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Abstract: In this paper, we examine and provide numerical solutions to the nonlinear fractional order
time-space diffusion equations with the influence of temporal delay. An effective high-order numerical
scheme that mixes the so-called Alikhanov L2 − 1σ formula side by side to the power of the Galerkin
method is presented. Specifically, the time-fractional component is estimated using the uniform L2−1σ
difference formula, while the spatial fractional operator is approximated using the Legendre-Galerkin
spectral approximation. In addition, Taylor’s approximations are used to discretize the term of the
nonlinear source function. It has been shown theoretically that the suggested scheme’s numerical
solution is unconditionally stable, with a second-order time-convergence and a space-convergent order
of exponential rate. Furthermore, a suitable discrete fractional Grönwall inequality is then utilized
to quantify error estimates for the derived solution. Finally, we provide a numerical test that closely
matches the theoretical investigation to assess the efficacy of the suggested method.
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1. Introduction

Development an effective techniques for solving models involving fractional derivatives and
temporal delays has recently attracted a lot of attention, which is encouraging. Flexible representation
and the capability to accurately describe various phenomena are the main reasons why they are
preferred over integer-order models. Fractional derivatives, unlike regular ones, are non-local in
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nature and could be used to describe memory effects, while time delays indicate the history of a
previous state. It appears that the addition of the delay term in fractional differential equations is
paving the way for new possibilities and opening new vistas in many scientific fields. This kind of
fractional differential equation is effectively applied in many fields, including bioengineering, control
theory, population dynamics, economics, electrochemistry, physics, and many more [1–7]. As the
systems become increasingly sophisticated and linked, time delays are incorporated to account that
changes in one variable may affect other variables with certain lags. For example, in biological
models, delays explain incubation time or the time required for a plant to reach maturity. In control
theory, time delays are considered in feedback control systems to account for delayed feedback.
Economic models use delays to match transportation and information transfer more closely. The
literature has paid considerable attention to fractional partial differential equations involving delays.
Liu in [8] combined the Crank-Nicolson approach and the Legendre spectral technique to provide a
fully discrete methodology for the nonlinear delayed diffusion-reaction equations. An effective
approximation approach for nonlinear delayed fractional order diffusion equations was developed and
evaluated by Pimenov and Hendy in [9]. In [10], a numerical approach was described for solving a
certain form of a delayed fractional model with distributed order in time. The authors in that work
used the Crank–Nicholson method to obtain the numerical solution. For solving the nonlinear form of
fractional diffusion equations with temporal delay, Li et al. [11] suggested a linearized compact
scheme. The spatial discretization in the mentioned work was accomplished with the help of the
compact finite difference approach, while the temporal discretization was made by utilizing an L1
formula to the time fractional derivative and an extrapolation for the nonlinear component. For the
solution of time-delayed nonlinear fractional diffusion equations, Mohebbi [12] developed a
numerical method that is guaranteed to be stable under any conditions. The temporal direction was
discretized using a finite difference method, while the spatial component via Chebyshev spectral
collocation method. By developing a novel form of fractional Grönwall inequality in a discrete style,
Hendy and Macı́as-Dı́az [13] were capable of proving the stability and convergence of numerical
solutions to the nonlinear time-fractional diffusion equations with multi-time delays.

On the other hand, substantial effort has been expended in the scientific literature to develop efficient
formulas for approximating the time fractional derivatives in the Caputo sense. The L1 formula is
considered one of the most extensive methods used for the solution of fractional differential equations
that include Caputo derivatives [14–20]. In the case of a non-uniform mesh, the L1 approximation
provides a decent approximation when the mesh is refined close to the point tn+1 [21]. Even though
the non-uniform mesh performs better than the uniform one, the second-order approximation will
not be generated at all mesh nodes. In order to get a close approximation to the Caputo fractional
derivative of order β (0 < β < 1), Gao et al. [22] constructed a novel formulation called the L1 − 2
formula with 3− β convergence order in temporal direction at time tk(k ≥ 2). This formula is produced
by approximating the integrated function with three points using a piecewise quadratic interpolation
approximation and it is properly defined as a modification of the L1 formula with some correction
terms added. In [23, 24], the Caputo time-fractional derivative is discretized by applying a numerical
formula with 3−β order, known as, the L2 formula. This formula is generated with the use of piecewise
quadratic interpolating polynomials. Through the development of a discrete energy analysis approach,
a comprehensive theoretical examination of the stability and convergence of this method is performed
for every β ∈ (0, 1). Alikhanov [25] devised a new difference scheme called the L2− 1σ formula based
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on a high-order approximation for the Caputo fractional derivatives with 3 − β convergence order in
temporal direction at time t = tk +σ with σ = 1 − β

2 . It was shown in [26–28] that the L2 − 1σ formula
may be extended and used to solve the multi-term, distributed, variable-order time-fractional diffusion
equations. On the basis of this formula, a number of recent studies have investigated and developed
high-order techniques for time fractional models in the Caputo sense. An implicit technique for solving
fractional diffusion equations with time delay is shown in [29], which combines the Alikhanov formula
for time approximation with the central difference method for spatial discretization. A second-order
numerical approach was suggested by Nandal and Pandey in [30] for solving a nonlinear fourth-order
delayed distributed fractional subdiffusion problem. They estimated the time-fractional derivative with
the Alikhanov formula as well as the spatial dimensions with the compact difference operator. For
the fractional order nonlinear Ginzburg-Landau equation, Zaky et al. [31] numerically developed a
useful technique by discretizing time direction using the Alikhanov formula and space direction with
the methodology of spectral Legendre-Galerkin. Following up on the L2 − 1σ formula, a slew of
new works have appeared (see, for example, [32–36]). Without loss of generality, in this work, we
numerically propose a high-order algorithm for solving the following time-delayed nonlinear fractional
order reaction-diffusion equations:

∂βΘ

∂tβ
= κ

∂αΘ

∂|x|α
+ F(Θ(x, t),Θ(x, t − s)) +G(x, t), x ∈ Ω, t ∈ I, (1.1)

initialized and constrained by the conditions{
Θ(x, t) = ϑ(x, t), x ∈ Ω, t ∈ [−s, 0],
Θ(a, t) = Θ(b, t) = 0, t ∈ I.

(1.2)

In this case, time and space domains are represented by I = [0,T ] ⊂ R andΩ = [a, b] ⊂ R, respectively.
Additionally, β ∈ (0, 1) represents the temporal order of fractional time in which the time-fractional
derivative is interpreted according to Caputo, whereas α ∈ (1, 2) represents the fractional order of
space. The Riemann-Liouville fractional derivatives on its both sides for n − 1 < α < n, are provided
by [37]

−∞Dα
xΘ(x, t) =

1
Γ(n − α)

∂n

∂xn

∫ x

−∞

(x − τ)n−1−αΘ(τ, t)dτ, (1.3)

xDα
∞Θ(x, t) =

(−1)n

Γ(n − α)
∂n

∂xn

∫ ∞

x
(τ − x)n−1−αΘ(τ, t)dτ, (1.4)

where Γ(x) symbolizes the usual function of gamma. This allows us to give a definition for the Riesz
space of fractional derivatives, which is [38]

∂αΘ

∂|x|α
= −cα

(
aDα

xΘ(x, t) + xDα
bΘ(x, t)

)
, cα =

1
2 cos πα

2

, α ∈ (1, 2).

The Caputo derivative ∂βΘ
∂tβ is defined as

∂βΘ(x, t)
∂tβ

=
1

Γ(1 − β)

∫ t

0
(t − r)−β

∂

∂r
Θ(x, r)dr, β ∈ (0, 1). (1.5)

Our primary objectives of current work are to develop and investigate an effective numerical
algorithm for a nonlinear time-delayed fractional order reaction-diffusion (1.1). A combination
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scheme is proposed that mixes the Alikhanov L2 − 1σ difference formula with Galerkin spectral
Legendre scheme. More specifically, the spatial discretization is handled by utilizing
Legendre–Galerkin spectral approach, whereas the fractional derivative in the temporal direction is
discretized through the L2 − 1σ formula. Additionally, a suitable version of discrete fractional
Grönwall inequalities is utilized in order to assert the unconditional stability and convergence of the
proposed technique. The structure of this study is as follows. In the subsequent section, we shall
describe and characterize the key features of fractional derivative spaces, Sobolev spaces, as well as
Jacobi polynomials. On a uniform mesh, we detail in section 3 the way to construct the fully discrete
L2 − 1σ Galerkin spectral scheme for the problems (1.1) and (1.2). Section 4 recalls several technical
lemmas from the literature before proving that the suggested methodology is unconditionally stable
and convergent. Finally, Section 5 includes a numerical test that validates the obtained scheme’s
convergence analysis.

2. Basic concepts

Here, we briefly review some fundamental concepts in fractional derivative spaces as well as the
essential elements of their properties, see [39] for further details. Then, Jacobi polynomials’ primary
features are mentioned. Assume that (·, ·)0,Ω refer the standard inner product related to L2(Ω) space
with the usual L2 norm and the maximum norm ∥·∥∞. Define the space C∞0 (Ω) consists of all smooth
functions that have compact support in Ω. Consider that Hr(Ω) and Hr

0(Ω) are the standard Sobolev
spaces, and their associated norms and seminorms, respectively, are ∥·∥r and |·|r. To further clarify, we
characterize the approximation spaceW0

N as:

W0
N = PN(Ω) ∩ H1

0(Ω),

where in PN(Ω) stands for the set of all polynomials defined on the domain Ω that have a degree no
greater than N. The interpolation operator of type Legendre-Gauss-Lobatto depicted by the symbol
IN : C(Ω̄)→WN , can be defined as follows

Θ(xi) = IN Θ(xi) ∈ PN , i = 0, 1, . . . ,N.

Definition 1. The semi-norm and norm related to the space of left fractional derivatives are specified
for a given ε > 0, respectively, as follows:

| Θ |JεL(Ω)=
∥∥∥aDε

xΘ
∥∥∥

0,Ω
, ∥Θ∥JεL(Ω) =

(
| Θ |2JεL

(Ω) + ∥Θ∥20,Ω
)1/2

,

also, JεL and JεL,0 are defined to be the closures of C∞(Ω) and C∞0 (Ω), respectively, in relation to ∥·∥JεL(Ω).

Definition 2. The semi-norm and norm related to the space of right fractional derivatives are specified
for a given ε > 0, respectively, as follows:

| Θ |JεR(Ω)=
∥∥∥xDε

bΘ
∥∥∥

0,Ω
, ∥Θ∥JεR(Ω) =

(
| Θ |2JεR(Ω) + ∥Θ∥

2
0,Ω

)1/2
,

also, JεR and JεR,0 are defined to be the closures of C∞(Ω) and C∞0 (Ω), respectively, in relation to ∥·∥JεR(Ω).
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Definition 3. The semi-norm and norm related to the space of symmetric fractional derivatives are
specified for a given ε > 0, respectively, as follows:

| Θ |Jεs (Ω)=| (aDε
xΘ, xDε

bΘ)0,Ω |
1/2, ∥Θ∥Jεs (Ω) =

(
| Θ |2Jεs (Ω) + ∥Θ∥20,Ω

)1/2
,

also, Jεs and Jεs,0 are defined to be the closures of C∞(Ω) and C∞0 (Ω), respectively, in relation to ∥·∥Jεs (Ω).

Definition 4. Assuming that ε > 0, then the fractional Sobolev space Hε(Ω) is defined as follows:

Hε(Ω) =
{
Θ ∈ L2(Ω)

∣∣∣|ω|ε F (Θ̂) ∈ L2(R)
}
,

with respect to following semi-norm and norm

| Θ |Hε(Ω)=
∥∥∥ | ω |ε F (Θ̂)

∥∥∥
0,R
, ∥Θ∥Hε(Ω) =

(
| Θ |2Hε(Ω) + ∥Θ∥

2
0,Ω

)1/2
,

wherein F (Θ̂) stands for the Fourier transform of function Θ̂, denoting the zero extension of functionΘ
beyond the spatial domain Ω. Also, we define Hε(Ω) and Hε

0(Ω) as the closures of C∞(Ω) and C∞0 (Ω),
respectively, with consideration to ∥·∥Hε(Ω).

Remark 2.1. If ε , n − 1
2 , n ∈ N, then according to the above definitions, fractional derivative spaces

JεL, JεR, Jεs and Hε are identical, with equivalent semi-norms and norms.

The adjoint property, which we will revisit below, will play a crucial part in the study that follows.

Lemma 2.1. For a given ε > 0, such that 1 < ε < 2, then for any two functions Θ ∈ Hε
0(Ω) and

υ ∈ Hε/2
0 (Ω), the following relation is satisfied

(
aDε

xΘ, υ
)

0,Ω =
(

aDε/2
x Θ, xDε/2

b υ
)

0,Ω
,

(
xDε

bΘ, υ
)

0,Ω =
(

xDε/2
b Θ, aDε/2

x υ
)

0,Ω
. (2.6)

A brief overview of the basics of Jacobi polynomials follows. We recommend reading [40, 41] for
more information on orthogonal polynomials, and [42–49] for applications of spectral methods to these
type of polynomials. For p, q > −1 and x ∈ (−1, 1), the hypergeometric functions make it possible to
write the Jacobian polynomials as follows:

γ
p,q
0 (x) =

(p + 1)i
i! 2F1

(
−i, p + q + i + 1; p + 1;

1 − x
2

)
, i ∈ N, (2.7)

where (·)i signifies the symbol of Pochhammer. Assuming that N is a positive integer, then the
following three-term recurrence relations hold for {γp,q

i (x)}Ni=0, as they hold for all classical orthogonal
polynomials 

γ
p,q
0 (x) = 1,

γ
p,q
1 (x) =

1
2

(2 + p + q)x +
1
2

(p − q),

γ
p,q
i+1(x) =

(
Ap,q

i x − Bp,q
i

)
γ

p,q
i (x) −Cp,q

i γ
p,q
i−1(x), 1 ≤ i ≤ N.

(2.8)
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Where the coefficients of recursion are provided by

Ap,q
i =

(2i + p + q + 1)(2i + p + q + 2)
2(i + 1)(i + p + q + 1)

,

Bp,q
i =

(2i + p + q + 1)(p2 − q2)
2(i + 1)(i + p + q + 1)(2i + p + q)

,

Cp,q
i =

(2i + p + q + 2)(i + p)(i + q)
(i + 1)(i + p + q + 1)(2i + p + q)

.

(2.9)

The existence of orthogonality in the set of Jacobi polynomials is due to a weight function, which is
represented by ωp,q(x) = (1 − x)p(1 + x)q, more precisely,∫ 1

−1
γ

p,q
i (x)γp,q

j (x)ωp,q(t)dx = ιp,qi δi, j, (2.10)

where δi, j represents the function of the Kronecker delta, and

ι
p,q
i =

2(p+q+1)Γ(i + p + 1)Γ(i + q + 1)
(2i + p + q + 1)i!Γ(i + p + q + 1)

. (2.11)

In specifically, the Legendre polynomial is a subclass of the Jacobi polynomial, which it can be stated
as:

Li(x) = γ0,0
i (x) = 2F1

(
−i, i + 1; 1;

1 − x
2

)
. (2.12)

3. The numerical scheme

Here, in this section, we will focus on developing a high-order numerical approximation for the
problems (1.1) and (1.2) based on combining Alikhanov L2 − 1σ difference formula and the spectral
method of Legendre-Galerkin in order to discretize the temporal and space–fractional derivatives,
respectively. We begin with temporal discretization following that, we detail the suggested scheme’s
spatial discretization.

3.1. Temporal discretization

We choose a time step given by τ = s
Ns

, where Ns is a positive integer, in order to uniformly
divide the temporal domain I. This defines a class of uniform partitions denote by tk = kτ, for each
−Ns ≤ k ≤ M, where M =

⌈
T
τ

⌉
. Denote tk+σ = (k + σ)τ = σtk+1 + (1 − σ)tk, for k = 0, 1, . . . ,M.

Take Θk+σ = Θk+σ(·) = Θ(·, tk+σ). For the Caputo derivative (1.5), we recall the Alikhanov L2 − 1σ
difference formula [25].

Definition 5. The following coefficients are defined for any value of the parameter σ = 1 − β

2 , 0 <

β < 1,

A
(β,σ)
l =

{
σ1−β, l = 0,
(l + σ)1−β − (l − 1 + σ)1−β, l ≥ 1,

(3.13)

B
(β,σ)
l =

1
2 − β

[
(l + σ)2−β − (l − 1 + σ)2−β

]
−

1
2

[
(l + σ)1−β + (l − 1 + σ)1−β

]
, l ≥ 1, (3.14)
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and

C
(k,β,σ)
l =


A

(β,σ)
0 , l = k = 0,
A

(β,σ)
0 + B

(β,σ)
1 , l = 0, k ≥ 1,

A
(β,σ)
l + B

(β,σ)
l+1 − B

(β,σ)
l , 1 ≤ l ≤ k − 1,

A
(β,σ)
k − B

(β,σ)
k , 1 ≤ l = k.

(3.15)

Consequently, the L2− 1σ difference formula which applied in this investigation can be formulated
in light of the lemma below.

Lemma 3.1. Under the premise thatΘ(t) ∈ C3[0, tk+1], 0 ≤ k ≤ M−1, the high order L2−1σ difference
formula reads as follows:

0Dβ
tk+σΘ =

τ−β

Γ(2 − β)

k∑
l=0

C
(k,β,σ)
k−l δtΘ

l + O(τ3−β), 0 < β < 1, (3.16)

where δtΘ
l = Θl+1 −Θl. For the sake of theoretical clarity, we rewrite (3.16) in an equivalent form as:

0Dβ
tk+σΘ =

τ−β

Γ(2 − β)

k∑
l=0

D
(k,β,σ)
l Θl + O(τ3−β), (3.17)

whereD(0,β,σ)
1 = −D

(0,β,σ)
0 = σ1−β, for k = 0, and for k ≥ 1,

D
(k,β,σ)
l =


−C

(k,β,σ)
k , l = 0,

C
(k,β,σ)
k−l+1 −C(k,β,σ)

k−l , 1 ≤ l ≤ k,
C

(k,β,σ)
0 , l = k + 1.

(3.18)

Definition 6. For the temporal Caputo fractional derivative, the L2−1σ approximation formula at node
tk+σ, k ∈ Z[0,M−1] is defined as:

0Dβ
τΘ

k+σ =
τ−β

Γ(2 − β)

k+1∑
l=0

D
(k,β,σ)
l Θl, 0 < β < 1. (3.19)

By means of Taylor’s theorem, it is observed that the following lemma is valid.

Lemma 3.2. For a given function Θ(t) ∈ C2[0,T ], the following identities hold

Θ(·, tk+σ) = σ Θ(·, tk+1) + (1 − σ) Θ(·, tk) + O(τ2),
Θ(·, tk+σ) = (σ + 1) Θ(·, tk) − σ Θ(·, tk−1) + O(τ2),
Θ(·, tk+σ−Ns) = σ Θ(·, tk+1−Ns) + (1 − σ) Θ(·, tk−Ns) + O(τ2).

Following that, at each specified time tk+σ, we shall present a semi-discretized version of the
system (1.1). To that end, the uniform L2 − 1σ formula (3.19) is used to estimate the time-fractional
component, and Taylor’s approximations are used to discretize the nonlinear source term. Thus, the
resulting discrete-time system is as follows:

0Dβ
τΘ

k+σ = κ
∂αΘk+σ

∂|x|α
+ F

(
(σ + 1)Θk − σΘk−1, σΘk+1−Ns + (1 − σ)Θk−Ns

)
+Gk+σ(x), x ∈ Ω. (3.20)
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We also take into account initial-boundary approximations as the following form{
Θk

i = ϑ(xi, tk), −Ns ≤ k ≤ 0, x ∈ Ω,
Θk

0 = Θ
k
M(x) = 0, −Ns ≤ k ≤ 0, x ∈ Ω.

(3.21)

According to Lemmas (3.1) and (3.2), this semi-scheme is technically accurate to the second order.
Later in this context, a comprehensive study of the convergence rate for the full-discrete scheme will
be provided. Next, we introduce the following two parameters:

λ
(β,σ)
k :=

 D(k,β,σ)
k+1

τβΓ(2 − β)

−1

, D̃
(k,β,σ)
j :=


ζ

(β,σ)
k D

(k,β,σ)
j

τβΓ(2−β) , 0 ≤ j ≤ k − 1,
ζ

(β,σ)
k D

(k,β,σ)
k

τβΓ(2−β) , j = k.

Then, this permits the recasting of the semi-scheme (3.20) into the equivalent form given below

Θk+1−κσλ
(β,σ)
k

∂αΘk+1

∂|x|α
= κ(1 − σ)λ(β,σ)

k

∂αΘk

∂|x|α
−

k∑
j=0

D̃
(k,β,σ)
j,l Θ j

+ λ
(β,σ)
k F

(
(σ + 1)Θk − σΘk−1, σΘk+1−Ns + (1 − σ)Θk−Ns

)
+Gk+1. (3.22)

3.2. Spatial discretization

We first present the space function below to give suitable base functions that precisely meet the
boundary requirements specified in spectral techniques for space fractional order equations in order to
linearize the space-fractional components [50, 51]:

W0
N = PN(Ω) ∩ H1

0(Ω) = span {ψn(x) : n = 0, 1, . . . ,N − 2} , (3.23)

where ψn symbolizes the base functions, which are represented by the Legendre polynomial as:

ψn(x) = Ln(x̂) − Ln+2(x̂) =
2n + 3

2(n + 1)
(1 − x̂2) γ1,1

n (x̂), ∀ x̂ ∈ [−1, 1], (3.24)

where x = 1
2 ((b − a)x̂ + a + b) ∈ [a, b]. Therefore, the fully discrete L2 − 1σ Galerkin spectral

scheme for (3.22) can be expressed as follows: find Θk+1 ∈ W0
N , k ≥ 0 such that satisfying the

following system:

(
Θk+1, υ

)
− κσλ

(β,σ)
k

(
∂αΘk+1

∂|x|α
, υ

)
= κ(1 − σ)λ(β,σ)

k

(
∂αΘk

∂|x|α
, υ

)
−

k∑
j=0

D̃
(k,β,σ)
j,l

(
Θ j, υ

)
+λ

(β,σ)
k

(
IN F

(
(σ + 1) Θk − σ Θk−1, σ Θk+1−Ns + (1 − σ) Θk−Ns

)
, υ

)
+

(
INGk+1(x), υ

)
,

k ≥ 0, ∀ υ ∈ W0
N ,

Θ0
N = π

1,0
N ϑ,

(3.25)

where π1,0
N is a suitable projection operator in this case. Following this, we could further generalize the

approximation as:

Θk+1
N =

N−2∑
i=0

Θ̂k+1
i ψi(x), (3.26)
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where Θ̂k+1
i are an undetermined expansion coefficients. The uniform full discrete scheme for the

problems (1.1) and (1.2) can be expressed as a linear system in a matrix form using (3.26), lemma 2.1
and allowing υ = ψk, for each 0 ≤ k ≤ N − 2 as follows:(

M̄ − κσλ(β,σ)
k (S + S T )

)
Uk+1 = Rk + λ

(β,σ)
k Hk +Gk+1, (3.27)

where

si j =

∫
Ω

aD
α
2
x ψi(x)xD

α
2
b ψ j(x)dx, S =

(
si j

)N−2

i, j=0
,

mi j =

∫
Ω

ψi(x)ψ j(x)dx, M̄ =
(
mi j

)N−2

i, j=0
,

hk
i =

∫
Ω

ψi(x)IN F
(
(σ + 1) Θk − σ Θk−1, σ Θk+1−Ns + (1 − σ) Θk−Ns

)
dx,

gk+1
i =

∫
Ω

ψi(x)INgk+1dx, Gk+1 = (gk+1
0 , gk+1

1 , . . . , gk+1
N−2)⊤, Hk = (hk

0, h
k
1, . . . , h

k
N−2)⊤,

Uk+1 =
(
Θ̂k+1

0 , Θ̂k+1
1 , . . . , Θ̂k+1

N−2

)⊤
, Rk = κ(1 − σ)λ(β,σ)

k (S + S T )Θk − D̃
(k,β,σ)
l M̃Θk.

(3.28)

The elements of the stiffness matrix S and the mass matrix M̃ can be easily handled using the next two
lemmas.

Lemma 3.3. [50, 51] The following relation can be used to manipulate the components that make up
the stiffness matrix S , namely,

si j = a j
i − a j+2

i − a j
i+2 + a j+2

i+2 , i, j = 0, 1, . . . ,N − 2,

the formula where the coefficients a j
i may be determined reads

a j
i =

∫
Ω

aD
α
2
x Li(x̂)xD

α
2
b L j(x̂)dx

=

(
b − a

2

)1−α
Γ(i + 1)Γ( j + 1)

Γ(i − α
2 + 1)Γ( j − α

2 + 1)
·

·

N∑
r=0

ϖ
− α2 ,−

α
2

r J
α
2 ,−

α
2

i

(
x−

α
2 ,−

α
2

r

)
J−

α
2 ,

α
2

j

(
x−

α
2 ,−

α
2

r

)
,

(3.29)

and
{
ϖ
− α2 ,−

α
2

r , x−
α
2 ,−

α
2

r

}N

i=0
are Jacobi-Gauss collection points and their corresponding weights related to

the weight function ω−
α
2 ,−

α
2 .

Lemma 3.4. [50, 51] The nonzero components of the symmetric mass matrix M̄ are given by

mi j = m ji =


b − a
2 j + 1

+
b − a
2 j + 5

, ∀i = j,

−
b − a
2 j + 5

, ∀i = j + 2.
(3.30)
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4. Theoretical analysis

This section aims to verify how effectively the numerical solution of the suggested approach for the
problems (1.1) and (1.2). We start in the first part with a review of certain technical lemmas that will
be important later on. In the second subsection, we conduct stability and convergence studies of the
suggested method. We assume that the Lipschitz condition below holds for the function F, which is
necessary for the theoretical analysis, i.e,

|F(Θ1, v1) − F(Θ2, v2)| ≤ L (|Θ1 − Θ2| + |v1 − v2|) , (4.31)

where L is a positive constant.

4.1. Technical Lemmas

Here, we recall some lemmas that will be used in our investigation. To avoid tying these definitions
to specific values for N, n, and τ, we will refer to C and CΘ in the following as arbitrary positive
constants that can shift depending on the circumstances. Additionally, we accept on the convention
Z[a,b] = Z ∩ [a, b], where Z is the set of all positive integers. For the rest of this discussion, we’ll be
using the following notation

A(Θ,w) = κcα
[(

aDα/2
x Θ, xDα/2

b w
)
+

(
xDα/2

b Θ, aDα/2
x w

)]
, w ∈ W0

N . (4.32)

The orthogonal projection operator, denoted by π
α
2 ,0
N : H

α
2

0 (Ω)→W0
N , will have the following property:

A(Θ − π
α
2 ,0
N Θ,w) = 0, ∀Θ ∈ H

α
2

0 (Ω), w ∈ W0
N . (4.33)

We provide the following semi-norm and norm to facilitate theoretical analysis.

|Θ|α/2 := A(Θ,Θ)1/2, (4.34)

∥Θ∥α/2 := (∥Θ∥2 + |Θ|2α/2)1/2. (4.35)

The three lemmas below are all mentioned in [50].

Lemma 4.1. Suppose that α and s are two real integers such that α , 1/2, 0 < α < 1, α < s. Then,
for every function Θ ∈ H

α
2

0 (Ω) ∩ H s(Ω), the approximation that follows valid

|Θ − π
α
2 ,0
N Θ| α2 ≤ CN

α
2−s ∥Θ∥s , (4.36)

where C is a positive constant C independent of N.

Lemma 4.2. We assume thatΘ ∈ H
α
2

0 (Ω) and thatΩ = (a, b). Then, there are two positive, independent
constants C1 < 1 and C2 with respect to Θ, such that the following remains true

C1 ∥Θ∥ α2 ≤ |Θ|
α
2
≤ ∥Θ∥ α

2
≤ C2|Θ|H

α
2 (Ω).

Lemma 4.3. The inverse inequality that follows holds true for every given set of values for Θ ∈ PN(Ω)

∥Θ∥∞ ≤ CN ∥Θ∥ ,

where C is a constant that is positive and independent of Θ and N.
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The properties of the interpolation operator IN are summarized in the following lemma and remark.

Lemma 4.4. [41] Assume that Θ ∈ H s(Ω), then for s ≥ 1 and 0 ≤ l ≤ 1, the following relation is valid

∥Θ − INΘ∥l ≤ CN l−s ∥Θ∥s ,

where C > 0 is a constant independent of N.

Remark 4.1. The smoothness of the solution to a fractional differential equation does not imply the
smoothness of the source term. Consequently, the solution Θ has a different regularity order s than the
regularity order r for the source term G, which means that

∥ING −G∥ ≤ CN−r ∥Θ∥r ,∀G ∈ Hr(Ω),

where C > 0 is a constant independent of N, Θ and g.

Lemma 4.5. [52] All absolutely continuous functions Θ(t) on [0,T ] satisfy the following inequality(
∂β

∂tβ
Θ(t),Θ(t)

)
≥

1
2
∂β

∂tβ
∥Θ(t)∥2 . (4.37)

Lemma 4.6. [25] The following inequality holds for any Θ(t) identified on the interval Ω and β ∈
(0, 1). If Θk+σ = σΘk+1 + (1 − σ)Θk, then(

Dβ
τ,Θ

k+σ
)
≥

1
2

Dβ
τ

∥∥∥Θk+σ
∥∥∥2
.

It’s worth noting that a significant amount of consideration has been paid to developing fractional
Grönwall inequalities in their continuous form in recent years. However, their discrete form has
received less attention, and a few recent studies [11, 53–55] have attempted to close the gap. In what
follows, we present a developed discrete version of Grönwall inequality that agrees with the L2 − 1σ
difference schemes and plays an important part in demonstrating the stability and convergence of our
suggested approach.

Lemma 4.7. [13,28] Assume that {Qi}∞i=−Ns
and {ζn}∞n=0 are both non-negative sequences. Suppose that

µi, i ∈ Z[1,6] are independent positive constants with respect to τ, such that the sequences satisfying

Qi ≥ 0 ∀ i ≥ 0, Q0 is recognized and Qi = 0 ∀ i < 0,

0Dβ
tk+σQk ≤ µ1Qk + ζk, ∀k ≤ Ns,

0Dβ
tk+σQk ≤ µ1Qk + µ2Qk−1 + µ3Qk−2 + µ4Qk−3 + µ5Qk+1−Ns + µ6Qk−Ns + ζk, ∀k ≤ Ns.

In that case, there is a positive constant τ ≤ τ∗ = β
√

1/(2Γ(2 − β)µ1), which causes

Qk+1 ≤ 2Eβ(2µtβk )

Q0 +
tβk

Γ(1 + β)
max

0≤k0≤k
ζk0

 ,
where Eβ(z) represent the Mittag-Leffler function and

µ = µ1 +
µ2

b(β,σ)
0 − b(β,σ)

1

+
µ3

b(β,σ)
1 − b(β,σ)

2

+
µ4

b(β,σ)
2 − b(β,σ)

3

+
µ5

b(β,σ)
Ns−2 − b(β,σ)

Ns−1

+
µ6

b(β,σ)
Ns−1 − b(β,σ)

Ns

.
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4.2. Stability analysis

The variational formulation of the proposed scheme can be obtained by means of (3.17), (3.20)
side by side to Lemma 3.2. More specifically, we need to find {Θk

N}
M
k=1 ∈ PN , such that satisfying the

following:(
Dβ
τΘ

k+σ
N , υN

)
+ A

(
Θk+σ

N , υN

)
=

(
IN F

(
(σ + 1)Θk

N − σ Θ
k−1
N , σ Θk+1−Ns

N + (1 − σ)Θk−Ns
N

)
, υ

)
(4.38)

+
(
INGk+σ, υ

)
, ∀υN ∈ PN ,

with initial conditions
Θk

N = π
1,0
N ψk, −Ns ≤ k ≤ 0.

Due to the linear iterative nature of the method, a solution to an algebraic equation system is all that
is required at each iteration. The suggested scheme’s well-posedness, meaning it is uniquely solvable
and continues to rely on its initial boundary conditions which is sufficient to hold the Lax-Milgram
lemma’s assumptions [56]. In particular, it can be seen from Eq (4.38) that the bilinear shape A(·, ·) is
continuous as well as coercive related to Hα/2

0 × Hα/2
0 . We further presume that {Θ̃k

N}
M
k=1 is the solution

of the following variational form(
Dβ
τΘ̃

k+σ
N , υN

)
+ A

(
Θ̃k+σ

N , υN

)
=

(
IN F

(
(σ + 1)Θ̃k

N − σΘ̃
k−1
N , σΘ̃k+1−Ns

N + (1 − σ)Θ̃k−Ns
N

)
, υ

)
(4.39)

+
(
IN G̃k+σ, υN

)
, ∀υN ∈ PN ,

with initial conditions
Θ̃k

N = π
1,0
N ψk, −Ns ≤ k ≤ 0.

Now, we are ready to offer the stability theorem in the context of the subsequent discussion.

Theorem 4.1. The suggested method (4.38) in this sense, is said to be unconditionally stable, which
means it holds the following for τ > 0,∥∥∥Θk+σ

N − Θ̃k+σ
N

∥∥∥2
≤ C max

1≤k≤M

∥∥∥Gk+σ − G̃k+σ
∥∥∥2
.

where C is a generic positive constant independent of N and τ.

Proof. Subtracting (4.39) from (4.38) and by taking Θk
N − Θ̃

k
N := ηk

N , then the error equation holds(
Dβ
τη

k+σ
N , υN

)
+ A

(
ηk+σ

N , υN

)
=

(
IN F

(
(σ + 1)Θk

N − σΘ
k−1
N , σΘk+1−Ns

N + (1 − σ)Θk−Ns
)

−IN F
(
(σ + 1)Θ̃k

N − σΘ̃
k−1
N , σΘ̃k+1−Ns

N + (1 − σ)Θ̃k−Ns
N

)
, υN

)
(4.40)

+
(
IN Gk+σ − IN G̃k+σ, υN

)
.

Applying the Lipschitz condition (4.31) and using Hölder inequality side by side to Young inequality,
we derive the following for the first term of the right-hand side(

IN F
(
(σ + 1)Θk

N − σΘ
k−1
N , σΘk+1−Ns

N + (1 − σ)Θk−Ns
N

)
−IN F

(
(σ + 1)Θ̃k

N − σΘ̃
k−1
N , σΘ̃k+1−Ns

N + (1 − σ)Θ̃k−Ns
N

)
, υN

)
AIMS Mathematics Volume 8, Issue 4, 7672–7694.



7684

≤ CL
(∥∥∥(σ + 1)ηk

N − ση
k−1
N

∥∥∥ + ∥∥∥σηk+1−Ns
N − (1 − σ)ηk−Ns

N

∥∥∥) ∥υN∥

≤ ϵCL2
∥∥∥(σ + 1)ηk

N − ση
k−1
N

∥∥∥2
+ ϵCL2

∥∥∥σηk+1−Ns
N − (1 − σ)ηk−Ns

N

∥∥∥2
+

1
2ϵ
∥υN∥

2

≤ 2ϵCL2(σ + 1)2
∥∥∥ηk

N

∥∥∥2
+ 2ϵCL2σ2

∥∥∥ηk−1
N

∥∥∥2
+ 2ϵCL2σ2

∥∥∥ηk+1−Ns
N

∥∥∥2
+ 2ϵCL2(1 − σ)2

∥∥∥ηk−Ns
N

∥∥∥2
+

1
2ϵ
∥υN∥

2 .

Using the Hölder inequality, the Young inequality, as well as the interpolation operator property, we
obtain the second term as(

IN Gk+σ − IN G̃k+σ, υN

)
≤
ϵ

2
C

∥∥∥Gk+σ − G̃k+σ
∥∥∥2
+

1
2ϵ
∥υN∥

2 .

Hence, (4.40) becomes

(
Dβ
τη

k+σ
N , υN) + A(ηk+σ

N , υN

)
≤

1
ϵ
∥υN∥

2 + 2ϵCL2(σ + 1)2
∥∥∥ηk

N

∥∥∥2
+ 2ϵCL2σ2

∥∥∥ηk−1
N

∥∥∥2
+ 2ϵCL2σ2

∥∥∥ηk+1−Ns
N

∥∥∥2

+ 2ϵCL2(1 − σ)2
∥∥∥ηk−Ns

N

∥∥∥2
+
ϵ

2
C

∥∥∥Gk+σ − G̃k+σ
∥∥∥2
.

Taking υN = η
k+σ
N and using lemma 4.6 and (4.34), we deduce that

1
2

Dβ
τ

∥∥∥ηk+σ
N

∥∥∥2
+ |ηk+σ

N |
2
α/2 ≤

1
ϵ

∥∥∥ηk+σ
N

∥∥∥2
+ 2ϵCL2(σ + 1)2

∥∥∥ηk
N

∥∥∥2
+ 2ϵCL2σ2

∥∥∥ηk−1
N

∥∥∥2
+ 2ϵCL2σ2

∥∥∥ηk+1−Ns
N

∥∥∥2

+ 2ϵCL2(1 − σ)2
∥∥∥ηk−Ns

N

∥∥∥2
+
ϵ

2
C

∥∥∥Gk+σ − G̃k+σ
∥∥∥2
,

following the omission of the second term in the left hand side, we have

Dβ
τ

∥∥∥ηk+σ
N

∥∥∥2
≤

2
ϵ

∥∥∥ηk+σ
N

∥∥∥2
+ 4ϵCL2(σ + 1)2

∥∥∥ηk
N

∥∥∥2
+ 4ϵCL2σ2

∥∥∥ηk−1
N

∥∥∥2
+ 4ϵCL2σ2

∥∥∥ηk+1−Ns
N

∥∥∥2

+ 4ϵCL2(1 − σ)
∥∥∥ηk−Ns

N

∥∥∥2
+ ϵC

∥∥∥Gk+σ − G̃k+σ
∥∥∥2

≤
4
ϵ

(σ + 1)2(1 +Cϵ2L2)
∥∥∥ηk

N

∥∥∥2
+

4
ϵ
σ2(1 +Cϵ2L2)

∥∥∥ηk−1
N

∥∥∥2
+ 4ϵCL2σ2

∥∥∥ηk+1−Ns
N

∥∥∥2

+4ϵCL2(1 − σ)2
∥∥∥ηk−Ns

N

∥∥∥2
+ ϵC

∥∥∥Gk+σ − G̃k+σ
∥∥∥2
.

A direct application of the Grönwall inequality (see Lemma 4.7), we find that for ϵ > 0, there exists

a positive independent constant τ∗ = β

√
1/

(
2Γ (2 − β) 4

ϵ
(σ + 1)2 (

1 +Cϵ2L2)), such that when τ < τ∗,
the following is hold ∥∥∥ηk+σ

N

∥∥∥2
≤

2ϵCtβk
Γ(1 + β)

Eβ(2µtβk ) max
1≤k≤M

∥∥∥Gk − G̃k
∥∥∥2
,

with

µ =
4
ϵ

(σ + 1)2(1 +Cϵ2L2) +
4
ϵ

σ2(1 +Cϵ2L2)

b(β,σ)
0 − b(β,σ)

1

+
4ϵCL2σ2

b(β,σ)
Ns−2 − b(β,σ)

Ns−1

+
4ϵCL2(1 − σ)2

b(β,σ)
Ns−1 − b(β,σ)

Ns

.

Therefore, the proposed method is guaranteed to be unconditionally stable. □
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4.3. Convergence

Here, we present the proof of the convergence theorem for the suggested scheme (4.38) using
discrete error estimates.

Theorem 4.2. Let {Θk}Mk=−Ns
and {Θk

N}
M
k=−Ns

, be the exact and the approximate solutions of problem (1.1)
and the proposed method (4.38), respectively. Assume that Θ ∈ C2

(
[0,T ]; L2(Ω)

)
∩C1 ([0,T ]; H s(Ω)).

Then for an arbitrary constant C independent of N and τ, the following statement is valid∣∣∣Θk+σ − Θk+σ
N

∣∣∣
α/2
≤ C

(
τ2 + N−r

)
, 1 ≤ k ≤ M, (4.41)

where r is the source term’s regularity order.

Proof. Take Θk − Θk
N = ξk

N = (Θk − π
α
2 ,0
N Θ

k) + (π
α
2 ,0
N Θ

k − Θk
N) ∆= ξ̃k

N + ξ̂
k
N . In addition, (1.1) has the

following weak formulation:(
C
0 Dβ

tΘ
k+σ, υN

)
+ A

(
Θk+σ, υN

)
=

(
F

(
Θk+σ,Θk+σ−Ns

)
, υN

)
+

(
Gk+σ, υN

)
. (4.42)

By subtracting (4.38) from (4.42), and using the notion of orthogonal projection, then the error equation
satisfies

(Dβ
τ ξ̂

k+σ
N , υN) + A(ξ̂k+σ

N , υN) ∆= ρ(k,σ)
1 + ρ(k,σ)

2 + ρ(k,σ)
3 + ρ(k,σ)

4 , (4.43)

where

ρ(k,σ)
1 =

(
IN F

(
Θk+σ, Θk+σ−Ns

)
− IN F

(
(σ + 1)Θk

N − σΘ
k−1
N , σΘk+1−Ns

N + (1 − σ)Θk−Ns
N

)
, υN

)
,

ρ(k,σ)
2 =

(
F

(
Θk+σ, Θk+σ−Ns

)
− IN F

(
Θk+σ, Θk+σ−Ns

)
, υN

)
,

ρ(k,σ)
3 =

(
Dβ
τ π

α
2 ,0
N Θ

k+σ −C
0 Dβ

tΘ
k+σ, υN

)
,

ρ(k,σ)
4 =

(
Gk+σ − INGk+σ, υN

)
.

To proceed, we make an estimate of the terms ρ(k,σ)
1 , ρ(k,σ)

2 , ρ(k,σ)
3 and ρ(k,σ)

4 on the right-hand side.
Regarding the first term ρ(k,σ)

1 , we have

ρ(k,σ)
1 =

(
IN F

(
Θk+σ, Θk+σ−Ns

)
− IN F

(
(σ + 1)Θk − σΘk−1, σΘk+1−Ns + (1 − σ)Θk−Ns

)
, υN

)
+

(
IN F

(
(σ + 1)Θk − σΘk−1, σΘk+1−Ns + (1 − σ)Θk−Ns

)
−IN F

(
(σ + 1)Θk

N − σΘ
k−1
N , σΘk+1−Ns

N + (1 − σ)Θk−Ns
N

)
, υN

)
∆
=ρ(k,σ)

11 + ρ(k,σ)
12 . (4.44)

Invoking Taylor expansion holds

F
(
Θk+σ, Θk+σ−Ns

)
= f

(
(σ + 1)Θk − σΘk−1, σΘk+1−Ns + (1 + σ)Θk−Ns

)
+ c̃Θτ2.

In addition, we use Hölder’s and Young’s inequalities to

ρ(k,σ)
11 ≤

∥∥∥∥IN F
(
Θk+σ, Θk+σ−Ns

)
− IN F

(
(σ + 1)Θk − σΘk−1, σΘk+1−Ns + (1 − σ)Θk−Ns

)∥∥∥∥ ∥υN∥
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≤ C
∥∥∥∥F

(
Θk+σ, Θk+σ−Ns

)
− F

(
(σ + 1)Θk − σΘk−1, σΘk+1−Ns + (1 − σ)Θk−Ns

)∥∥∥∥ ∥υN∥

≤
ϵ

2
Cc̃Θτ4 +

1
2ϵ
∥υN∥

2 . (4.45)

By plugging into the Lipschitz condition (4.31) and using Hölder inequality side by side to Young
inequality, we deduce that

ρ(k,σ)
12 ≤ LC

(∥∥∥(σ + 1)ξk
N − σξ

k−1
N

∥∥∥ + ∥∥∥σξk+1−Ns
N + (1 − σ)ξk−Ns

N

∥∥∥) ∥υN∥

≤
ϵ

2
CL2

(∥∥∥(σ + 1)ξ̂k
N − σξ̂

k−1
N

∥∥∥ + ∥∥∥σξ̂k+1−Ns
N + (1 − σ)ξ̂k−Ns

N

∥∥∥ + ∥∥∥(σ + 1)ξ̃k
N − σξ̃

k−1
N

∥∥∥
+

∥∥∥σξ̃k+1−Ns
N − (1 − σ)ξ̃k−Ns

N

∥∥∥)2
+

1
2ϵ
∥υN∥

2

≤ 2ϵCL2(σ + 1)2
∥∥∥ξ̂k

N

∥∥∥2
+ 2ϵCL2σ2

∥∥∥ξ̂k−1
N

∥∥∥2
+ 2ϵCL2σ2

∥∥∥ξ̂k+1−Ns
N

∥∥∥2
+ 2ϵCL2(1 − σ)2

∥∥∥ξ̂k−Ns
N

∥∥∥2

+2ϵCL2(σ + 1)2
∥∥∥ξ̃k

N

∥∥∥2
+ 2ϵCL2σ2

∥∥∥ξ̃k−1
N

∥∥∥2
+ 2ϵCL2σ2

∥∥∥ξ̃k+1−Ns
N

∥∥∥2

+ 2ϵCL2(1 − σ)2
∥∥∥ξ̃k−Ns

N

∥∥∥2
+

1
2ϵ
∥υN∥

2 . (4.46)

In addition, considering the Lemmas 4.1 and 4.2, it can be shown that∥∥∥ξ̃k
N

∥∥∥2
≤

C
C1

Nα−2s
∥∥∥Θk

∥∥∥2

s
,

∥∥∥ξ̃k−1
N

∥∥∥2
≤

C
C1

Nα−2s
∥∥∥Θk−1

∥∥∥2

s
,∥∥∥ξ̃k+1−Ns

N

∥∥∥2
≤

C
C1

Nα−2s
∥∥∥Θk+1−Ns

∥∥∥2

s
,

∥∥∥ξ̃k−Ns
N

∥∥∥2
≤

C
C1

Nα−2s
∥∥∥Θk−Ns

∥∥∥2
,

then (4.46) becomes

ρ(k,σ)
12 ≤2ϵCL2(σ + 1)2

∥∥∥ξ̂k
N

∥∥∥2
+ 2ϵCL2σ2

∥∥∥ξ̂k−1
N

∥∥∥2
+ 2ϵCL2σ2

∥∥∥ξ̂k+1−Ns
N

∥∥∥2
(4.47)

+ 2ϵCL2(1 − σ)2
∥∥∥ξ̂k−Ns

N

∥∥∥2
+ C̃Nα−2s ∥Θ∥2s +

1
2ϵ
∥υN∥

2 .

Substituting (4.45) and (4.47) into (4.44), we obtain that

ρ(k,σ)
1 ≤

1
ϵ
∥υN∥

2 + 2ϵCL2(σ + 1)2
∥∥∥ξ̂k

N

∥∥∥2
+ 2ϵCL2σ2

∥∥∥ξ̂k−1
N

∥∥∥2
+ 2ϵCL2σ2

∥∥∥ξ̂k+1−Ns
N

∥∥∥2

+ 2ϵCL2(1 − σ)2
∥∥∥ξ̂k−Ns

N

∥∥∥2
+ C̃Nα−2s ∥Θ∥2s +

ϵ

2
c̃Θτ4. (4.48)

Hölder’s inequality, Young’s inequality, and Lemma 4.4 allow us to deduce the following for the second
term ρ(k,σ)

2 as follows:

ρ(k,σ)
2 ≤

∥∥∥∥F
(
Θk+σ, Θk+σ−Ns

)
− IN F

(
Θk+σ, Θk+σ−Ns

)∥∥∥∥ ∥υN∥

≤
ϵ

2

∥∥∥∥F
(
Θk+σ, Θk+σ−Ns

)
− IN F

(
Θk+σ, Θk+σ−Ns

)∥∥∥∥2
+

1
2ϵ
∥υN∥

2

≤
1
2ϵ
∥υN∥

2 +
ϵ

2
CN−2r ∥Θ∥2s . (4.49)
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For the third term ρ(k,σ)
3 , it holds

ρ(k,σ)
3 =

(
Dβ
τπ

α
2 ,0
N Θ

k+σ −C
0 Dβ

t π
α
2 ,0
N Θ

k+σ, υN

)
+

(
C
0 Dβ

t π
β
2 ,0
N Θ

k+σ −C
0 Dβ

tΘ
k+σ, υN

)
=

(
π

α
2 ,0
N

(
Dβ
τΘ

k+σ −C
0 Dα

t Θ
k+σ

)
, υN

)
−

(
C
0 Dβ

t ξ̃
k+σ
N , υN

)
∆
= ρ(k,σ)

31 + ρ(k,σ)
32 , (4.50)

combining 3.1 with Hölder inequality and Young inequality yields

ρ(k,σ)
31 ≤

ϵ

2

∥∥∥∥π α
2 ,0
N

(
Dβ
τΘ

k+σ −C
0 Dβ

tΘ
k+σ

)∥∥∥∥2
+

1
2ϵ
∥υN∥

2

≤
ϵ

2
C

∥∥∥Dβ
τΘ

k+σ −C
0 Dβ

tΘ
k+σ

∥∥∥2
+

1
2ϵ
∥υN∥

2

≤
ϵ

2
CΘτ9−2β +

1
2ϵ
∥υN∥

2 ,

furthermore, by means of Lemma 4.1, we have

ρ(k,σ)
32 ≤

ϵ

2
CNα−2s

∥∥∥C
0 Dβ

tΘ
k+σ

∥∥∥2

s
+

1
2
∥υN∥

2

≤
ϵ

2
CNα−2s

∥∥∥C
0 Dβ

tΘ
∥∥∥2

s
+

1
2ϵ
∥υN∥

2 .

Thus (4.50) becomes

ρ(k,σ)
3 ≤

1
ϵ
∥υN∥

2 +
ϵ

2
CNα−2s

∥∥∥C
0 Dβ

tΘ
∥∥∥2

s
+
ϵ

2
CΘτ9−2β. (4.51)

By the aid of Remark 4.1, we obtain the following for the fourth term ρ(k,σ)
4

ρ(k,σ)
4 ≤

ϵ

2
CNα−2r ∥Θ∥2r +

1
2ϵ
∥υN∥

2 . (4.52)

Substituting (4.48), (4.49), (4.51) and (4.52) into (4.43), we can infer that

(Dβ
τξ̂

k+σ
N , υN) + A(ξ̂k+σ

N , υN) ≤
3
ϵ
∥υN∥

2 + 2ϵCL2(σ + 1)2
∥∥∥ξ̂k

N

∥∥∥2
+ 2ϵCL2σ2

∥∥∥ξ̂k−1
N

∥∥∥2
+ 2ϵCL2σ2

∥∥∥ξ̂k+1−Ns
N

∥∥∥2

+ 2ϵCL2(1 − σ)2
∥∥∥ξ̂k−Ns

N

∥∥∥ + R̃, (4.53)

where
R̃ = ϵC̃Nα−2s

(
∥Θ∥2s +

∥∥∥C
0 Dβ

tΘ
∥∥∥2

s

)
+ ϵC̃N−2r ∥Θ∥2r + ϵC̃Θ

(
τ4 + τ9−2β

)
.

Taking υN = ξ̂
k+σ
N in (4.53) and applying Lemma 4.6, we can conclude that

1
2

Dβ
τ

∥∥∥ξ̂k+σ
N

∥∥∥2
+ |ξ̂k+σ

N |
2
α/2 ≤

3
ϵ

∥∥∥ξ̂k+σ
N

∥∥∥2
+ 2ϵCL2(σ + 1)2

∥∥∥ξ̂k
N

∥∥∥2
+ 2ϵCL2σ2

∥∥∥ξ̂k−1
N

∥∥∥2
+ 2ϵCL2σ2

∥∥∥ξ̂k+1−Ns
N

∥∥∥2

+ 2ϵCL2(1 − σ)2
∥∥∥ξ̂k−Ns

N

∥∥∥ + R̃,

hence, after omitting the second term on the left side of the above equation, we get

Dβ
τ

∥∥∥ξ̂k+σ
N

∥∥∥2
≤

6
ϵ

∥∥∥ξ̂k+σ
N

∥∥∥2
+ 4ϵCL2(σ + 1)2

∥∥∥ξ̂k
N

∥∥∥2
+ 4ϵCL2σ2

∥∥∥ξ̂k−1
N

∥∥∥2
+ 4ϵCL2σ2

∥∥∥ξ̂k+1−Ns
N

∥∥∥2
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+ 4ϵCL2(1 − σ)2
∥∥∥ξ̂k−Ns

N

∥∥∥ + R

≤
4
ϵ

(σ + 1)2(3 +Cϵ2L2)
∥∥∥ξ̂k

∥∥∥2
+

4
ϵ
σ2(3 +Cϵ2L2)

∥∥∥ξ̂k−1
∥∥∥2
+ 4ϵCL2σ2

∥∥∥ξ̂k+1−Ns
N

∥∥∥2

+4ϵCL2(1 − σ)2
∥∥∥ξ̂k−Ns

N

∥∥∥ + R, (4.54)

with R = 2R̃. By means of Lemma 4.7 we find that for ϵ > 0, there is some positive independent

constant τ∗ = β

√
1/

(
2Γ(2 − β) 4

ϵ
(σ + 1)2(3 +Cϵ2L2)

)
, when τ < τ∗, we have

∥∥∥ξ̂k+σ
N

∥∥∥2
≤

2RCtβk
Γ(1 + β)

Eβ(2µtβk ),

with

µ =
4
ϵ

(σ + 1)2(3 +Cϵ2L2) +
4
ϵ

σ2(3 +Cϵ2L2)

b(β,σ)
0 − b(β,σ)

1

+
4ϵCL2σ2

b(β,σ)
Ns−2 − b(β,σ)

Ns−1

+
4ϵCL2(1 − σ)2

b(β,σ)
Ns−1 − b(β,σ)

Ns

.

Consequently, the scheme converges regardless of circumstances. The triangle inequality and (4.36)
were then combined to complete the (4.41) proof. □

5. Numerical experiments

As such, we perform a test example to further characterize the suggested system’s temporal and
spatial convergence orders. We also show how the dynamics of the solution to systems of fractional
diffusion equations with delay are affected by fractional orders in the temporal and spatial directions.
In order to investigate both temporal and spatial convergence orders independently, we will determine
the orders of convergence in both using the L2−Error norms, which are described as follows:

Order =
ln (∥Error (N,M1)∥ / ∥Error (N,M2)∥)

ln (M1/M2)
,

where M1 , M2.

Example 1. Consider the following nonlinear delayed diffusion problem

∂βΘ

∂tβ
(x, t) =

∂αΘ

∂|x|α
(x, t) − 2Θ(x, t) +

Θ(x, t − 0.1)
1 + Θ2(x, t − 0.1)

+G(x, t), x ∈ (0, 1), t ∈ (0, 1], (5.55)

such that problem (5.55) admits an exact solution t2
Γ(3) x2(1− x)2 with respect to a given function G(x, t).

As shown in Table 1, a comparison between the L2-errors and their accompanying convergence
orders for different values of α and β with N = 100 for both L1 and L2 − 1σ schemes are listed. It
is shown that 2 − β temporal accuracy has been reached for the L2-errors in the case of L1 scheme,
(see our previous work [48]), while a high order of second temporal accuracy has been reached for the
L2-errors in case L2 − 1σ scheme which accords with the temporal order of convergence provided by
Theorem 4.2. Orders of spatial convergence are shown for various values of α values at τ = 1/500 in
Figure 1. In addition, when the L2 errors diminish exponentially, spatial-spectral accuracy increases
for a smooth solution. The convergence findings coincide completely with the theoretical ones. At
each level of convergence, we see full concordance between theoretical and experimental results.
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Table 1. The rate of convergence and the associate errors for Θ versus N and τ with N = 100
for example 1.

τ
α − 1 = β = 0.1 α − 1 = β = 0.5 α − 1 = β = 0.9
Error Order Error Order Error Order

0.1/5 2.612 × 10−7 −− 4.076 × 10−6 −− 2.449 × 10−5 −−

0.1/10 7.466 × 10−8 1.807 1.454 × 10−6 1.487 1.143 × 10−5 1.099
L1-scheme 0.1/15 3.588 × 10−8 1.807 7.943 × 10−7 1.491 7.319 × 10−6 1.100

0.1/20 2.156 × 10−8 1.771 5.168 × 10−7 1.494 5.334 × 10−6 1.100
0.1/25 1.481 × 10−8 1.682 3.702 × 10−7 1.495 4.173 × 10−6 1.100
0.1/5 2.341 × 10−7 −− 1.030 × 10−6 −− 1.909 × 10−6 −−

0.1/10 5.893 × 10−8 1.990 2.572 × 10−7 2.001 4.773 × 10−7 1.999
L2 − 1σ scheme 0.1/15 2.622 × 10−8 1.997 1.143 × 10−7 2.000 2.122 × 10−7 1.999

0.1/20 1.473 × 10−8 2.004 6.435 × 10−8 1.997 1.194 × 10−7 1.997
0.1/25 9.405 × 10−9 2.010 4.123 × 10−8 1.995 7.652 × 10−8 1.995

0 20 40 60 80 100
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lo
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0
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rr
o
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● α=1.1

Figure 1. Rate of convergence in space direction for different values of α and β at τ = 1/500.

6. Conclusions and remarks

In this study, we introduced an effective spectral Galerkin approach to handle the nonlinear
fractional order reaction-diffusion equations with a fixed delay. This approach is accomplished by
constructing a numerical algorithm that integrates the efficacy of L2 − 1σ type approximation side by
side to the effectiveness of the Galerkin spectral Legendre technique. In other words, on a uniform
mesh, we used the L2 − 1σ difference formula and the Legendre-Galerkin spectral technique for time
and space discretizations, respectively. According to the literature overview, the majority of earlier
research provided error estimates only in a limited (local) time period or when the numerical solution
declines in time. However, we presented a theoretical analysis to obtain the optimal error estimates
for the suggested scheme with no constraints compared to earlier studies, using the developed L2 − 1σ
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fractional Grönwall type inequality in a discrete version. In the case of smooth solutions, the
suggested scheme’s convergence analysis was established, and it was demonstrated that the scheme
under consideration is effective with second-order precision in time and spectral accuracy in space. In
the situation of a non-smooth solution in time, a high-order graded L2 − 1σ scheme can be dealt with
using a non-uniform Alikhanov scheme [55, 57] to preserve the second order. Additionally, a more
generic investigation for problem (1.1) is possible by replacing the fixed delay with a distributed one.
These preparations are meant to serve as a road map for future study. Finally, a numerical test is
offered to demonstrate the effectiveness of the proposed scheme and show that is consistent with
theoretical results.
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