.7,0.85,0.9 (0.6,0.5);0.95,0.75,0.75 (0.75,0.55);0.8,0.95,0.7 (0.75,0.7);0.75,0.85,0.85
    5 (0.65,0.55);0.9,0.75,0.85 (0.7,0.6);0.75,0.9,0.8 (0.7,0.65);0.9,0.75,0.85 (0.7,0.5);0.85,0.9,0.7

     | Show Table
    DownLoad: CSV

    Step 2: A normalized decision matrix is shown in Table 2.

    Table 2.  Normalized decision matrix.
    e1 e2 e3 e4
    1 (1,0.4525); (0.7333,0.6494); (0.8667,0.8521); (0.75,0.7202);
    0.88,0.8,0.8 0.85,0.7,0.9 0.8,0.8,0.85 0.7,0.85,0.9
    2 (0.8235,0.9286); (0.8667,0.4451); (0.6667,0.4923); (1,0.7545);
    0.75,0.95,0.75 0.85,0.65,0.95 0.7,0.85,0.9 0.85,0.95,0.65
    3 (0.8824,0.7385); (1,0.9333); (0.8667,0.5917); (0.8125,0.5495);
    0.8,0.7,0.85 0.9,0.85,0.8 0.75,0.9,0.8 0.8,0.7,0.95
    4 (0.5882,0.4923); (0.8,0.5952); (1,0.6205); (0.9375,0.9333);
    0.7,0.85,0.9 0.95,0.75,0.75 0.8,0.95,0.7 0.75,0.85,0.85
    5 (0.7647,0.716); (0.9333,0.7347); (0.9333,0.9286); (0.875,0.5102);
    0.9,0.75,0.85 0.75,0.9,0.8 0.9,0.75,0.85 0.85,0.9,0.7

     | Show Table
    DownLoad: CSV

    Step 3: Each alternative's data with Type-Ⅱ FNWA operators is summarized in Table 3.

    Table 3.  Type-Ⅱ FNWA values.
    TypeIIFNWAoperator(δ=1)
    ^1 (0.8598,0.6377);0.8375,0.7863,0.8524
    ^2 (0.8256,0.6716);0.7924,0.8911,0.8160
    ^3 (0.9000,0.7290);0.8277,0.8068,0.8385
    ^4 (0.7925,0.6157);0.8441,0.8663,0.8017
    ^5 (0.8656,0.7391);0.8660,0.8299,0.8122

     | Show Table
    DownLoad: CSV

    Step 4: Both ideal values are listed as follows:

    ^+=(0.9,0.6157),1,1,0,
    ^=(0.7925,0.7391),0,0,1.

    Step 5: To calculate the HD between each option with ideal values, we use the values in Tables 4 and 5.

    Table 4.  Positive ideal values.
    +1 +2 +3 +4 +5
    0.1954 0.1746 0.1776 0.1759 0.1602

     | Show Table
    DownLoad: CSV
    Table 5.  Negative ideal values.
    1 2 3 4 5
    0.1733 0.1938 0.1908 0.1925 0.2082

     | Show Table
    DownLoad: CSV

    Step 6: We calculate each option's relative closeness value (see Table 6).

    Table 6.  Relative closeness value.
    1 2 3 4 5
    0.4704 0.5260 0.5180 0.5224 0.5651

     | Show Table
    DownLoad: CSV

    Step 7: The ranking of alternatives is 52431. Consequently, selecting the most suitable sound sensor 5 is a great solution.

    In this subsection, we give a comparison between the proposed models and some of the existing models, demonstrating their applicability and advantages. We used Type-Ⅱ FNWA, Type-Ⅱ FNWG, Type-Ⅱ GFNWA and Type-Ⅱ GFNWG approaches based on HD. The different distances are shown in Table 7.

    Table 7.  Comparison table.
    δ=1 TypeII TypeII TypeII TypeII
    FNWA FNWG GFNWA GFNWG
    TOPSISHD 524 532 524 532
    (proposed) 31 41 31 41
    TOPSISHD 513 513 513 513
    [19] 42 42 42 42
    TOPSISHD 513 513 513 513
    [24] 42 42 42 42

     | Show Table
    DownLoad: CSV

    On the basis of these four aggregating operators, the HDs of proposed strategies and existing techniques are shown in Figure 1.

    Figure 1.  The TOPSIS model is based on a Type-Ⅱ FNWA technique.

    By altering various values of δ, we can obtain Table 8.

    Table 8.  Relative closeness values.
    δ 1 2 3 4 5 Order
    δ=2 0.4730 0.5311 0.5226 0.5316 0.5687 54231
    δ=3 0.4756 0.5362 0.5276 0.5406 0.5724 54231
    δ=4 0.478 0.5412 0.5328 0.5487 0.5759 54231
    δ=5 0.4804 0.5459 0.538 0.5559 0.5792 54231
    δ=6 0.4825 0.5502 0.5432 0.5622 0.5823 54231
    δ=7 0.4845 0.5541 0.5483 0.5677 0.5853 54231
    δ=8 0.4864 0.5576 0.5531 0.5726 0.588 54231
    δ=9 0.4881 0.5608 0.5576 0.5769 0.5906 54231
    δ=10 0.4897 0.5636 0.5617 0.5807 0.593 54231
    δ=11 0.4912 0.5661 0.5656 0.5841 0.5952 54231
    δ=12 0.4926 0.5683 0.5692 0.5872 0.5974 54231
    δ=13 0.4939 0.5704 0.5725 0.5901 0.5994 54321
    δ=14 0.4952 0.5722 0.5756 0.5928 0.6013 54321
    δ=15 0.4964 0.5739 0.5784 0.5952 0.603 54321
    δ=16 0.4975 0.5754 0.581 0.5975 0.6047 54321
    δ=17 0.4985 0.5768 0.5834 0.5997 0.6063 54321
    δ=18 0.4996 0.5781 0.5856 0.6017 0.6078 54321
    δ=19 0.5005 0.5793 0.5877 0.6036 0.6092 54321
    δ=20 0.5014 0.5804 0.5896 0.6054 0.6105 54321
    δ=21 0.5023 0.5815 0.5915 0.6071 0.6118 54321
    δ=22 0.5031 0.5824 0.5931 0.6087 0.613 54321
    δ=23 0.5039 0.5834 0.5947 0.6102 0.6141 54321
    δ=24 0.5047 0.5842 0.5962 0.6116 0.6151 54321
    δ=25 0.5055 0.585 0.5976 0.613 0.6161 54321
    δ=26 0.5062 0.5858 0.5989 0.6143 0.617 54321
    δ=27 0.5069 0.5865 0.6002 0.6156 0.6179 54321
    δ=28 0.5075 0.5871 0.6013 0.6168 0.6188 54321
    δ=29 0.5082 0.5878 0.6025 0.618 0.6195 54321
    δ=30 0.5088 0.5884 0.6035 0.6191 0.6203 54321
    δ=31 0.5094 0.589 0.6045 0.6201 0.621 54321
    δ=32 0.5099 0.5895 0.6055 0.6211 0.6217 54321
    δ=33 0.5105 0.59 0.6064 0.6221 0.6223 54321
    δ=34 0.5111 0.5905 0.6073 0.623 0.6229 45321

     | Show Table
    DownLoad: CSV

    A graph of the different values for the Type-Ⅱ FNWA operator is presented in Figure 2.

    Figure 2.  The TOPSIS model in Figure 2 is based on a Type-Ⅱ FNWA technique.

    A graph of the different values for the Type-Ⅱ FNWA operator is presented in Figure 3.

    Figure 3.  The TOPSIS model in Figure 3 is based on a Type-Ⅱ FNWA technique.

    The aforementioned analysis demonstrates that, the ranking of the alternatives is 54231 when 2δ12. In the event when 13δ33, the ordering of the alternatives becomes 54321. The ranking of the alternatives, in a new order, is 45321 when δ=34. As a result, the preferred option was changed from 5 to 4. The basis of the alternate rankings is similarly composed of Type-Ⅱ FNWG, Type-Ⅱ GFNWA and Type-Ⅱ GFNWG operators with values of δ.

    This paper proposes a method that offers the following benefits, as shown by the above analysis. In the article, NFN and neutrosophic number are combined to introduce the concept of Type-Ⅱ FNN. A Type-Ⅱ FNN interprets human behavior and natural phenomena that have a normal distribution in nature and describes ambiguous information. Therefore, type-II FNN information is characterized more broadly and is more in line with how humans think. The decision-maker may use parameter δ to select the decision result according to their preferences. In this paper, the mode of ranking alternatives will be discussed in terms of Type-Ⅱ FNWAs, Type-Ⅱ FNWGs, Type-Ⅱ GFNWAs and Type-Ⅱ GFNWGs.

    We used HD for Type-Ⅱ FNNs, whose algebraic accessibility provides an added benefit. The HD of Type-Ⅱ Fermatean sets has a wide range of practical applications in data analysis. Using persuasive statistical examples, the benefits of the HD are demonstrated. Many illustrations of Type-Ⅱ FNWA, Type-Ⅱ FNWG, Type-Ⅱ GFNWA and Type-Ⅱ GFNWG with AOs were shown, and for the first time, models were proposed. The Type-Ⅱ FNS method can assist persons in selecting the best alternative from a selection of choices. We have proposed changes for the Type-Ⅱ FNWA, Type-Ⅱ FNWG, Type-Ⅱ GFNWA, and Type-Ⅱ GFNWG AOs to the MADM problem on δ. The distinct ranking of options may be found for the Type-Ⅱ FNWA, Type-Ⅱ FNWG, Type-Ⅱ GFNWA, and Type-Ⅱ GFNWG AOs on δ. The results demonstrated that the generalized values of δ have the most impact on the ranking of options at the last stage. The DM may set the values of δ in accordance with the present parameters and then proceed to make appropriate decisions in order to attain the best reasonable ranking. As a result, the values of δ can provide guidance to the decision-maker in arriving at the outcome. Since this is a wide open field, the ideas presented here will be useful to future academics with an interest in the subject. Ideas require a great deal of work because of their applicability to real-world issues. Graphs of Fermatean fuzzy sets and aggregation operators on these sets are some directions that will help us address a variety of real-world problems.

    The authors declare no conflicts of interest.



    [1] S. Bhalekar, V. Daftardar-Gejji, D. Baleanu, R. Magin, Generalized fractional order Bloch equation with extended delay, Int. J. Bifurcat. Chaos, 22 (2012), 1250071. https://doi.org/10.1142/S021812741250071X doi: 10.1142/S021812741250071X
    [2] M. Benchohra, S. Litimein, G. N'Guérékata, On fractional integro-differential inclusions with state-dependent delay in Banach spaces, Appl. Anal., 92 (2013), 335–350. https://doi.org/10.1080/00036811.2011.616496 doi: 10.1080/00036811.2011.616496
    [3] E. Fridman, L. Fridman, E. Shustin, Steady modes in relay control systems with time delay and periodic disturbances, J. Dyn. Sys. Meas. Control, 122 (2000), 732–737. https://doi.org/10.1115/1.1320443 doi: 10.1115/1.1320443
    [4] J. J. Batzel, F. Kappel, Time delay in physiological systems: Analyzing and modeling its impact, Math. Biosci., 234 (2011), 61–74. https://doi.org/10.1016/j.mbs.2011.08.006 doi: 10.1016/j.mbs.2011.08.006
    [5] P. P. Liu, Periodic solutions in an epidemic model with diffusion and delay, Appl. Math. Comput., 265 (2015), 275–291. https://doi.org/10.1016/j.amc.2015.05.028 doi: 10.1016/j.amc.2015.05.028
    [6] R. V. Culshaw, S. Ruan, G. Webb, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. Math. Bio., 46 (2003), 425–444. https://doi.org/10.1007/s00285-002-0191-5 doi: 10.1007/s00285-002-0191-5
    [7] C. Beta, M. Bertram, A. S. Mikhailov, H. H. Rotermund, G. Ertl, Controlling turbulence in a surface chemical reaction by time-delay autosynchronization, Phys. Rev. E, 67 (2003), 046224. https://doi.org/10.1103/PhysRevE.67.046224 doi: 10.1103/PhysRevE.67.046224
    [8] B. Liu, C. Zhang, A spectral Galerkin method for nonlinear delay convection–diffusion–reaction equations, Comput. Math. Appl., 69 (2015), 709–724. https://doi.org/10.1016/j.camwa.2015.02.027 doi: 10.1016/j.camwa.2015.02.027
    [9] V. G. Pimenov, A. S. Hendy, A numerical solution for a class of time fractional diffusion equations with delay, Int. J. Appl. Math. Comput. Sci., 27 (2017), 477–488. https://doi.org/10.1515/amcs-2017-0033 doi: 10.1515/amcs-2017-0033
    [10] V. G. Pimenov, A. S. Hendy, R. H. De Staelen, On a class of non-linear delay distributed order fractional diffusion equations, J. Comput. Appl. Math., 318 (2017), 433–443. https://doi.org/10.1016/j.cam.2016.02.039 doi: 10.1016/j.cam.2016.02.039
    [11] L. Li, B. Zhou, X. Chen, Z. Wang, Convergence and stability of compact finite difference method for nonlinear time fractional reaction–diffusion equations with delay, Appl. Math. Comput., 337 (2018), 144–152. https://doi.org/10.1016/j.amc.2018.04.057 doi: 10.1016/j.amc.2018.04.057
    [12] A. Mohebbi, Finite difference and spectral collocation methods for the solution of semilinear time fractional convection-reaction-diffusion equations with time delay, J. Appl. Math. Comput., 61 (2019), 635–656. https://doi.org/10.1007/s12190-019-01267-w doi: 10.1007/s12190-019-01267-w
    [13] A. S. Hendy, J. E. Macías-Díaz, A novel discrete Grönwall inequality in the analysis of difference schemes for time-fractional multi-delayed diffusion equations, Commun. Nonlinear Sci., 73 (2019), 110–119. https://doi.org/10.1016/j.cnsns.2019.02.005 doi: 10.1016/j.cnsns.2019.02.005
    [14] Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193–209. https://doi.org/10.1016/j.apnum.2005.03.003 doi: 10.1016/j.apnum.2005.03.003
    [15] Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
    [16] A. A. Alikhanov, Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation, Appl. Math. Comput., 268 (2015), 12–22. https://doi.org/10.1016/j.amc.2015.06.045 doi: 10.1016/j.amc.2015.06.045
    [17] C. Chen, F. Liu, V. Anh, I. Turner, Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. Sci. Comput., 32 (2010), 1740–1760. https://doi.org/10.1137/090771715 doi: 10.1137/090771715
    [18] A. A. Alikhanov, Boundary value problems for the diffusion equation of the variable order in differential and difference settings, Appl. Math. Comput., 219 (2012), 3938–3946. https://doi.org/10.1016/j.amc.2012.10.029 doi: 10.1016/j.amc.2012.10.029
    [19] A. Delić, B. S. Jovanović, Numerical approximation of an interface problem for fractional in time diffusion equation, Appl. Math. Comput., 229 (2014), 467–479. https://doi.org/10.1016/j.amc.2013.12.060 doi: 10.1016/j.amc.2013.12.060
    [20] A. S. Hendy, M. A. Zaky, R. H. De Staelen, A general framework for the numerical analysis of high-order finite difference solvers for nonlinear multi-term time-space fractional partial differential equations with time delay, Appl. Numer. Math., 169 (2021), 108–121. https://doi.org/10.1016/j.apnum.2021.06.010 doi: 10.1016/j.apnum.2021.06.010
    [21] Y. Zhang, Z. Sun, H. Liao, Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys., 265 (2014), 195–210. https://doi.org/10.1016/j.jcp.2014.02.008 doi: 10.1016/j.jcp.2014.02.008
    [22] G. Gao, Z. Sun, H. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259 (2014), 33–50. https://doi.org/10.1016/j.jcp.2013.11.017 doi: 10.1016/j.jcp.2013.11.017
    [23] C. Lv, C. Xu, Error analysis of a high order method for time-fractional diffusion equations, SIAM J. Sci. Comput., 38 (2016), 2699–2724. https://doi.org/10.1137/15M102664X doi: 10.1137/15M102664X
    [24] Y. Wang, L. Ren, A high-order L2-compact difference method for Caputo-type time-fractional sub-diffusion equations with variable coefficients, Appl. Math. Comput., 342 (2019), 71–93. https://doi.org/10.1016/j.amc.2018.09.007 doi: 10.1016/j.amc.2018.09.007
    [25] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424–438. https://doi.org/10.1016/j.jcp.2014.09.031 doi: 10.1016/j.jcp.2014.09.031
    [26] G. Gao, A. A. Alikhanov, Z. Sun, The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations, J. Sci. Comput., 73 (2017), 93–121. https://doi.org/10.1007/s10915-017-0407-x doi: 10.1007/s10915-017-0407-x
    [27] R. Du, A. A. Alikhanov, Z. Sun, Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations, Comput. Math. Appl., 79 (2020), 2952–2972. https://doi.org/10.1016/j.camwa.2020.01.003 doi: 10.1016/j.camwa.2020.01.003
    [28] M. A. Zaky, A. S. Hendy, A. A. Alikhanov, V. G. Pimenov, Numerical analysis of multi-term time-fractional nonlinear subdiffusion equations with time delay: What could possibly go wrong? Commun. Nonlinear Sci. Numer. Simulat., 96 (2021), 105672. https://doi.org/10.1016/j.cnsns.2020.105672 doi: 10.1016/j.cnsns.2020.105672
    [29] Y. Zhao, P. Zhu, W. Luo, A fast second-order implicit scheme for non-linear time-space fractional diffusion equation with time delay and drift term, Appl. Math. Comput. 336 (2018), 231–248. https://doi.org/10.1016/j.amc.2018.05.004 doi: 10.1016/j.amc.2018.05.004
    [30] S. Nandal, D. N. Pandey, Numerical treatment of non-linear fourth-order distributed fractional sub-diffusion equation with time-delay, Commun. Nonlinear Sci. Numer. Simulat., 83 (2020), 105146. https://doi.org/10.1016/j.cnsns.2019.105146 doi: 10.1016/j.cnsns.2019.105146
    [31] M. A. Zaky, A. S. Hendy, J. E. Macías-Díaz, High-order finite difference/spectral-Galerkin approximations for the nonlinear time-space fractional Ginzburg-Landau equation, Numer. Meth. Part. D. E., 83 (2020). https://doi.org/10.1002/num.22630 doi: 10.1002/num.22630
    [32] A. S. Hendy, J. E. Macías-Díaz, A discrete Grönwall inequality and energy estimates in the analysis of a discrete model for a nonlinear time-fractional heat equation, Mathematics, 8 (2020), 1539. https://doi.org/10.3390/math8091539 doi: 10.3390/math8091539
    [33] M. A. Zaky, A. S. Hendy, R. H. De Staelen, Alikhanov Legendre-Galerkin spectral method for the coupled nonlinear time-space fractional Ginzburg-Landau complex system, Mathematics, 9 (2021), 183. https://doi.org/10.3390/math9020183 doi: 10.3390/math9020183
    [34] Y. Wang, F. Liu, L. Mei, V. V. Anh, A novel alternating-direction implicit spectral Galerkin method for a multi-term time-space fractional diffusion equation in three dimensions, Numer. Algor., 86 (2021), 1443–1474. https://doi.org/10.1007/s11075-020-00940-7 doi: 10.1007/s11075-020-00940-7
    [35] H. Liu, S. Lü, A high-order numerical scheme for solving nonlinear time fractional reaction-diffusion equations with initial singularity, Appl. Numer. Math., 169 (2021), 32–43. https://doi.org/10.1016/j.apnum.2021.06.013 doi: 10.1016/j.apnum.2021.06.013
    [36] Y. Wang, G. Wang, L. Bu, L. Mei, Two second-order and linear numerical schemes for the multi-dimensional nonlinear time-fractional Schrödinger equation, Numer. Algor., 88 (2021), 419–451. https://doi.org/10.1007/s11075-020-01044-y doi: 10.1007/s11075-020-01044-y
    [37] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Math. Sci. Eng., 198 (1998), 340.
    [38] D. Wang, A. Xiao, W. Yang, Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys., 242 (2013), 670–681. https://doi.org/10.1016/j.jcp.2013.02.037 doi: 10.1016/j.jcp.2013.02.037
    [39] V. J. Ervin, J. P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in Rd, Numer. Meth. Part. D. E., 23 (2007), 256–281. https://doi.org/10.1002/num.20169 doi: 10.1002/num.20169
    [40] F. Marcellán, W. Van Assche, Orthogonal polynomials and special functions: computation and applications, Berlin: Springer, 2006.
    [41] J. Shen, T. Tang, L. Wang, Spectral methods: algorithms, analysis and applications, Berlin: Springer, 2011.
    [42] A. H. Bhrawy, M. A. Zaky, A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 281 (2015), 876–895. https://doi.org/10.1016/j.jcp.2014.10.060 doi: 10.1016/j.jcp.2014.10.060
    [43] A. H. Bhrawy, M. A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dynam., 80 (2015), 101–116. https://doi.org/10.1007/s11071-014-1854-7 doi: 10.1007/s11071-014-1854-7
    [44] M. A. Zaky, A. S. Hendy, An efficient dissipation-preserving Legendre-Galerkin spectral method for the Higgs boson equation in the de Sitter spacetime universe, Appl. Numer. Math., 160 (2021), 281–295. https://doi.org/10.1016/j.apnum.2020.10.013 doi: 10.1016/j.apnum.2020.10.013
    [45] M. A. Zaky, An accurate spectral collocation method for nonlinear systems of fractional differential equations and related integral equations with nonsmooth solutions, Appl. Numer. Math., 154 (2020), 205–222. https://doi.org/10.1016/j.apnum.2020.04.002 doi: 10.1016/j.apnum.2020.04.002
    [46] M. A. Zaky, I. G. Ameen, A priori error estimates of a Jacobi spectral method for nonlinear systems of fractional boundary value problems and related Volterra-Fredholm integral equations with smooth solutions, Numer. Algor., 84 (2020), 63–89. https://doi.org/10.1007/s11075-019-00743-5 doi: 10.1007/s11075-019-00743-5
    [47] A. K. Omran, M. A. Zaky, A. S. Hendy, V. G. Pimenov, An efficient hybrid numerical scheme for nonlinear multiterm Caputo time and riesz space fractional-order diffusion equations with delay, J. Funct. Space., 2021 (2021). https://doi.org/10.1155/2021/5922853 doi: 10.1155/2021/5922853
    [48] A. K. Omran, M. A. Zaky, A. S. Hendy, V. G. Pimenov, An easy to implement linearized numerical scheme for fractional reaction-diffusion equations with a prehistorical nonlinear source function, Math. Comput. Simulat., 200 (2022), 218–239. https://doi.org/10.1016/j.matcom.2022.04.014 doi: 10.1016/j.matcom.2022.04.014
    [49] A. K. Omran, M. A. Zaky, A. S. Hendy, V. G. Pimenov, Numerical algorithm for a generalized form of Schnakenberg reaction-diffusion model with gene expression time delay, Appl. Numer. Math., 185 (2023), 295–310. https://doi.org/10.1016/j.apnum.2022.11.024 doi: 10.1016/j.apnum.2022.11.024
    [50] F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner, V. Anh, A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation, SIAM J. Numer. Anal., 52 (2014), 2599–2622. https://doi.org/10.1137/130934192 doi: 10.1137/130934192
    [51] J. Shen, Efficient spectral-Galerkin method I. Direct solvers of second-and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 1489–1505. https://doi.org/10.1137/0915089 doi: 10.1137/0915089
    [52] A. A. Alikhanov, A priori estimates for solutions of boundary value problems for fractional-order equations, Diff. Equat., 46 (2010), 660–666. https://doi.org/10.1134/S0012266110050058 doi: 10.1134/S0012266110050058
    [53] D. Li, H. Liao, W. Sun, J. Wang, J. Zhang, Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems, Commun. Comput. Phys, , 24 (2018), 86–103. https://doi.org/10.4208/cicp.OA-2017-0080 doi: 10.4208/cicp.OA-2017-0080
    [54] H. Liao, D. Li, J. Zhang, Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1112–1133. https://doi.org/10.1137/17M1131829 doi: 10.1137/17M1131829
    [55] H. Liao, W. McLean, J. Zhang, A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems, SIAM J. Numer. Anal., 57 (2019), 218–237. https://doi.org/10.1137/16M1175742 doi: 10.1137/16M1175742
    [56] G. N. Gatica, A simple introduction to the mixed finite element method: theory and applications, Berlin: Springer, 2014.
    [57] B. Zhou, X. Chen, D. Li, Nonuniform Alikhanov linearized Galerkin finite element methods for nonlinear time-fractional parabolic equations, J. Sci. Comput., 85 (2020), 1–20. https://doi.org/10.1007/s10915-020-01350-6 doi: 10.1007/s10915-020-01350-6
  • This article has been cited by:

    1. Qiongqiong Sun, Longfei Yang, Enhanced computer network security assessment through employing an integrated LogTODIM-TOPSIS technique under interval neutrosophic sets, 2024, 28, 13272314, 419, 10.3233/KES-230239
    2. Tahir Mahmood, Ubaid ur Rehman, Jabbar Ahmmad, Prioritization and selection of operating system by employing geometric aggregation operators based on Aczel-Alsina t-norm and t-conorm in the environment of bipolar complex fuzzy set, 2023, 8, 2473-6988, 25220, 10.3934/math.20231286
    3. Jing Nie, A novel IFN-CSM-CoCoSo approach for multiple-attribute group decision-making with intuitionistic fuzzy sets: An application in assessing corporate social responsibility performance, 2024, 10, 24058440, e29207, 10.1016/j.heliyon.2024.e29207
    4. Benkun Yao, q-Rung Orthopair Fuzzy Approach for Multiple-Attribute Group Decision-Making and Application to Commercial Computer Network Security Evaluation, 2024, 13, 2156-177X, 1, 10.4018/IJFSA.356366
    5. Ghadeer Ghazi Shayea, Mohd Hazli Mohammed Zabil, A. S. Albahri, Shahad Sabbar Joudar, Rula A. Hamid, O. S. Albahri, A. H. Alamoodi, Idrees A. Zahid, Iman Mohamad Sharaf, Fuzzy Evaluation and Benchmarking Framework for Robust Machine Learning Model in Real-Time Autism Triage Applications, 2024, 17, 1875-6883, 10.1007/s44196-024-00543-3
    6. Faiza Gul, Imran Mir, Aseel Smerat, Manzar Abbas, Population‐Based Optimization With Decentralized Method, 2025, 0143-2087, 10.1002/oca.3317
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1832) PDF downloads(129) Cited by(0)

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog