Research article Special Issues

Spacelike translating solitons of the mean curvature flow in Lorentzian product spaces with density

  • By applying suitable Liouville-type results, an appropriate parabolicity criterion, and a version of the Omori-Yau's maximum principle for the drift Laplacian, we infer the uniqueness and nonexistence of complete spacelike translating solitons of the mean curvature flow in a Lorentzian product space R1×Pnf endowed with a weight function f and whose Riemannian base Pn is supposed to be complete and with nonnegative Bakry-Émery-Ricci tensor. When the ambient space is either R1×Gn, where Gn stands for the so-called n-dimensional Gaussian space (which is the Euclidean space Rn endowed with the Gaussian probability measure) or R1×Hnf, where Hn denotes the standard n-dimensional hyperbolic space and f is the square of the distance function to a fixed point of Hn, we derive some interesting consequences of our uniqueness and nonexistence results. In particular, we obtain nonexistence results concerning entire spacelike translating graphs constructed over Pn.

    Citation: Márcio Batista, Giovanni Molica Bisci, Henrique de Lima. Spacelike translating solitons of the mean curvature flow in Lorentzian product spaces with density[J]. Mathematics in Engineering, 2023, 5(3): 1-18. doi: 10.3934/mine.2023054

    Related Papers:

    [1] João Paulo Curto, Pedro Dinis Gaspar . Traceability in food supply chains: SME focused traceability framework for chain-wide quality and safety-Part 2. AIMS Agriculture and Food, 2021, 6(2): 708-736. doi: 10.3934/agrfood.2021042
    [2] Giuseppe Timpanaro, Paolo Guarnaccia, Silvia Zingale, Vera Teresa Foti, Alessandro Scuderi . The sustainability role in the purchasing choice of agri-food products in the United Arab Emirates and Italy. AIMS Agriculture and Food, 2022, 7(2): 212-240. doi: 10.3934/agrfood.2022014
    [3] João Paulo Curto, Pedro Dinis Gaspar . Traceability in food supply chains: Review and SME focused analysis-Part 1. AIMS Agriculture and Food, 2021, 6(2): 679-707. doi: 10.3934/agrfood.2021041
    [4] Wei Yang, Bryan Anh, Phuc Le . Do consumers care about environmentally sustainable attributes along the food supply chain? —A systematic literature review. AIMS Agriculture and Food, 2023, 8(2): 513-533. doi: 10.3934/agrfood.2023027
    [5] Mohamed-Yousif Ibrahim Mohamed, Ihab Habib . Listeria monocytogenes in food products, and its virulence in North Africa. AIMS Agriculture and Food, 2025, 10(1): 97-128. doi: 10.3934/agrfood.2025006
    [6] Mohamed-Yousif Ibrahim Mohamed . Campylobacteriosis in North Africa. AIMS Agriculture and Food, 2024, 9(3): 801-821. doi: 10.3934/agrfood.2024043
    [7] Monsuru Adekunle Salisu, Yusuf Opeyemi Oyebamiji, Omowunmi Kayode Ahmed, Noraziyah A Shamsudin, Yusoff Siti Fairuz, Oladosu Yusuff, Mohd Rafii Yusop, Zulkefly Sulaiman, Fatai Arolu . A systematic review of emerging trends in crop cultivation using soilless techniques for sustainable agriculture and food security in post-pandemic. AIMS Agriculture and Food, 2024, 9(2): 666-692. doi: 10.3934/agrfood.2024036
    [8] Katharina Biely, Erik Mathijs, Steven Van Passel . Causal loop diagrams to systematically analyze market power in the Belgian sugar value chain. AIMS Agriculture and Food, 2019, 4(3): 711-730. doi: 10.3934/agrfood.2019.3.711
    [9] Penda Sissoko, Gry Synnevag, Jens B. Aune . Effects of low-cost agricultural technology package on income, cereal surplus production, household expenditure, and food security in the drylands of Mali. AIMS Agriculture and Food, 2022, 7(1): 22-36. doi: 10.3934/agrfood.2022002
    [10] Jessie Melo, Chaiane Quevedo, Ana Graça, Célia Quintas . Hygienic quality of dehydrated aromatic herbs marketed in Southern Portugal. AIMS Agriculture and Food, 2020, 5(1): 46-53. doi: 10.3934/agrfood.2020.1.46
  • By applying suitable Liouville-type results, an appropriate parabolicity criterion, and a version of the Omori-Yau's maximum principle for the drift Laplacian, we infer the uniqueness and nonexistence of complete spacelike translating solitons of the mean curvature flow in a Lorentzian product space R1×Pnf endowed with a weight function f and whose Riemannian base Pn is supposed to be complete and with nonnegative Bakry-Émery-Ricci tensor. When the ambient space is either R1×Gn, where Gn stands for the so-called n-dimensional Gaussian space (which is the Euclidean space Rn endowed with the Gaussian probability measure) or R1×Hnf, where Hn denotes the standard n-dimensional hyperbolic space and f is the square of the distance function to a fixed point of Hn, we derive some interesting consequences of our uniqueness and nonexistence results. In particular, we obtain nonexistence results concerning entire spacelike translating graphs constructed over Pn.



    The theory of fixed points takes an important place in the transition from classical analysis to modern analysis. One of the most remarkable works on fixed point of functions was done by Banach [9]. Various generalizations of Banach fixed point result were made by numerous mathematicians [1,2,3,6,12,13,14,17,19,20,25,26]. One of the generalizations of the metric space is the quasi metric space that was introduced by Wilson [30]. The commutativity condition does not hold in general in quasi metric spaces. Several authors used these concepts to prove some fixed point theorems, see [7,10,15,21]. On the other hand Bakhtin [8] and Czerwik [11] generalized the triangle inequality by multiplying the right hand side of triangle inequality in metric spaces by a parameter b1 and defined b-metric spaces, for more results, see [4,23,24]. Fixed point results for multivalued mappings generalizes the results for single-valued mappings. Many interesting results have been proved in the setting of multivalued mappings, for example, see [5,26,29]. Kamran et al. [12] introduced a new concept of generalized b metric spaces, named as extended b-metric spaces, see also [22]. They replaced the parameter b1 in triangle inequality by the control function θ:X×X[1,). Mlaiki et al. [16] replaced the triangle inequality in b-metric spaces by using control function in a different style and introduced controlled metric type spaces. Abdeljawad et al. [1] generalized the idea of controlled metric type spaces and introduced double controlled metric type spaces. They replaced the control function ξ(x,y) in triangle inequality by two functions ξ(x,y) and (x,y), see also [27,28]. In this paper, the concept of double controlled quasi metric type spaces has been discussed. Fixed point results and several examples are established. First of all, we discuss the previous concepts that will be useful to understand the paper.

    Now, we define double controlled metric type space.

    Definition 1.1.[1] Given non-comparable functions ξ,:X×X[1,). If :X×X[0,) satisfies:

    (q1) (ω,v)=0 if and only if ω=v,

    (q2) (ω,v)=(v,ω),

    (q3) (ω,v)ξ(ω,e)(ω,e)+(e,v)(e,v),

    for all ω,v,eX. Then, is called a double controlled metric with the functions ξ, and the pair (X,) is called double controlled metric type space with the functions ξ,.

    The classical result to obtain fixed point of a mapping in double controlled metric type space is given below.

    Theorem 1.2. [1] Let (X,) be a complete double controlled metric type space with the functions ξ, :X×X [1,) and let T:XX be a given mapping. Suppose that there exists k(0,1) such that

    (T(x),T(y)k(x,y), for all x,yX.

    For ω0X, choose ωg=Tgω0. Assume that

    supm1limiξ(ωi+1,ωi+2)ξ(ωi,ωi+1)(ωi+1,ωm)<1k.

    In the addition, assume that, for every ωX, we have

    limgξ(ω,ωg), and limg(ω g,ω) exists and are finite.

    Then T has a unique fixed point ωX.

    Now, we are introducing the concept of double controlled quasi metric type space and controlled quasi metric type space.

    Definition 1.3. Given non-comparable functions ξ,:X×X[1,). If :X×X[0,) satisfies

    (q1) (ω,v)=0 if and only if ω=v,

    (q2) (ω,v) ξ(ω,e)(ω,e)+(e,v)(e,v),

    for all ω,v,eX. Then, is called a double controlled quasi metric type with the functions ξ, and (X,) is called a double controlled quasi metric type space. If (e,v)=ξ(e,v) then (X,) is called a controlled quasi metric type space.

    Remark 1.4. Any quasi metric space or any double controlled metric type space is also a double controlled quasi metric type space but, the converse is not true in general, see examples (1.5, 2.4, 2.12 and 2.15).

    Example 1.5. Let X={0,1,2}. Define :X×X[0, ) by (0,1)=4, (0,2)=1, (1,0)=3=(1,2), (2,0)=0, (2,1)=2, (0,0)=(1,1)=(2,2)=0.

    Define ξ,:G×G[1, ) as ξ(0,1)= ξ(1,0)= ξ(1,2)=1, ξ(0,2)=54, ξ(2,0)=109, ξ(2,1)=2019, ξ(0,0)= ξ(1,1)= ξ(2,2)=1, (0,1)=(1,0)=(0,2)=(1,2)=1, (2,0)=32, (2,1)=118, (0,0)=(1,1)=(2,2)=1. It is clear that is double controlled quasi metric type with the functions ξ, . Let w=0, e=2, v=1, we have

    (0,1)=4>3=(0,2)+(2,1).

    So is not a quasi metric. Also, it is not a controlled quasi metric type. Indeed,

    (0,1)=4>134=ξ(0,2)(0,2)+ξ(2,1)(2,1).

    Moreover, it is not double controlled metric type space because, we have

    (0,1)=ξ(0,2)(0,2)+(2,1)(2,1)=5516(1,0).

    The convergence of a sequence in double controlled quasi metric type space is defined as:

    Definition 1.6. Let (X,) be a double controlled quasi metric type space with two functions. A sequence {ut} is convergent to some u in X if and only if limt(ut,u)=limt(u,ut)=0.

    Now, we discuss left Cauchy, right Cauchy and dual Cauchy sequences in double controlled quasi metric type space.

    Definition 1.7. Let (X,) be a double controlled quasi metric type space with two functions.

    (i) The sequence {ut} is a left Cauchy if and only if for every ε>0 such that (um,ut)<ε, for all t>m>tε, where tε is some integer or limt,m(um,ut)=0.

    (ii) The sequence {ut} is a right Cauchy if and only if for every ε>0 such that (um,ut)<ε, for all m>t>tε, where tε is some integer.

    (iii) The sequence {ut} is a dual Cauchy if and only if it is both left as well as right Cauchy.

    Now, we define left complete, right complete and dual complete double controlled quasi metric type spaces.

    Definition 1.8. Let (X,) be a double controlled quasi metric type space. Then (X,) is left complete, right complete and dual complete if and only if each left-Cauchy, right Cauchy and dual Cauchy sequence in X is convergent respectively.

    Note that every dual complete double controlled quasi metric type space is left complete but the converse is not true in general, so it is better to prove results in left complete double controlled quasi metric type space instead of dual complete.

    Best approximation in a set and proximinal set are defined as:

    Definition 1.9. Let (,) be a double controlled quasi metric type space. Let A be a non-empty set and l. An element y0A is called a best approximation in A if

    (l,A)=(l,y0), where (l,A)=infyA(l,y)and (A,l)=(y0,l), where (A,l)=infyA(y,l).

    If each l has a best approximation in A, then A is know as proximinal set. P() is equal to the set of all proximinal subsets of .

    Double controlled Hausdorff quasi metric type space is defined as:

    Definition 1.10. The function H:P(E)×P(E)[0,), defined by

    H(C,F)=max{supaC(a,F), supbF(C,b)}

    is called double controlled quasi Hausdorff metric type on P(E). Also (P(E),H) is known as double controlled Hausdorff quasi metric type space.

    The following lemma plays an important role in the proof of our main result.

    Lemma 1.11. Let (X,) be a double controlled quasi metric type space. Let (P(E),H) be a double controlled Hausdorff quasi metric type space on P(E). Then, for all C,FP(E) and for each cC, there exists fcF, such that H(C,F)(c,fc) and H(F,C)(fc,c).

    Let (X,) be a double controlled quasi metric type space, u0X and T:XP(X) be multifunctions on X. Let u1Tu0 be an element such that (u0,Tu0)=(u0,u1), (Tu0,u0)=(u1,u0). Let u2Tu1 be such that (u1,Tu1)=(u1,u2), (Tu1,u1)=(u2,u1). Let u3Tu2 be such that (u2,Tu2)=(u2,u3) and so on. Thus, we construct a sequence ut of points in X such that ut+1Tut with (ut,Tut)=(ut,ut+1), (Tut,ut)=(u t+1,ut), where t=0,1,2,. We denote this iterative sequence by {XT(ut)}. We say that {XT(ut)} is a sequence in X generated by u0 under double controlled quasi metric . If is quasi b-metric then, we say that {XT(ut)} is a sequence in X generated by u0 under quasi b -metric . We can define {XT(ut)} in other metrics in a similar way.

    Now, we define double controlled rational contracion which is a generalization of many other classical contractions.

    Definition 2.1. Let (X,) be a complete double controlled quasi-metric type space with the functions α,μ :X×X [1,). A multivalued mapping T:XP(X) is called a double controlled rational contracion if the following conditions are satisfied:

    H(Tx,Ty)k(Q(x,y)), (2.1)

    for all x,yX, 0<k<1 and

    Q(x,y)=max{(x,y),(x,Tx),(x,Tx)(x,Ty)+(y,Ty)(y,Tx)(x,Ty)+(y,Tx)}.

    Also, for the terms of the sequence {XT(ut)}, we have

    supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui,um)<1k (2.2)

    and for every uX

    limtα(u,ut) and limtμ(ut,u) are finite. (2.3)

    Now, we prove that an operator T satisfying certain rational contraction condition has a fixed point in double controlled quasi metric type space.

    Theorem 2.2. Let (X,) be a left complete double controlled quasi-metric type space with the functions α,μ:X×X[1,) and T:XP(X) be a double controlled rational contracion. Then, T has a fixed point uX.

    Proof. By Lemma 1.11 and using inequality (2.1), we have

    (ut,ut+1)H(Tut1,Tut)k(Q(ut1,ut)).
    Q(ut1,ut)max{(ut1,ut),(ut1,ut),(ut1,ut)(ut1,Tut)+(ut,ut+1)(ut,Tut1)(ut1,Tut)+(ut,Tut1)}=(ut1,ut).

    Therefore,

    (ut,ut+1)k(ut1,ut). (2.4)

    Now,

    (ut1,ut)H(Tut2,Tut1)k(Q(ut2,ut1)).
    Q(ut2,ut1)=max{(u t2,ut1),(ut2,ut1),
    (ut2,ut1)(ut2,Tut1)+(ut1,ut)(ut1,Tut2)(ut2,Tut1)+(ut1,Tut2)}.

    Therefore,

    (ut1,ut)k(ut2,ut1). (2.5)

    Using (2.5) in (2.4), we have

    (ut,ut+1)k2(ut2,ut1).

    Continuing in this way, we obtain

    (ut,ut+1)kt(u0,u1). (2.6)

    Now, by using (2.6) and by using the technique given in [1], it can easily be proved that {ut} is a left Cauchy sequence. So, for all natural numbers with t<m, we have

    limt,m(ut,um)=0. (2.7)

    Since (X,) is a left complete double controlled quasi metric type space, there exists some uX such that

    limt(ut,u)=limt(u,ut)=0. (2.8)

    By using triangle inequality and then (2.1), we have

    (u,Tu)α(u,ut+1)(u,ut+1)+μ(ut+1,Tu)(ut+1,Tu)
    α(u,ut+1)(u,ut+1)+μ(ut+1,Tu)max{(ut,u),(ut,ut+1),(ut,ut+1)(ut,Tu)+(u,Tu)(u,ut)(ut,Tu)+(u,ut)}.

    Using (2.3), (2.7) and (2.8), we get (u,Tu)0. That is, uTu. Thus u is a fixed point of T.

    If we take single-valued mapping instead of multivalued mapping, then we obtain the following result.

    Theorem 2.3. Let (X,) be a left complete double controlled quasi-metric type space with the functions α,μ:X×X[1,) and T:XX be a mapping such that:

    (Tx,Ty)k(Q(x,y)),

    for all x,yX, 0<k<1 and

    Q(x,y)=max{(x,y),(x,Tx),(x,Tx)(x,Ty)+(y,Ty)(y,Tx)(x,Ty)+(y,Tx)},

    Suppose that, for every uX and for the Picard sequence {ut}

    limtα(u,ut), limtμ(ut,u) are finite and
    supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui,um)<1k.

    Then, T has a fixed point uX.

    We present the following example to illustrate Theorem 2.3.

    Example 2.4. Let X={0,1,2,3}. Define :X×X[0, ) by: (0,1)=1, (0,2)=4, (0,3)=5, (1,0)=0, (1,2)=10, (1,3)=1, (2,0)=7, (2,1)=3, (2,3)=5, (3,0)=3, (3,1)=6, (3,2)=2, (0,0)=(1,1)=(2,2)=(3,3)=0. Define α,μ:X×X[1, ) as: α(0,1)=2, α(1,2)= α(0,2)= α(1,0)=α(2,0)=α(3,1)=α(2,3)=α(0,3)=1, α(1,3)=2, α(2,1)=73, α(3,0)=43, α(3,2)=32, α(0,0)=α(1,1)=α(2,2)=α(3,3)=1, μ(1,2)=μ(2,1)=μ(2,0)=μ(3,0)=μ(0,3)=1, μ(1,0)=32, μ(0,1)=2, μ(1,3)=3, μ(3,1)=1, μ(3,2)=4, μ(2,3)=1, μ(0,2)=52, μ(0,0)=μ(1,1)=μ(2,2)=μ(3,3)=1. Clearly (X,) is a double controlled quasi metric type space, but it is not a controlled quasi metric type space. Indeed,

    (1,2)=10>4=α(1,0)(1,0)+α(0,2)(0,2).

    Also, it is not a double controlled metric type space. Take T0=T1={0}, T2=T3={1} and k=13. We observe that

    (Tx,Ty)k(Q(x,y)), for all x,yX.

    Let u0=2, we have u1=Tu0=T2=1, u2=Tu1=0, u3=Tu2=0,

    supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui,um)=2<3=1k.

    Also, for every uX, we have

    limtα(u,ut)< and limtμ(ut,u)<.

    All hypotheses of Theorem 2.3 are satisfied and u=0 is a fixed point.

    As every quasi b-metric space is double controlled quasi metric type space but the converse is not true in general, so we obtain a new result in quasi b-metric space as a corollary of Theorem 2.3.

    Theorem 2.5. Let (X,) be a left complete quasi b -metric space and T:XX be a mapping. Suppose that there exists k(0,1) such that

    (Tx,Ty)k(Q(x,y))

    whenever,

    Q(x,y)=max{(x,y),(x,Tx),(x,Tx)(x,Ty)+(y,Ty)(y,Tx)(x,Ty)+(y,Tx)},

    for all x,yX. Assume that 0<bk<1. Then, T has a fixed point uX.

    Remark 2.6. In the Example 2.3, note that is quasi b -metric with b=103, but we can not apply Theorem 2.5 for any b=103 and k=13, because bk1.

    Quasi metric version of Theorem 2.2 is given below:

    Theorem 2.7. Let (X,) be a left complete quasi metric space and T:XP(X) be a multivalued mapping. Suppose that there exists 0<k<1 such that

    H(Tx,Ty)k(max{(x,y),(x,Tx),(x,Tx)(x,Ty)+(y,Ty)(y,Tx)(x,Ty)+(y,Tx)})

    for all x,yX. Then T has a fixed point uX.

    Now, we extend the sequence {XT(ut)} for two mappings. Let (X,) be a double controlled quasi metric type space, u0X and S,T:XP(X) be the multivalued mappings on X. Let u1Su0 such that (u0,Su0)=(u0,u1) and (Su0,u0)=(u1,u0). Now, for u1X, there exist u2Tu1 such that (u1,Tu1)=(u1,u2) and (Tu1,u1)=(u2,u1). Continuing this process, we construct a sequence ut of points in X such that u2t+1Su2t, and u2t+2Tu2t+1 with (u2t,Su2t)=(u2t,u2+1), (Su2t,u2t)=(u2t+1,u2t) and (u2t+1,Tu2t+1)=(u2t+1,u2t+2), (Tu2t+1,u2t+1)=(u2t+2,u2t+1). We denote this iterative sequence by {TS(ut)} and say that {TS(ut)} is a sequence in X generated by u0.

    Now, we introduce double controlled Reich type contraction.

    Definition 2.8. Let X be a non empty set, (X,) be a left complete double controlled quasi-metric type space with the functions α,μ:X×X[1,) and S,T:XP(X) be a multivalued mappings. Suppose that the following conditions are satisfied:

    H(Sx,Ty)c((x,y))+k((x,Sx)+(y,Ty)), (2.9)
    H(Tx,Sy)c((x,y))+k((x,Tx)+(y,Sy)), (2.10)

    for each x,yX, 0<c+2k<1. For u0X, choose ut{TS(ut)}, we have

    supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui+1,um)<1kc+k. (2.11)

    Then the pair (S,T) is called a double controlled Reich type contraction.

    The following results extend the results of Reich [18].

    Theorem 2.9. Let S,T:XP(X) be the multivalued mappings, (X,) be a left complete double controlled quasi metric type space and (S,T) be a pair of double controlled Reich type contraction. Suppose that, for all uX

    limtα(u,ut) is finite and limtμ(ut,u)<1k. (2.12)

    Then, S and T have a common fixed point ˙z in X.

    Proof. Consider the sequence {TS(ut)}. Now, by Lemma 1.11, we have

    (u2t,u2t+1)H(Tu2t1,Su2t) (2.13)

    By using the condition (2.10), we get

    (u2t,u2t+1)c((u2t1,u2t)+k((u2t1,Tu2t1)+(u2t,Su2t)c((u2t1,u2t)+k((u2t1,u2t)+(u2t,u2t+1))
    (u2t,u2t+1)η((u2t1,u2t)), (2.14)

    where η=c+k1k. Now, by Lemma 1.11, we have

    (u2t1,u2t)H(Su2t2,Tu2t1).

    So, by using the condition (2.9), we have

    (u2t1,u2t)c(u2t2,u2t1)+k((u2t2,Su2t2)+(u2t1,Tu2t1))c(u2t2,u2t1)+k((u2t2,u2t1)+(u2t1,u2 t))
    (u2t1,u2t)c+k1k((u2t2,u2t1))=η((u2t2,u2t1)). (2.15)

    Using (2.14) in (2.15), we have

    (u2t,u2t+1)η2(u2t2,u2t1). (2.16)

    Now, by Lemma 1.11 we have

    (u2t2,u2t1)H(Tu2t3,Su2t2).

    Using the condition (2.10), we have

    (u2t2,u2t1)c(u2t 3,u2t2)+k((u2t3,u2t2)+(u2t2,u2t1))

    implies

    (u2t2,u2t1)η((u2t3,u2t2)). (2.17)

    From (2.16) and (2.17), we have

    η2((u2t2,u2t1))η3((u2t3,u2t2)). (2.18)

    Using (2.18) in (2.14), we have

    (u2t,u2t+1)η3((u2t3,u2t2)).

    Continuing in this way, we get

    (u2t,u2t+1)η2t((u0,u1)). (2.19)

    Similarly, by Lemma 1.11, we have

    (u2t1,u2t)η2t1((u0,u1)).

    Now, we can write inequality (2.19) as

    (ut,ut+1)ηt((u0,u1)). (2.20)

    Now, by using (2.20) and by using the technique given in [1], it can easily be proved that {ut} is a left Cauchy sequence. So, for all natural numbers with t<m, we have

    limt,m(ut,um)=0. (2.21)

    Since (X,) is a left complete double controlled quasi metric type space. So {ut}˙zX, that is

    limt(ut,˙z)=limt(˙z,ut)=0. (2.22)

    Now, we show that ˙z is a common fixed point. We claim that (˙z,T˙z)=0. On contrary suppose (˙z,T˙z)>0. Now by Lemma 1.11, we have

    (u2t+1,T˙z)H(Su2t,T˙z).
    (u2t+1,T˙z)c((u2t,˙z))+k[(u2t,u2t+1)+(˙z,T˙z))] (2.23)

    Taking limt on both sides of inequality (2.23), we get

    limt(u2t+1,T˙z)climt(u2t,˙z)+klimt[(u2t,u2t+1)+(˙z,T˙z))]

    By using inequalities (2.21) and (2.22), we get

    limt(u2t+1,T˙z)k((˙z,T˙z)) (2.24)

    Now,

    (˙z,T˙z)α(˙z,u2t+1)(˙z,u2t+1)+μ(u2t+1,T˙z)(u2t+1,T˙z)

    Taking limt and by using inequalities (2.12), (2.22) and (2.24), we get

    (˙z,T˙z)<(˙z,T˙z).

    It is a contradiction, therefore

    (˙z,T˙z)=0.

    Thus, ˙zT˙z. Now, suppose (˙z,S˙z)>0. By Lemma 1.11, we have

    (u2t,S˙z)H(Tu2t1,S˙z).

    By inequality (2.10), we get

    (u2t,S˙z)c((u2t1,˙z))+k[(u2t1,u2t)+(˙z,S˙z)].

    Taking limt on both sides of above inequality, we get

    limt(u2t,S˙z)k((˙z,S˙z)). (2.25)

    Now,

    (˙z,S˙z)α(˙z,u2t)(˙z,u2t)+μ(u2t,S˙z)(u2t,S˙z).

    Taking limt and by using inequality (2.12), (2.22) and (2.25), we get

    (˙z,S˙z)<(˙z,S˙z).

    It is a contradiction. Hence, ˙zS˙z. Thus, ˙z is a common fixed point for S and T.

    Theorem 2.10 presents a result for single-valued mapping which is a consequence of the previous result.

    Theorem 2.10. Let (X,) be a left complete double controlled quasi-metric type space with the functions α,μ:X×X[1,) and S,T:XX be the mappings such that:

    (Sx,Ty)c((x,y))+k((x,Sx)+(y,Ty))

    and

    (Tx,Sy)c((x,y))+k((x,Tx)+(y,Sy)),

    for each x,yX, 0<c+2k<1. Suppose that, for every uX and for the Picard sequence {ut}

    limtα(u,ut) is finite, limtμ(ut,u)<1k and
    supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui,um)<1kc+k.

    Then S and T have a common fixed point uX.

    Quasi b-metric version of Theorem 2.10 is given below:

    Theorem 2.11. Let (X,) be a left complete quasi b-metric type space with the functions α,μ:X×X[1,) and S,T:XX be the mappings such that:

    (Sx,Ty)c((x,y))+k((x,Sx)+(y,Ty))

    and

    (Tx,Sy)c((x,y))+k((x,Tx)+(y,Sy)),

    for each x,yX, 0<c+2k<1 and b<1kc+k. Then S and T have a common fixed point uX.

    The following example shows that how double controlled quasi metric type spaces can be used where the quasi b-metric spaces cannot.

    Example 2.12. Let X={0,12,14,1}. Define :X×X[0, ) by (0,12)=1, (0,14)=13, (14,0)=15, (12,0)=1, (14,12)=3, (14,1)=12, (1,14)=13 and (x,y)=|xy|, if otherwise. Define α,μ:X×X[1, ) as follows α(12,14)=165, α(0,14)=32,  α(14,1)=3,  α(1,14)=125 and α(x,y)=1, if otherwise. μ(0,12)=145,  μ(1,12)=3 and μ(x,y)=1, if otherwise. Clearly is double controlled quasi metric type for all x,y,zX. Let, T0={0}, T12={14}, T14={0}, T1={14},  S0=S14={0}, S12={14}, S1={0} and c=25, k=14. Now, if we take the case x=12, y=14, we have

    H(S12,T14)=H({14},{0})=(14,0)=151780=c((x,y))+k((x,Sx)+(y,Ty)). Also, satisfied for all cases x,yX. That are inequalities (2.9) and (2.10) hold. Take u0=1, then u1=Su0=0, u2=Tu1=0, u3=Su2=0.

    supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui+1,um)=1<1513=1kc+k.

    which shows that inequality (2.11) holds. Thus the pair (S,T) is double controlled Reich type contraction. Finally, for every uX, we obtain

    limtα(u,ut) is finite, limtμ(ut,u)1k.

    All hypotheses of Theorem 2.9 are satisfied and ˙z=0 is a common fixed point.

    Note that is quasi b-metric with b=3, but Theorem 2.11 can not be applied because b1kc+k, for all b=3. Therefore, this example shows that generalization from a quasi b-metric spaces to a double controlled quasi metric type spaces is real.

    Taking c=0 in Theorem 2.9, we get the following result of Kannan-type.

    Theorem 2.13. Let (X,) be a left complete double controlled quasi-metric type space with the functions α,μ:X×X[1,) and S,T:XP(X) be the multivalued mappings such that:

    H(Sx,Ty)k((x,Sx)+(y,Ty))

    and

    H(Tx,Sy)k((x,Tx)+(y,Sy)),

    for each x,yX, 0<c+2k<1. Suppose that, for every uX and for the sequence {TS(ut)}, we have

    limtα(u,ut) is finite, limtμ(ut,u)<1k and
    supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui,um)<1kk.

    Then S and T have a common fixed point uX. Then, S and T have a common fixed point ˙z in X.

    Taking c=0 and S=T in Theorem 2.9, we get the following result.

    Theorem 2.14. Let (X,) be a left complete double controlled quasi-metric type space with the functions α,μ:X×X[1,) and T:XP(X) be a multivalued mapping such that:

    H(Tx,Ty)k((x,Tx)+(y,Ty))

    for each x,yX, 0<c+2k<1. Suppose that, for every uX and for the sequence {T(ut)}, we have

    limtα(u,ut) is finite, limtμ(ut,u)<1k and
    supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui,um)<1kk.

    Then T has a fixed point.

    Now, the following example illustrates Theorem 2.14.

    Example 2.15. Let X=[0,3). Define :X×X[0, ) as

    (x,y)={0, if x=y,(xy)2+x, if xy.

    with

    α(x,y)={2, if x,y1,x+22, otherwise., μ(x,y)={1, if x,y1y+22, otherwise.

    Clearly (X,) is double controlled quasi metric type space. Choose Tx={x4} and k=25. It is clear that T is Kannan type double controlled contraction. Also, for each u X, we have

    limtα(u,ut)<, limtμ(ut,u)<1k.

    Thus, all hypotheses of Theorem 2.14 are satisfied and ˙z=0 is the fixed point.

    Quasi b-metric version of Theorem 2.14 is given below:

    Theorem 2.16. Let (X,) be a left complete quasi b -metric space and T:XP(X) be a mapping such that:

    H(Tx,Ty)k[(x,Tx)+(y,Ty)],

    for all x,yX, k[0,12) and

    b<1kk.

    Then T has a fixed point uX.

    The following remark compare, distinguish and relate the quasi b-metric with the double controlled quasi metric type spaces and illustrate the importance of double controlled quasi metric type spaces.

    Remark 2.17. In the Example 2.15, (x,y)=(xy)2+x is a quasi b-metric with b2, but we can not apply Theorem 2.16 because T is not Kannan type b-contraction. Indeed b1kk, for all b2.

    It has been shown that double controlled quasi metric is general and better than other metrics, like controlled quasi metric, controlled metric, extended quasi-b-metric, extended b-metric, quasi-b-metric and quasi metric. Also, left, right and dual completeness has been discussed. Results in dual complete spaces can be obtained as corollaries. These results may be extended to obtain results for other contractions. Double controlled quasi metric like ordered spaces can be introduced to establish new results. These results may be applied to find applications to random impulsive differential equations, dynamical systems, graph theory and integral equations.

    The authors would also like to thank the editor and the reviewers for their helpful comments and suggestions. This research was funded by the Center of Excellence in Theoretical and Computational Science (TaCS-CoE), KMUTT.

    The authors declare that they do not have any competing interests.



    [1] M. A. S. Aarons, Mean curvature flow with a forcing term in Minkowski space, Calc. Var., 25 (2005), 205–246. http://doi.org/10.1007/S00526-005-0351-8 doi: 10.1007/S00526-005-0351-8
    [2] A. L. Albujer, New examples of entire maximal graphs in H2×R1, Differ. Geom. Appl., 26 (2008), 456–462. https://doi.org/10.1016/j.difgeo.2007.11.035 doi: 10.1016/j.difgeo.2007.11.035
    [3] A. L. Albujer, L. J. Alías, Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces, J. Geom. Phys., 59 (2009), 620–631. https://doi.org/10.1016/j.geomphys.2009.01.008 doi: 10.1016/j.geomphys.2009.01.008
    [4] A. L. Albujer, H. F. de Lima, A. M. Oliveira, M. A. L. Velásquez, ϕ-Parabolicity and the uniqueness of spacelike hypersurfaces immersed in a spatially weighted GRW spacetime, Mediterr. J. Math., 15 (2018), 84. https://doi.org/10.1007/s00009-018-1134-8 doi: 10.1007/s00009-018-1134-8
    [5] L. J. Alías, A. G. Colares, Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson-Walker spacetimes, Math. Proc. Cambridge, 143 (2007), 703–729. http://doi.org/10.1017/S0305004107000576 doi: 10.1017/S0305004107000576
    [6] L. J. Alías, P. Mastrolia, M. Rigoli, Maximum principles and geometric applications, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-24337-5
    [7] H. V. Q. An, D. V. Cuong, N. T. M. Duyen, D. T. Hieu, T. L. Nam, On entire f-maximal graphs in the Lorentzian product Gn×R1, J. Geom. Phys., 114 (2017), 587–592. http://doi.org/10.1016/j.geomphys.2016.12.023 doi: 10.1016/j.geomphys.2016.12.023
    [8] C. P. Aquino, H. I. Baltazar, H. F. de Lima, A new Calabi-Bernstein type result in spatially closed generalized Robertson-Walker spacetimes, Milan J. Math., 85 (2017), 235–245. https://doi.org/10.1007/s00032-017-0271-z doi: 10.1007/s00032-017-0271-z
    [9] M. Batista, H. F. de Lima, Spacelike translating solitons in Lorentzian product spaces: Nonexistence, Calabi-Bernstein type results and examples, Commun. Contemp. Math., 24 (2022), 2150034. http://doi.org/10.1142/S0219199721500346 doi: 10.1142/S0219199721500346
    [10] D. Bakry, M. Émery, Diffusions hypercontractives, In: Séminaire de Probabilités XIX 1983/84, Berlin: Springer, 1985,177–206. https://doi.org/10.1007/BFb0075847
    [11] S. Bernstein, Sur les surfaces d'efinies au moyen de leur courboure moyenne ou totale, Annales scientifiques de l'École Normale Supérieure, Serie 3, 27 (1910), 233–256. https://doi.org/10.24033/asens.621 doi: 10.24033/asens.621
    [12] A. Caminha, The geometry of closed conformal vector fields on Riemannian spaces, Bull. Braz. Math. Soc., 42 (2011), 277–300. https://doi.org/10.1007/s00574-011-0015-6 doi: 10.1007/s00574-011-0015-6
    [13] J. S. Case, Singularity theorems and the Lorentzian splitting theorem for the Bakry-Émery-Ricci tensor, J. Geom. Phys., 60 (2010), 477–490. https://doi.org/10.1016/j.geomphys.2009.11.001 doi: 10.1016/j.geomphys.2009.11.001
    [14] Q. Chen, H. Qiu, Rigidity of self-shrinkers and translating solitons of mean curvature flows, Adv. Math., 294 (2016), 517–531. https://doi.org/10.1016/j.aim.2016.03.004 doi: 10.1016/j.aim.2016.03.004
    [15] H. F. de Lima, E. A. Lima Jr, Generalized maximum principles and the unicity of complete spacelike hypersurfaces immersed in a Lorentzian product space, Beitr. Algebra Geom., 55 (2013), 59–75. http://doi.org/10.1007/s13366-013-0137-7 doi: 10.1007/s13366-013-0137-7
    [16] H. F. de Lima, A. M. Oliveira, M. S. Santos, Rigidity of complete spacelike hypersurfaces with constant weighted mean curvature, Beitr. Algebra Geom., 57 (2016), 623–635. http://doi.org/10.1007/s13366-015-0253-7 doi: 10.1007/s13366-015-0253-7
    [17] J. H. S. de Lira, F. Martín, Translating solitons in Riemannian products, J. Differ. Equations, 266 (2019), 7780–7812. https://doi.org/10.1016/j.jde.2018.12.015 doi: 10.1016/j.jde.2018.12.015
    [18] K. Ecker, On mean curvature flow of spacelike hypersurfaces in asymptotically flat spacetime, J. Aust. Math. Soc., 55 (1993), 41–59. https://doi.org/10.1017/S1446788700031918 doi: 10.1017/S1446788700031918
    [19] K. Ecker, Interior estimates and longtime solutions for mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space, J. Differ. Geom., 46 (1997), 481–498. http://doi.org/10.4310/jdg/1214459975 doi: 10.4310/jdg/1214459975
    [20] K. Ecker, Mean curvature flow of spacelike hypersurfaces near null initial data, Commun. Anal. Geom., 11 (2003), 181–205. https://doi.org/10.4310/CAG.2003.v11.n2.a1 doi: 10.4310/CAG.2003.v11.n2.a1
    [21] K. Ecker, G. Huisken, Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes, Commun. Math. Phys., 135 (1991), 595–613. http://doi.org/https://doi.org/10.1007/BF02104123 doi: 10.1007/BF02104123
    [22] G. J. Galloway, E. Woolgar, Cosmological singularities in Bakry-Émery spacetimes, J. Geom. Phys., 86 (2014), 359–369. https://doi.org/10.1016/j.geomphys.2014.08.016 doi: 10.1016/j.geomphys.2014.08.016
    [23] S. Gao, G. Li, C. Wu, Translating spacelike graphs by mean curvature flow with prescribed contact angle, Arch. Math., 103 (2014), 499–508. https://doi.org/10.1007/s00013-014-0699-0 doi: 10.1007/s00013-014-0699-0
    [24] M. Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal., 13 (2003), 178–215. http://doi.org/10.1007/s000390300004 doi: 10.1007/s000390300004
    [25] D. T. Hieu, T. L. Nam, Bernstein type theorem for entire weighted minimal graphs in Gn×R, J. Geom. Phys., 81 (2014), 87–91. http://doi.org/10.1016/j.geomphys.2014.03.011 doi: 10.1016/j.geomphys.2014.03.011
    [26] E. Hopf, Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Akad. Wiss. Berlin: S.-B. Preuss, 1927: 147–152.
    [27] G. Huisken, S. T. Yau, Definition of center of mass for isolated physical system and unique foliations by stable spheres with constant curvature, Invent. Math., 124 (1996), 281–311. http://doi.org/10.1007/s002220050054 doi: 10.1007/s002220050054
    [28] D. Impera, M. Rimoldi, Stability properties and topology at infinity of f-minimal hypersurfaces, Geom. Dedicata, 178 (2015), 21–47. http://doi.org/10.1007/s10711-014-9999-6 doi: 10.1007/s10711-014-9999-6
    [29] H. Jian, Translating solitons of mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space, J. Differ. Equations, 220 (2006), 147–162. https://doi.org/10.1016/j.jde.2005.08.005 doi: 10.1016/j.jde.2005.08.005
    [30] H. Ju, J. Lu, H. Jian, Translating solutions to mean curvature flow with a forcing term in Minkowski space, Commun. Pure Appl. Anal., 9 (2010), 963–973. https://doi.org/10.3934/cpaa.2010.9.963 doi: 10.3934/cpaa.2010.9.963
    [31] B. Lambert, A note on the oblique derivative problem for graphical mean curvature flow in Minkowski space, Abh. Math. Semin. Univ. Hambg., 82 (2012), 115–120. https://doi.org/10.1007/s12188-012-0066-7 doi: 10.1007/s12188-012-0066-7
    [32] B. Lambert, The perpendicular Neumann problem for mean curvature flow with a timelike cone boundary condition, Trans. Amer. Math. Soc., 366 (2014), 3373–3388. https://www.jstor.org/stable/23813865
    [33] B. Lambert, J. D. Lotay, Spacelike mean curvature flow, J. Geom. Anal., 31 (2021), 1291–1359. https://doi.org/10.1007/s12220-019-00266-4 doi: 10.1007/s12220-019-00266-4
    [34] G. Li, I. Salavessa, Mean curvature flow of spacelike graphs, Math. Z., 269 (2011), 697–719. https://doi.org/10.1007/s00209-010-0768-4 doi: 10.1007/s00209-010-0768-4
    [35] A. Lichnerowicz, Variétés Riemanniennes à tenseur C non négatif, C. R. Acad. Sci. Paris Sér. A, 271 (1970), 650–653.
    [36] A. Lichnerowicz, Variétés Kählériennes à première classe de Chern non negative et variétés Riemanniennes à courbure de Ricci généralisée non negative, J. Differ. Geom., 6 (1971), 47–94. https://doi.org/10.4310/jdg/1214428089 doi: 10.4310/jdg/1214428089
    [37] F. Morgan, Manifolds with density, Notices of the American Mathematical Society, 52 (2005), 853–858.
    [38] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan, 19 (1967), 205–214. https://doi.org/10.2969/jmsj/01920205 doi: 10.2969/jmsj/01920205
    [39] B. O'Neill, Semi-Riemannian geometry with applications to relativity, London: Academic Press, 1983.
    [40] S. Pigola, M. Rigoli, A. G. Setti, Vanishing theorems on Riemannian manifolds, and geometric applications, J. Funct. Anal., 229 (2005), 424–461. https://doi.org/10.1016/j.jfa.2005.05.007 doi: 10.1016/j.jfa.2005.05.007
    [41] P. Pucci, J. Serrin, The strong maximum principle revisited, J. Differ. Equations, 196 (2004), 1–66. https://doi.org/10.1016/j.jde.2003.05.001 doi: 10.1016/j.jde.2003.05.001
    [42] G. Wei, W. Willie, Comparison geometry for the Bakry-Émery Ricci tensor, J. Differ. Geom., 83 (2009), 377–405. https://doi.org/10.4310/jdg/1261495336 doi: 10.4310/jdg/1261495336
    [43] E. Woolgar, Scalar-tensor gravitation and the Bakry-Émery-Ricci tensor, Class. Quantum Grav., 30 (2013), 085007. https://doi.org/10.1088/0264-9381/30/8/085007 doi: 10.1088/0264-9381/30/8/085007
    [44] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Commun. Pure Appl. Math., 28 (1975), 201–228. https://doi.org/10.1002/cpa.3160280203 doi: 10.1002/cpa.3160280203
    [45] S. T. Yau, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659–670. https://doi.org/10.1512/iumj.1976.25.25051 doi: 10.1512/iumj.1976.25.25051
  • This article has been cited by:

    1. Abdullah Eqal Al-Mazrooei, Jamshaid Ahmad, Fixed Point Results in Controlled Metric Spaces with Applications, 2022, 10, 2227-7390, 490, 10.3390/math10030490
    2. Haroon Ahmad, Mudasir Younis, Mehmet Emir Köksal, Sun Young Cho, Double Controlled Partial Metric Type Spaces and Convergence Results, 2021, 2021, 2314-4785, 1, 10.1155/2021/7008737
    3. Abdullah Shoaib, Qasim Mahmood, Aqeel Shahzad, Mohd Salmi Md Noorani, Stojan Radenović, Fixed point results for rational contraction in function weighted dislocated quasi-metric spaces with an application, 2021, 2021, 1687-1847, 10.1186/s13662-021-03458-x
    4. Nabil Mlaiki, Nihal Taş, Salma Haque, Doaa Rizk, Some Fixed-Disc Results in Double Controlled Quasi-Metric Type Spaces, 2022, 6, 2504-3110, 107, 10.3390/fractalfract6020107
    5. Tahair Rasham, Abdullah Shoaib, Shaif Alshoraify, Choonkil Park, Jung Rye Lee, Study of multivalued fixed point problems for generalized contractions in double controlled dislocated quasi metric type spaces, 2021, 7, 2473-6988, 1058, 10.3934/math.2022063
    6. Hasanen A. Hammad, Mohra Zayed, New Generalized Contractions by Employing Two Control Functions and Coupled Fixed-Point Theorems with Applications, 2022, 10, 2227-7390, 3208, 10.3390/math10173208
    7. Wasfi Shatanawi, Taqi A. M. Shatnawi, Some fixed point results based on contractions of new types for extended b-metric spaces, 2023, 8, 2473-6988, 10929, 10.3934/math.2023554
    8. Amit Gangwar, Shivam Rawat, R. C. Dimri, Solution of differential inclusion problem in controlled S-metric spaces via new multivalued fixed point theorem, 2023, 31, 0971-3611, 2459, 10.1007/s41478-023-00574-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1892) PDF downloads(191) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog