Processing math: 65%
Research article Special Issues

Mathematical estimation for maximum flow of goods within a cross-dock to reduce inventory

  • Supply chain management has recently renovated its strategy by implementing a cross-docking scheme. Cross-docking is a calculated logistics strategy where freight emptied from inbound vehicles is handled straightforwardly onto outbound vehicles, eliminating the intermediate storage process. The cross-docking approach thrives on the minimum storage time of goods in the inventory. Most of the cross-docks avail temporary storage docks where items can be stored for up to 24 hours before being packed up for transportation. The storage capacity of the cross-dock varies depending on the nature of ownership. In the rented cross-docks center, the temporary storage docks are considered of infinite capacity. This study believes that the temporary storage facilities owned by the cross-dock center are of finite capacity, which subsequently affects the waiting time of the goods. The flow rate of goods within the cross-docks is expected to be maximum to avoid long waiting for goods in the queue. This paper uses a series of max-flow algorithms, namely Ford Fulkerson, Edmond Karp, and Dinic's, to optimize the flow of goods between the inbound port and the outbound dock and present a logical explanation to reduce the waiting time of the trucks. A numerical example is analyzed to prove the efficacity of the algorithm in finding maximum flow. The result demonstrates that Dinic's algorithm performs better than the Ford Fulkerson and Edmond Karp algorithm at addressing the problem of maximum flow at the cross-dock. The algorithm effectively provided the best result regarding iteration and time complexity. In addition, it also suggested the bottleneck paths of the network in determining the maximum flow.

    Citation: Taniya Mukherjee, Isha Sangal, Biswajit Sarkar, Tamer M. Alkadash. Mathematical estimation for maximum flow of goods within a cross-dock to reduce inventory[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13710-13731. doi: 10.3934/mbe.2022639

    Related Papers:

    [1] Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
    [2] Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024
    [3] Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637
    [4] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin . Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860
    [5] Muhammad Bilal Khan, Gustavo Santos-García, Hüseyin Budak, Savin Treanțǎ, Mohamed S. Soliman . Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (p,J)-convex fuzzy-interval-valued functions. AIMS Mathematics, 2023, 8(3): 7437-7470. doi: 10.3934/math.2023374
    [6] Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Kamsing Nonlaopon, Y. S. Hamed . Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Mathematics, 2022, 7(3): 4338-4358. doi: 10.3934/math.2022241
    [7] Dawood Khan, Saad Ihsan Butt, Asfand Fahad, Yuanheng Wang, Bandar Bin Mohsin . Analysis of superquadratic fuzzy interval valued function and its integral inequalities. AIMS Mathematics, 2025, 10(1): 551-583. doi: 10.3934/math.2025025
    [8] Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506
    [9] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328
    [10] Jorge E. Macías-Díaz, Muhammad Bilal Khan, Muhammad Aslam Noor, Abd Allah A. Mousa, Safar M Alghamdi . Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus. AIMS Mathematics, 2022, 7(3): 4266-4292. doi: 10.3934/math.2022236
  • Supply chain management has recently renovated its strategy by implementing a cross-docking scheme. Cross-docking is a calculated logistics strategy where freight emptied from inbound vehicles is handled straightforwardly onto outbound vehicles, eliminating the intermediate storage process. The cross-docking approach thrives on the minimum storage time of goods in the inventory. Most of the cross-docks avail temporary storage docks where items can be stored for up to 24 hours before being packed up for transportation. The storage capacity of the cross-dock varies depending on the nature of ownership. In the rented cross-docks center, the temporary storage docks are considered of infinite capacity. This study believes that the temporary storage facilities owned by the cross-dock center are of finite capacity, which subsequently affects the waiting time of the goods. The flow rate of goods within the cross-docks is expected to be maximum to avoid long waiting for goods in the queue. This paper uses a series of max-flow algorithms, namely Ford Fulkerson, Edmond Karp, and Dinic's, to optimize the flow of goods between the inbound port and the outbound dock and present a logical explanation to reduce the waiting time of the trucks. A numerical example is analyzed to prove the efficacity of the algorithm in finding maximum flow. The result demonstrates that Dinic's algorithm performs better than the Ford Fulkerson and Edmond Karp algorithm at addressing the problem of maximum flow at the cross-dock. The algorithm effectively provided the best result regarding iteration and time complexity. In addition, it also suggested the bottleneck paths of the network in determining the maximum flow.



    It is well known fact that the concept of interval analysis fell into oblivion for long time until the 1950's: Moore [1], Warmus [2] and Sunaga [3]. The literature of interval analysis can be tracked back to the computation of lower and upper bounds for π by Archimedes in the following way 31071<π<317. The first monograph was published by Moore in 1960 [4], this field has attracted much attention in the theoretical and applied research. This research field has yielded important results over the past 50 years.

    Recently, several classical integral inequalities have been generalized to the context of set-valued and fuzzy-set-valued functions by means of inclusion and pseudo order relation. In light of this, Sadowska [5] arrived at the following conclusion for an IVF:

    Let F:[u,ν]RK+I be a convex interval-valued function (convex-IVF) given by F(ω)=[F(ω),F(ω)] for all ω[u,ν], where F(ω) and F(ω) are convex and concave functions, respectively. If F is interval Riemann integrable (in sort, IR-integrable), then

    F(u+ν2)1νu(IR)νuF(ω)dωF(u)+F(ν)2. (1)

    Note that, the inclusion relation (Eq 1) is reversed when Fconcave-IVF is. Following that, many scholars used inclusion relations and various integral operators to establish a close relationship between inequality and IVFs. Recently, Costa [6] obtained Jensen's type inequality for FIVF. Costa and Roman-Flores [7,8] introduced different types of inequalities for FIVF and IVF, and discussed their properties. Roman-Flores et al. [9] derived Gronwall for IVFs. Moreover, Chalco-Cano et al. [10,11] presented Ostrowski-type inequalities for IVFs by using the generalized Hukuhara derivative and provided applications in numerical integration in IVF. Nikodem et al. [12], and Matkowski and Nikodem [13] presented the new versions of Jense's inequality for strongly convex and convex functions. Zhao et al. [14,15] derived Chebyshev, Jensen's and H-H type inequalities for IVFs. Recently, Zhang et al. [16] generalized the Jense's inequalities and defined new version of Jensen's inequalities for set-valued and fuzzy-set-valued functions through pseudo order relation. After that, for convex-IVF, Budek [17] established interval-valued fractional Riemann-Liouville HHinequality by means of inclusion relation. For more useful details, see [18,19,20,21,22,23,24] and the references therein.

    Recently, Khan et al. [25] introduced the new class of convex fuzzy mappings is known as (h1,h2)-convex FIVFs by means of FOR and presented the following new version of H-H type inequality for (h1,h2)-convex FIVF involving fuzzy-interval Riemann integrals:

    LetF:[u,ν]F0 be a (h1,h2)-convex FIVF with h1,h2:[0,1]R+ and h1(12)h2(12)0. Then, from θ-levels, we get the collection of IVFs Fθ:[u,ν]RK+C are given by Fθ(ω)=[F(ω,θ),F(ω,θ)] for all ω[u,ν] and for all θ[0,1]. If F is fuzzy-interval Riemann integrable (in sort, FR-integrable), then

    12h1(12)h2(12)F(u+ν2)1νu(FR)νuF(ω)dω[F(u) +F(ν)]10h1(τ)h2(1τ)dτ. (2)

    If h1(τ)=τ and h2(τ)1, then from (2), we get following the result for convex FIVF:

    F(u+ν2)1νu(FR)νuF(ω)dωF(u) +F(ν)2. (3)

    A one step forward, Khan et al. introduced new classes of convex and generalized convex FIVF, and derived new fractional H-H type and H-H type inequalities for convex FIVF [26], h-convex FIVF [27], (h1,h2)-preinvex FIVF [28], log-s-convex FIVFs in the second sense [29], LR-log-h-convex IVFs [30], harmonically convex FIVFs [31], coordinated convex FIVFs [32] and the references therein. We refer to the readers for further analysis of literature on the applications and properties of fuzzy-interval, and inequalities and generalized convex fuzzy mappings, see [33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49] and the references therein.

    This study is organized as follows: Section 2 presents preliminary notions and results in interval space, the space of fuzzy intervals and convex analysis. Moreover, the new concept of p-convex fuzzy-IVF is also introduced. Section 3 obtains fuzzy-interval HH-inequalities for p-convex fuzzy-IVFs via fuzzy Riemann integrals. In addition, some interesting examples are also given to verify our results. Section 4 derives discrete Jensen's and Schur's type inequalities for p-convex fuzzy-IVFS. Section 5 gives conclusions and future plans.

    In this section, some preliminary notions, elementary concepts and results are introduced as a pre-work, including operations, orders, and distance between interval and fuzzy numbers, Riemannian integrals, and fuzzy Riemann integrals. Some new definitions and results are also given which will be helpful to prove our main results.

    Let R be the set of real numbers and KC be the space of all closed and bounded intervals of R, and ϖKC be defined by

    ϖ=[ϖ,ϖ]={ωR|ϖωϖ},(ϖ,ϖR).

    If ϖ=ϖ, then ϖ is said to be degenerate. If ϖ0, then [ϖ,ϖ] is called positive interval. The set of all positive interval is denoted by K+C and defined as K+C={[ϖ,ϖ]:[ϖ,ϖ]KC  and  ϖ0}.

    Let ϱR and ϱϖ be defined by

    ϱ.ϖ={[ϱϖ,ϱϖ],if  ϱ>0,{0},if  ϱ=0,[ϱϖ,ϱϖ],if  ϱ<0. (4)

    Then the Minkowski difference ξϖ, addition ϖ+ξ and ϖ×ξ for ϖ,ξKC are defined by

    [ξ,ξ][ϖ,ϖ]=[ξϖ,ξϖ],[ξ,ξ]+[ϖ,ϖ]=[ξ+ϖ,ξ+ϖ], (5)

    and

    [ξ,ξ]×[ϖ,ϖ]=[min{ξϖ,ξϖ,ξϖ,ξϖ},max{ξϖ,ξϖ,ξϖ,ξϖ}].

    The inclusion "⊆" means that

    ξϖif and only if,[ξ,ξ][ϖ,ϖ],if and only if  ϖξ,ξϖ. (6)

    Remark 2.1. [33] The relation "≤I" defined on KC by

    [ξ,ξ]I[ϖ,ϖ]  if and only if   ξϖ,ξϖ, (7)

    for all [ξ,ξ],[ϖ,ϖ]KC, it is an order relation. For given [ξ,ξ],[ϖ,ϖ]KC, we say that [ξ,ξ]I[ϖ,ϖ] if and only if ξϖ,ξϖ.

    For [ξ,ξ],[ϖ,ϖ]KC, the Hausdorff–Pompeiu distance between intervals [ξ,ξ] and [ϖ,ϖ] is defined by

    d([ξ,ξ],[ϖ,ϖ])=max{|ξϖ|,|ξϖ|}. (8)

    It is familiar fact that (KC,d) is a complete metric space.

    A fuzzy subset T of R is characterize by a mapping ξ:R[0,1] called the membership function, for each fuzzy set and θ(0,1], then θ-level sets of ξ is denoted and defined as follows ξθ={uR|ξ(u)θ}. If θ=0, then supp(ξ)={ωR|ξ(ω)>0} is called support of ξ. By [ξ]0 we define the closure of supp(ξ).

    Let F(R) be the collection of all fuzzy sets and ξF(R) be a fuzzy set. Then, we define the following:

    (1) ξ is said to be normal if there exists ωR and ξ(ω)=1;

    (2) ξ is said to be upper semi continuous on R if for given ωR, there exist ϵ>0 there exist δ>0 such that ξ(ω)ξ(y)<ϵ for all yR with |ωy|<δ;

    (3) ξ is said to be fuzzy convex if ξθ is convex for every θ[0,1];

    (4) ξ is compactly supported if supp(ξ) is compact.

    A fuzzy set is called a fuzzy number or fuzzy interval if it has properties (1)–(4). We denote by F0 the family of all fuzzy intervals.

    Let ξF0 be a fuzzy-interval, if and only if, θ-levels [ξ]θ is a nonempty compact convex set ofR. From these definitions, we have

    [ξ]θ=[ξ(θ),ξ(θ)],

    where

    ξ(θ)=inf{ωR|ξ(ω)θ},ξ(θ)=sup{ωR|ξ(ω)θ}.

    Proposition 2.2. [7] If ξ,ϖF0, then relation "≼" defined on F0 by

    ξϖ  if and only if, [ξ]θI[ϖ]θ, for all  θ[0,1], (9)

    this relation is known as partial order relation.

    For ξ,ϖF0 and ϱR, the sum ξ +ϖ, product ξ ×ϖ, scalar product ϱ.ξ and sum with scalar are defined by:

    Then, for all θ[0,1], we have

    [ξ +ϖ]θ=[ξ]θ+[ϖ]θ, (10)
    [ξ ×ϖ]θ=[ξ]θ×[ϖ]θ, (11)
    [ϱξ]θ=ϱ[ξ]θ, (12)
    [ϱ +ξ]θ=ϱ+[ξ]θ. (13)

    For ψF0 such that ξ=ϖ +ψ, then by this result we have existence of Hukuhara difference of ξ and ϖ, and we say that ψ is the H-difference of ξ and ϖ, and denoted by ξ ϖ.

    Definition 2.3. [16] A fuzzy-interval-valued mapF:KRF0 is called FIVF. For each θ(0,1], θ-levels define the family of IVFs Fθ:KRKC are given by Fθ(ω)=[F(ω,θ),F(ω,θ)] for all ωK. Here, for each θ(0,1], the end point real functions F(.,θ),F(.,θ):KR are called lower and upper functions of F.

    Definition 2.5. [34] Let F:[u,ν]RF0 be a FIVF. Then, fuzzy Riemann integral of F over [u,ν], denoted by (FR)νuF(ω)dω, it is given level-wise by

    [(FR)νuF(ω)dω]θ=(IR)νuFθ(ω)dω={νuF(ω,θ)dω:F(ω,θ)R([u,ν],θ)}, (14)

    for all θ(0,1], where R([u,ν],θ) denotes the collection of Riemannian integrable functions of IVFs. F is FR-integrable over [u,ν] if (FR)νuF(ω)dωF0. Note that, if both end point functions are Lebesgue-integrable, then F is fuzzy Aumann-integrable function over [u,ν] [16,34].

    Theorem 2.6. Let F:[u,ν]RF0 be a FIVF and for all θ(0,1], θ-levels define the family of IVFs Fθ:[u,ν]RKC are given by Fθ(ω)=[F(ω,θ),F(ω,θ)] for all ω[u,ν]. Then, F is fuzzy Riemann integrable (FR-integrable) over [u,ν] if and only if, F(ω,θ) and F(ω,θ) both are Riemann integrable (R-integrable) over [u,ν]. Moreover, if F is FR-integrable over [u,ν], then

    [(FR)νuF(ω)dω]θ=[(R)νuF(ω,θ)dω,(R)νuF(ω,θ)dω]=(IR)νuFθ(ω)dω, (15)

    for all θ(0,1], where IR represent interval Riemann integration of Fθ(ω). For all θ(0,1], FR([u,ν],θ) denotes the collection of all FR-integrable FIVFs over [u,ν].

    Definition 2.7. Let [u,ν] be a p-convex interval. Then, FIVF F:[u,ν]F0 is said to be p-convex on[u,ν] if

    F([ηxp+(1η)yp]1p)ηF(x) +(1η)F(y), (16)

    for allx,y[u,ν],η[0,1], where F(ω) 0, for all ω[u,ν]. If inequality (16) is reversed, then F is said to be p-concave FIVF on [u,ν]. The set of all p-convex (LR-p-concave) FIVFs is denoted by

    SXF([u,ν],F0,p),(SVF([u,ν],F0,p)).

    Remark 2.8. The p-convex FIVFs have some very nice properties similar to convex FIVF:

    If F is p-convex FIVF, then YF is also p-convex for Y0.

    If F and T both are p-convex FIVFs, then max(F(ω),T(ω)) is also p-convex FIVF.

    We now discuss some new and known special cases of p-convex FIVFs:

    If p1, then p-convex FIVF becomes convex FIVF, see [35], that is

    F(ηx+(1η)y)ηF(x) +(1η)F(y),x,y[u,ν],η[0,1]. (17)

    In Theorem 2.9, we will try to establish relation between the p-convex FIVFs and endpoint functions F(ω,θ), F(ω,θ) because through endpoint functions, FIVFs can be easily handled.

    Theorem 2.9. Let [u,ν] be convex set, and F:[u,ν]F0 be a FIVF. Then, θ-levels define the family of IVFs Fθ:[u,ν]RKC+KC are given by

    Fθ(ω)=[F(ω,θ),F(ω,θ)],ω[u,ν], (18)

    for all ω[u,ν] and for all θ[0,1]. Then, F is p-convex on [u,ν], if and only if, for all θ[0,1], F(ω,θ) and F(ω,θ) both are p-convex functions.

    Proof. Assume that for each θ[0,1], F(ω,θ) and F(ω,θ) are p-convex functions on [u,ν]. Then, from (16) we have

    F([ηxp+(1η)yp]1p,θ)ηF(x,θ)+(1η)F(y,θ),x,y[u,ν],η[0,1],

    and

    F([ηxp+(1η)yp]1p,θ)ηF(x,θ)+(1η)F(y,θ),x,y[u,ν],η[0,1].

    Then by (18), (10) and (12), we obtain

    Fθ([ηxp+(1η)yp]1p)=[F([ηxp+(1η)yp]1p,θ),F([ηxp+(1η)yp]1p,θ)],
    I[ηF(x,θ),ηF(x,θ)]+[(1η)F(y,θ),(1η)F(y,θ)],

    that is

    F([ηxp+(1η)yp]1p)ηF(x) +(1η)F(y),x,y[u,ν],η[0,1].

    Hence, F is p-convex FIVF on [u,ν].

    Conversely, let F be p-convex FIVF on [u,ν]. Then, for all x,y[u,ν] and η[0,1], we have

    F([ηxp+(1η)yp]1p)ηF(x) +(1η)F(y).

    Therefore, from (18), we have

    Fθ([ηxp+(1η)yp]1p)=[F([ηxp+(1η)yp]1p,θ),F([ηxp+(1η)yp]1p,θ)].

    Again, from (18), (10) and (12), we obtain

    ηFθ(x) +(1η)Fθ(y)=[ηF(x,θ),ηF(x,θ)]+[(1η)F(y,θ),(1η)F(y,θ)],

    for all x,y[u,ν] and η[0,1]. Then, by p-convexity of F, we have for all x,y[u,ν] and η[0,1]such that

    F([ηxp+(1η)yp]1p,θ)ηF(x,θ)+(1η)F(y,θ),

    and

    F([ηxp+(1η)yp]1p,θ)ηF(x,θ)+(1η)F(y,θ),

    for each θ[0,1]. Hence, the result follows.

    Example 2.10. We consider the FIVF F:[0,1]F0 defined by,

    F(ω)(λ)={λ2ω2,λ[0,2ω2]4ω2λ2ω2,λ(2ω2,4ω2]0,otherwise,

    then, for each θ[0,1], we have Fθ(ω)=[2θω2,(42θ)ω2]. Since end point functions F(ω,θ), F(ω,θ) are convex functions for each θ[0,1]. Hence F(ω) is convex FIVF.

    Remark 2.11. If F(ω,θ)=F(ω,θ), then Definition 2.7 reduces to the definition of classical p-convex function, [43].

    If F(ω,θ)=F(ω,θ) and p1, then Definition 2.7 reduces to the definition of classical convex function.

    In this section, we will prove two types of inequalities. First one is Hermite-Hadamard and their variant forms, and the second one is Hermite-Hadamard-Fejér inequalities for p-convex FIVFs where the integrands are FIVFs. We will verify these inequalities with the help of nontrivial examples.

    Theorem 3.1. Let FSXF([u,ν],F0,p). Then, θ-levels define the family of IVFs Fθ:[u,ν]RKC+ are given by Fθ(ω)=[F(ω,θ),F(ω,θ)] for all ω[u,ν] and for all θ[0,1]. If FFR([u,ν],θ), then

    F([up+νp2]1p)pνpup(FR)νuωp1F(ω)dωF(u) +F(ν)2. (19)

    If F(ω) is p-concave FIVF, then

    F([up+νp2]1p)pνpup(FR)νuωp1F(ω)dωF(u) +F(ν)2. (20)

    Proof. Let F:[u,ν]F0 be a p-convex FIVF. Then, by hypothesis, we have

    2F([up+νp2]1p)F([ηup+(1η)vp]1p) +F([(1η)up+ηνp]1p).

    Therefore, for every θ[0,1], we have

    2F([up+νp2]1p,θ)F([ηup+(1η)νp]1p,θ)+F([(1η)up+ηνp]1p,θ),2F([up+νp2]1p,θ)F([ηup+(1η)νp]1p,θ)+F([(1η)up+ηνp]1p,θ).

    Then

    210F([up+νp2]1p,θ)dη10F([ηup+(1η)νp]1p,θ)dη+10F([(1η)up+ηνp]1p,θ)dη,210F([up+νp2]1p,θ)dη10F([ηup+(1η)νp]1p,θ)dη+10F([(1η)up+ηνp]1p,θ)dη.

    It follows that

    F([up+νp2]1p,θ)pνpupνuωp1F(ω,θ)dω,F([up+νp2]1p,θ)pνpupνuωp1F(ω,θ)dω.

    That is

    [F([up+νp2]1p,θ),F([up+νp2]1p,θ)]Ipνpup[νuωp1F(ω,θ)dω,νuωp1F(ω,θ)dω].

    Thus,

    F([up+νp2]1p)pνpup(FR)νuωp1F(ω)dω. (21)

    In a similar way as above, we have

    pνpup(FR)νuωp1F(ω)dωF(u) +F(ν)2. (22)

    Combining (21) and (22), we have

    F([up+νp2]1p)pνpup(FR)νuωp1F(ω)dωF(u) +F(ν)2.

    Hence, the required result.

    Remark 3.2. If p=1, then Theorem 3.1, reduces to the result for convex FIVF, see [25]:

    F(u+ν2)1νu(FR)νuF(ω)dωF(u) +F(ν)2.

    If F(ω,θ)=F(ω,θ) withθ=1, then Theorem 3.1, reduces to the result for p-convex function [43]:

    F([up+νp2]1p)pνpup(R)νuωp1F(ω)dωF(u)+F(ν)2.

    If F(ω,θ)=F(ω,θ) with θ=1 and p=1, then Theorem 3.1, reduces to the result for classical convex function:

    F(u+ν2)1νu(R)νuF(ω)dωF(u)+F(ν)2.

    Example 3.3. Let p be an odd number and the FIVF F:[u,ν]=[2,3]F0 defined by,

    F(ω)(λ)={λ(2ωp2)λ[0,2ωp2],2(2ωp2)λ(2ωp2)λ(2ωp2,2(2ωp2)],0otherwise. (23)

    Then, for each θ[0,1], we have Fθ(ω)=[θ(2ωp2),(2θ)(2ωp2)]. Since end point functions F(ω,θ)=θ(2ωp2), F(ω,θ)=(2θ)(2ωp2) are p-convex functions for each θ[0,1]. Then, F(ω) is p-convex FIVF.

    We now computing the following

    F([up+νp2]1p,θ)=4102θ,F([up+νp2]1p,θ)=4102(2θ),
    pνpupνuωp1F(ω,θ)dω=θ32(2ωp2)dω=2150θ,pνpupνuωp1F(ω,θ)dω=(2θ)32(2ωp2)dω=2150(2θ),
    F(u,θ)+F(ν,θ)2=4232θ,F(u,θ)+F(ν,θ)2=4232(2θ),

    for all θ[0,1]. That means

    [4102θ,4102(2θ)]I[2150θ,2150(2θ)]I[4232θ,4232(2θ)],

    for all θ[0,1], and the Theorem 3.1 has been verified.

    To prove some related inequalities for the above theorem, we obtain following inequality for p-convex FIVFs

    Theorem 3.4. Let FSXF([u,ν],F0,p). Then, θ-levels define the family of IVFs Fθ:[u,ν]RKC+ are given by Fθ(ω)=[F(ω,θ),F(ω,θ)] for all ω[u,ν] and for all θ[0,1]. If FFR([u,ν],θ), then

    F([up+νp2]1p)2pνpup(FR)νuωp1F(ω)dω1F(u) +F(ν)2,

    where

    1=F(u) +F(ν)2 +F([up+νp2]1p)2,2=F([3up+νp4]1p) +F([up+3νp4]1p)2,and1=[1,1],2=[2,2].

    Proof. Take [up,up+νp2], we have

    2F([ηup+(1η)up+νp2]1p2+[(1η)up+ηup+νp2]1p2)F([ηup+(1η)up+νp2]1p) +F([(1η)up+ηup+νp2]1p).

    Therefore, for every θ[0,1], we have

    2F([ηup+(1η)up+νp2]1p2+[(1η)up+ηup+νp2]1p2,θ)F([ηup+(1η)up+νp2]1p,θ)+F([(1η)up+ηup+νp2]1p,θ),
    2F([ηup+(1η)up+νp2]1p2+[(1η)up+ηup+νp2]1p2,θ)F([ηup+(1η)up+νp2]1p,θ)+F([(1η)up+ηup+νp2]1p,θ).

    In consequence, we obtain

    F([3up+νp4]1p,θ)2pνpupup+νp2uF(ω,θ)dω,F([3up+νp4]1p,θ)2pνpupup+νp2uF(ω,θ)dω.

    That is

    [F([3up+νp4]1p,θ),F([3up+νp4]1p,θ)]2pνpup[up+νp2uF(ω,θ)dω,up+νp2uF(ω,θ)dω].

    It follows that

    F([3up+νp4]1p)2pνpup(FR)up+νp2uF(ω)dω. (24)

    In a similar way as above, we have

    F([up+3νp4]1p)2pνpup(FR)νup+νp2F(ω)dω. (25)

    Combining (24) and (25), we have

    [F([3up+νp4]1p) +F([up+3νp4]1p)]2pνpup(FR)νuF(ω)dω.

    By using Theorem 3.1, we have

    F([up+νp2]1p)=F([12.3up+νp4+12.up+3νp4]1p).

    Therefore, for every θ[0,1], we have

    F([up+νp2]1p,θ)=F([12.3up+νp4+12.up+3νp4]1p,θ),F([up+νp2]1p,θ)=F([12.3up+νp4+12.up+3νp4]1p,θ),
    [12F([3up+νp4]1p,θ)+12F([up+3νp4]1p,θ)],[12F([3up+νp4]1p,θ)+12F([up+3νp4]1p,θ)],
    =2,=2,
    pνpupνuF(ω,θ)dω,pνpupνuF(ω,θ)dω,
    12[F(u,θ)+F(ν,θ)2+F([up+νp2]1p,θ)],12[F(u,θ)+F(ν,θ)2+F([up+νp2]1p,θ)],
    =1,=1,
    12[F(u,θ)+F(ν,θ)2+F(u,θ)+F(ν,θ)2],12[F(u,θ)+F(ν,θ)2+F(u,θ)+F(ν,θ)2],
    =F(u,θ)+F(ν,θ)2,=F(u,θ)+F(ν,θ)2,

    that is

    F([up+νp2]1p)2pνpup(FR)νuF(ω)dω1F(u) +F(ν)2,

    hence, the result follows.

    Example 3.5. Let p be an odd number and the FIVF F:[u,ν]=[2,3]F0 defined by, Fθ(ω)=[θ(2ωp2),(2θ)(2ωp2)], as in Example 3.3, then F(ω) is p-convex FIVF and satisfying (38). We have F(ω,θ)=θ(2ωp2) and F(ω,θ)=(2θ)(2ωp2). We now computing the following

    [F(u,θ)+F(ν,θ)2]=4232θ,[F(u,θ)+F(ν,θ)2]=4232(2θ),
    1=F(u,θ)+F(ν,θ)2+F([up+νp2]1p,θ)2=823104θ,1=F(u,θ)+F(ν,θ)2+F([up+νp2]1p,θ)2=823104(2θ),
    2=12[F([3up+νp4]1p,θ)+F([up+3νp4]1p,θ)]=5114θ,2=12[F([3up+νp4]1p,θ)+F([up+3νp4]1p,θ)]=5114(2θ),
    F([up+νp2]1p,θ)=4102θ,F([up+νp2]1p,θ)=4102(2θ).

    Then, we obtain that

    4102θ5114θ2150θ823104θ4232θ,4102(2θ)5114(2θ)2150(2θ)823104(2θ)4232(2θ).

    Hence, Theorem 3.4 is verified.

    From Theorem 3.6 and Theorem 3.7, we now obtain some H-H inequalities for the product of p-convex FIVFs. These inequalities are refinements of some known inequalities [42,43].

    Theorem 3.6. Let F,JSXF([u,ν],F0,p). Then, θ-levels Fθ,Jθ:[u,ν]RKC+ are defined by Fθ(ω)=[F(ω,θ),F(ω,θ)] and Jθ(ω)=[J(ω,θ),J(ω,θ)] for all ω[u,ν] and for all θ[0,1]. If F,J and FJFR([u,ν],θ), then

    pνpup(FR)νuωp1F(ω) ×J(ω)dωM(u,ν)3 +N(u,ν)6.

    Where M(u,ν)=F(u) ×J(u) +F(ν) ×J(ν), N(u,ν)=F(u) ×J(ν) +F(ν) ×J(u), and Mθ(u,ν)=[M((u,ν),θ),M((u,ν),θ)] and Nθ(u,ν)=[N((u,ν),θ),N((u,ν),θ)].

    Proof. The proof is similar to the proof of Theorem 3.3 [46].

    Example 3.7. Let p be an odd number, and p-convex FIVFs F,J:[u,ν]=[2,3]F0 are, respectively defined by, Fθ(ω)=[θ(2ωp2),(2θ)(2ωp2)], as in Example 3.3 and Jθ(ω)=[θωp,(2θ)ωp]. Since F(ω) and J(ω) both are p-convex FIVFs and F(ω,θ)=θ(2ωp2), F(ω,θ)=(2θ)(2ωp2), and J(ω,θ)=θωp, J(ω,θ)=(2θ)ωp, then we computing the following

    pνpupνuωp1F(ω,θ)×J(ω,θ)dω=θ2,pνpupνuωp1F(ω,θ)×J(ω,θ)dω=(2θ)2,
    M((u,ν),θ)=(102233)θ23,M((u,ν),θ)=(102233)(2θ)23,
    N((u,ν),θ)=(103223)θ26N((u,ν),θ)=(103223)(2θ)26,

    for each θ[0,1], that means

    θ2(307283)θ26,(2θ)2(307283)(2θ)26.

    Hence, Theorem 3.6 is demonstrated.

    Theorem 3.8. Let F,JSXF([u,ν],F0,p). Then, θ-levels define the family of IVFs Fθ,Jθ:[u,ν]RKC+ are given by Fθ(ω)=[F(ω,θ),F(ω,θ)] and Jθ(ω)=[J(ω,θ),J(ω,θ)] for all ω[u,ν] and for all θ[0,1]. If F ×JFR([u,ν],θ), then

    2F([up+νp2]1p) ×J([up+νp2]1p)pνpup(FR)νuωp1F(ω) ×J(ω)dω +M(u,ν)6 +N(u,ν)3.

    WhereM(u,ν)=F(u) ×J(u) +F(ν) ×J(ν), N(u,ν)=F(u) ×J(ν) +F(ν) ×J(u), and Mθ(u,ν)=[M((u,ν),θ),M((u,ν),θ)] and Nθ(u,ν)=[N((u,ν),θ),N((u,ν),θ)].

    Proof. By hypothesis, for each θ[0,1], we have

    F([up+νp2]1p,θ)×J([up+νp2]1p,θ)F([up+νp2]1p,θ)×J([up+νp2]1p,θ)
    14[F([ηup+(1η)νp]1p,θ)×J([ηup+(1η)νp]1p,θ)+F([ηup+(1η)νp]1p,θ)×J([(1η)up+ηνp]1p,θ)]
    +14[F([(1η)up+ηνp]1p,θ)×J([ηup+(1η)νp]1p,θ)+F([(1η)up+ηνp]1p,θ)×J([(1η)up+ηνp]1p,θ)]
    ,14[F([ηup+(1η)νp]1p,θ)×J([ηup+(1η)νp]1p,θ)+F([ηup+(1η)νp]1p,θ)×J([(1η)up+ηνp]1p,θ)]+14[F([(1η)up+ηνp]1p,θ)×J([ηup+(1η)νp]1p,θ)+F([(1η)up+ηνp]1p,θ)×J([(1η)up+ηνp]1p,θ)],
    14[F([ηup+(1η)νp]1p,θ)×J([ηup+(1η)νp]1p,θ)+F([(1η)up+ηνp]1p,θ)×J([(1η)up+ηνp]1p,θ)]+14[(ηF(u,θ)+(1η)F(ν,θ))×((1η)J(u,θ)+ηJ(ν,θ))+((1η)F(u,θ)+ηF(ν,θ))×(ηJ(u,θ)+(1η)J(ν,θ))],14[F([ηup+(1η)νp]1p,θ)×J([ηup+(1η)νp]1p,θ)+F([(1η)up+ηνp]1p,θ)×J([(1η)up+ηνp]1p,θ)]+14[(ηF(u,θ)+(1η)F(ν,θ))×((1η)J(u,θ)+ηJ(ν,θ))+((1η)F(u,θ)+ηF(ν,θ))×(ηJ(u,θ)+(1η)J(ν,θ))],
    =14[F([ηup+(1η)νp]1p,θ)×J([ηup+(1η)νp]1p,θ)+F([(1η)up+ηνp]1p,θ)×J([(1η)up+ηνp]1p,θ)]+12[{η2+(1η)2}N((u,ν),θ)+{η(1η)+(1η)η}M((u,ν),θ)],=14[F([ηup+(1η)νp]1p,θ)×J([ηup+(1η)νp]1p,θ)+F([(1η)up+ηνp]1p,θ)×J([(1η)up+ηνp]1p,θ)]+12[{η2+(1η)2}N((u,ν),θ)+{η(1η)+(1η)η}M((u,ν),θ)],

    R-Integrating over [0,1], we have

    2F([up+νp2]1p,θ)×J([up+νp2]1p,θ)pνpupνuωp1F(ω,θ)×J(ω,θ)dω+M((u,ν),θ)6+N((u,ν),θ)3,2F([up+νp2]1p,θ)×J([up+νp2]1p,θ)pνpupνuωp1F(ω,θ)×J(ω,θ)dω+M((u,ν),θ)6+N((u,ν),θ)3,

    that is

    2F([up+νp2]1p) ×J([up+νp2]1p)pνpup(FR)νuωp1F(ω) ×J(ω)dω +M(u,ν)6 +N(u,ν)3.

    Hence, the required result.

    Example 3.9. Let p be an odd number, and p-convex FIVFs F,J:[u,ν]=[2,3]F0 are, respectively defined by, Fθ(ω)=[θ(2ωp2),(2θ)(2ωp2)], as in Example 3.3 and Jθ(ω)=[θωp,(2θ)ωp]. Since F(ω) and J(ω) both are p-convex FIVFs and F(ω,θ)=θ(2ωp2), F(ω,θ)=(2θ)(2ωp2), and J(ω,θ)=θωp, J(ω,θ)=(2θ)ωp, then we computing the following

    2F([up+νp2]1p,θ)×J([up+νp2]1p,θ)=205102θ2,2F([up+νp2]1p,θ)×J([up+νp2]1p,θ)=205102(2θ)2,
    \begin{array}{c}\frac{{\mathcal{M}}_{\mathcal{*}}\left(\left(\mathit{u}, \nu \right), \theta \right)}{6} = \left(10-2\sqrt{2}-3\sqrt{3}\right)\frac{{\theta }^{2}}{6}, \\ \frac{{\mathcal{M}}^{\mathcal{*}}\left(\left(\mathit{u}, \nu \right), \theta \right)}{6} = \left(10-2\sqrt{2}-3\sqrt{3}\right)\frac{{(2-\theta )}^{2}}{6}, \end{array}
    \begin{array}{c}\frac{{\mathcal{N}}_{\mathcal{*}}\left(\left(\mathit{u}, \nu \right), \theta \right)}{3} = \left(10-3\sqrt{2}-2\sqrt{3}\right)\frac{{\theta }^{\begin{array}{c}\\ 2\end{array}}}{3}, \\ \frac{{\mathcal{N}}^{\mathcal{*}}\left(\left(\mathit{u}, \nu \right), \theta \right)}{3} = \left(10-3\sqrt{2}-2\sqrt{3}\right)\frac{{(2-\theta )}^{2}}{3}, \end{array}

    for each \theta \in \left[0, 1\right], that means

    \begin{array}{c}\frac{20-5\sqrt{10}}{2}{\theta }^{2}\le \left(30-8\sqrt{2}-7\sqrt{3}\right)\frac{{\theta }^{2}}{6}, \\ \frac{20-5\sqrt{10}}{2}{(2-\theta )}^{2}\le \left(30-8\sqrt{2}-7\sqrt{3}\right)\frac{{(2-\theta )}^{2}}{6}, \end{array}

    hence, Theorem 3.8 is verified.

    We now give H-H Fejér inequalities for p -convex FIVFs. Firstly, we obtain the second H-H Fejér inequality for p -convex FIVF.

    Theorem 3.10. Let \mathcal{F}\in SXF\left(\left[\mathit{u}, \nu \right], {\mathbb{F}}_{0}, p\right) . Then, \theta -levels define the family of IVFs {\mathcal{F}}_{\theta }:\left[\mathit{u}, \nu \right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathcal{F}}_{\theta }\left(\omega \right) = \left[{\mathcal{F}}_{\mathcal{*}}\left(\omega, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(\omega, \theta \right)\right] for all \omega \in \left[\mathit{u}, \nu \right] and for all \theta \in \left[0, 1\right] . If \mathcal{F}\in {\mathcal{F}\mathcal{R}}_{\left(\left[\mathit{u}, \nu \right], \theta \right)} and \Omega :\left[\mathit{u}, \nu \right]\to \mathbb{R}, \Omega \left(\omega \right)\ge 0, symmetric with respect to {\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, then

    \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}\left(FR\right){\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\mathcal{F}\left(\omega \right)\Omega \left(\omega \right)d\omega \preccurlyeq \left[\mathcal{F}\left(\mathit{u}\right)\stackrel{~}{+}\mathcal{F}\left(\nu \right)\right]{\int }_{0}^{1}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta . (26)

    If \mathcal{F} is p -concave FIVF, then inequality (26) is reversed.

    Proof. Let \mathcal{F} be a p -convex FIVF. Then, for each \theta \in \left[0, 1\right], we have

    {\mathcal{F}}_{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)\\ \le \left(\eta {\mathcal{F}}_{\mathcal{*}}\left(\mathit{u}, \theta \right)+\left(1-\eta \right){\mathcal{F}}_{\mathcal{*}}\left(\nu , \theta \right)\right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right), (27)
    {\mathcal{F}}^{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)\\ \le \left(\eta {\mathcal{F}}^{\mathcal{*}}\left(\mathit{u}, \theta \right)+\left(1-\eta \right){\mathcal{F}}^{\mathcal{*}}\left(\nu , \theta \right)\right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)

    And

    \begin{array}{c}\\ {\mathcal{F}}_{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\\ \le \left(\left(1-\eta \right){\mathcal{F}}_{\mathcal{*}}\left(\mathit{u}, \theta \right)+\eta {\mathcal{F}}_{\mathcal{*}}\left(\nu , \theta \right)\right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right), \\ {\mathcal{F}}^{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\\ \le \left(\left(1-\eta \right){\mathcal{F}}^{\mathcal{*}}\left(\mathit{u}, \theta \right)+\eta {\mathcal{F}}^{\mathcal{*}}\left(\nu , \theta \right)\right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right).\end{array} (28)

    After adding (27) and (28), and integrating over \left[0, 1\right], we get

    \begin{array}{c}\\ {\int }_{0}^{1}{\mathcal{F}}_{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ +{\int }_{0}^{1}{\mathcal{F}}_{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\mathcal{F}}_{\mathcal{*}}\left(\mathit{u}, \theta \right)\left\{\eta \Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)+\left(1-\eta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\right\}\\ +{\mathcal{F}}_{\mathcal{*}}\left(\nu , \theta \right)\left\{\left(1-\eta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)+\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\right\}\end{array}\right]d\eta , \\ {\int }_{0}^{1}{\mathcal{F}}^{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ +{\int }_{0}^{1}{\mathcal{F}}^{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\mathcal{F}}^{\mathcal{*}}\left(\mathit{u}, \theta \right)\left\{\eta \Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)+\left(1-\eta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\right\}\\ +{\mathcal{F}}^{\mathcal{*}}\left(\nu , \theta \right)\left\{\left(1-\eta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)+\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\right\}\end{array}\right]d\eta , \end{array}
    \begin{array}{c}\\ = 2{\mathcal{F}}_{\mathcal{*}}\left(\mathit{u}, \theta \right){\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta +2{\mathcal{F}}_{\mathcal{*}}\left(\nu , \theta \right){\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta , \\ = 2{\mathcal{F}}^{\mathcal{*}}\left(\mathit{u}, \theta \right){\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta +2{\mathcal{F}}^{\mathcal{*}}\left(\nu , \theta \right){\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta .\end{array}

    Since \Omega is symmetric, then

    \begin{array}{c}\\ = 2\left[{\mathcal{F}}_{\mathcal{*}}\left(\mathit{u}, \theta \right)+{\mathcal{F}}_{\mathcal{*}}\left(\nu , \theta \right)\right]{\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta , \\ = 2\left[{\mathcal{F}}^{\mathcal{*}}\left(\mathit{u}, \theta \right)+{\mathcal{F}}^{\mathcal{*}}\left(\nu , \theta \right)\right]{\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta .\end{array} (29)

    Since

    \begin{array}{c}\\ {\int }_{0}^{1}{\mathcal{F}}_{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ = {\int }_{0}^{1}{\mathcal{F}}_{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ = \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega \\ {\int }_{0}^{1}{\mathcal{F}}^{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ = {\int }_{0}^{1}{\mathcal{F}}^{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ = \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega .\end{array} (30)

    Then, from (29), we have

    \begin{array}{c}\\ \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega \le \left[{\mathcal{F}}_{\mathcal{*}}\left(\mathit{u}, \theta \right)+{\mathcal{F}}_{\mathcal{*}}\left(\nu , \theta \right)\right]{\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta , \\ \\ \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega \le \left[{\mathcal{F}}^{\mathcal{*}}\left(\mathit{u}, \theta \right)+{\mathcal{F}}^{\mathcal{*}}\left(\nu , \theta \right)\right]{\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta , \end{array}

    that is

    \left[\frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega , \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega \right]
    {\le }_{p}\left[{\mathcal{F}}_{\mathcal{*}}\left(\mathit{u}, \theta \right)+{\mathcal{F}}_{\mathcal{*}}\left(\nu , \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(\mathit{u}, \theta \right)+{\mathcal{F}}^{\mathcal{*}}\left(\nu , \theta \right)\right]{\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta ,

    hence

    \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}\left(FR\right){\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\mathcal{F}\left(\omega \right)\Omega \left(\omega \right)d\omega \preccurlyeq \left[\mathcal{F}\left(\mathit{u}\right)\stackrel{~}{+}\mathcal{F}\left(\nu \right)\right]{\int }_{0}^{1}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta .

    Next, we construct first H-H Fejér inequality for p -convex FIVF, which generalizes first H-H Fejér inequalities for convex function [44].

    Theorem 3.11. Let \mathcal{F}\in SXF\left(\left[\mathit{u}, \nu \right], {\mathbb{F}}_{0}, p\right) . Then, \theta -levels define the family of IVFs {\mathcal{F}}_{\theta }:\left[\mathit{u}, \nu \right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathcal{F}}_{\theta }\left(\omega \right) = \left[{\mathcal{F}}_{\mathcal{*}}\left(\omega, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(\omega, \theta \right)\right] for all \omega \in \left[\mathit{u}, \nu \right] and for all \theta \in \left[0, 1\right] . If \mathcal{F}\in {\mathcal{F}\mathcal{R}}_{\left(\left[\mathit{u}, \nu \right], \theta \right)} and \Omega :\left[\mathit{u}, \nu \right]\to \mathbb{R}, \Omega \left(\omega \right)\ge 0, symmetric with respect to {\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, and {\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\Omega \left(\omega \right)d\omega > 0 , then

    \mathcal{F}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}\right)\preccurlyeq \frac{1}{{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\Omega \left(\omega \right)d\omega }\left(FR\right){\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\mathcal{F}\left(\omega \right)\Omega \left(\omega \right)d\omega . (31)

    If \mathcal{F} is p -concave FIVF, then inequality (31) is reversed.

    Proof. Since \mathcal{F} is a convex, then for \theta \in \left[0, 1\right], we have

    \begin{array}{c}\\ {\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right)\le \frac{1}{2}\left({\mathcal{F}}_{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)+{\mathcal{F}}_{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\right), \\ {\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right)\le \frac{1}{2}\left({\mathcal{F}}^{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)+{\mathcal{F}}^{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\right), \end{array} (32)

    Since \Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right) = \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right) , then by multiplying (32) by \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right) and integrate it with respect to \eta over \left[0, 1\right], we obtain

    \begin{array}{c}\\ {\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right){\int }_{0}^{1}\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ \le \frac{1}{2}\left(\begin{array}{c}{\int }_{0}^{1}{\mathcal{F}}_{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ +{\int }_{0}^{1}{\mathcal{F}}_{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)d\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}\right), \\ {\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right){\int }_{0}^{1}\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ \le \frac{1}{2}\left(\begin{array}{c}{\int }_{0}^{1}{\mathcal{F}}^{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ +{\int }_{0}^{1}{\mathcal{F}}^{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \end{array}\right).\end{array} (33)

    Since

    \begin{array}{c}\\ {\int }_{0}^{1}{\mathcal{F}}_{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ = {\int }_{0}^{1}{\mathcal{F}}_{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ = \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega , \\ \\ {\int }_{0}^{1}{\mathcal{F}}^{\mathcal{*}}\left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ = {\int }_{0}^{1}{\mathcal{F}}^{\mathcal{*}}\left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}, \theta \right)\Omega \left({\left[\eta {\mathit{u}}^{p}+\left(1-\eta \right){\nu }^{p}\right]}^{\frac{1}{p}}\right)d\eta \\ = \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega .\\ \end{array} (34)

    Then, from (34) we have

    \begin{array}{c}\\ {\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right)\le \frac{1}{{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\Omega \left(\omega \right)d\omega }{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega , \\ {\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right)\le \frac{1}{{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\Omega \left(\omega \right)d\omega }{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega , \end{array}

    from which, we have

    \begin{array}{c}\\ \left[{\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right)\right]\\ {\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\frac{1}{{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\Omega \left(\omega \right)d\omega }\left[{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega , {\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega \right], \\ \end{array}

    that is

    \mathcal{F}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}\right)\preccurlyeq \frac{1}{{\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\Omega \left(\omega \right)d\omega }\left(FR\right){\int }_{\mathit{u}}^{\nu }{\omega }^{p-1}\mathcal{F}\left(\omega \right)\Omega \left(\omega \right)d\omega ,

    this completes the proof.

    Remark 3.12. If in the Theorem 3.10 and Theorem 3.11, p = 1 , then we obtain the appropriate theorems for convex fuzzy-IVFs [26].

    If in the Theorem 3.10 and Theorem 3.11, {\mathcal{T}}_{\mathcal{*}}\left(\omega, \gamma \right) = {\mathcal{T}}^{\mathcal{*}}\left(\omega, \gamma \right) with \gamma = 1 , then we obtain the appropriate theorems for p -convex function [43].

    If in the Theorem 3.10 and Theorem 3.11, {\mathcal{T}}_{\mathcal{*}}\left(\omega, \gamma \right) = {\mathcal{T}}^{\mathcal{*}}\left(\omega, \gamma \right) with \gamma = 1 and p = 1 , then we obtain the appropriate theorems for convex function [44].

    If \Omega \left(\omega \right) = 1, then combining Theorem 3.10 and Theorem 3.11, we get Theorem 3.1.

    Example 3.13. We consider the FIVF \mathcal{F}:\left[1, 4\right]\to {\mathbb{F}}_{0} defined by,

    \mathcal{F}\left(\omega \right)\left(\lambda \right) = \left\{\begin{array}{c}\frac{\lambda -{e}^{{\omega }^{p}}}{{e}^{{\omega }^{p}}},& \lambda \in \left[{e}^{{\omega }^{p}}, 2{e}^{{\omega }^{p}}\right], \\ \frac{4{e}^{{\omega }^{p}}-\lambda }{2{e}^{{\omega }^{p}}},& \lambda \in \left(2{e}^{{\omega }^{p}}, 4{e}^{{\omega }^{p}}\right], \\ 0, &otherwise, \end{array}\right. (35)

    then, for each \theta \in \left[0, 1\right], we have {\mathcal{F}}_{\theta }\left(\omega \right) = \left[(1+\theta){e}^{{\omega }^{p}}, 2(2-\theta){e}^{{\omega }^{p}}\right] . Since end point functions {\mathcal{F}}_{\mathcal{*}}\left(\omega, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(\omega, \theta \right) are p -convex functions, for each \theta \in [0, 1] , then \mathcal{F}\left(\omega \right) is p -convex FIVF. If

    \Omega \left(\omega \right) = \left\{\begin{array}{c}{\omega }^{p}-1, \lambda \in \left[1, \frac{5}{2}\right], \\ 4-{\omega }^{p}, \lambda \in \left(\frac{5}{2}, 4\right], \end{array}\right. (36)

    where p = 1 . Then, we have

    \begin{array}{c}\\ \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{1}^{4}{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega = \frac{1}{3}{\int }_{1}^{4}{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega \\ = \frac{1}{3}{\int }_{1}^{\frac{5}{2}}{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega +\frac{1}{3}{\int }_{\frac{5}{2}}^{4}{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega , \\ = \frac{1}{3}\left(1+\theta \right){\int }_{1}^{\frac{5}{2}}{e}^{\omega }\left(\omega -1\right)d\omega +\frac{1}{3}\left(1+\theta \right){\int }_{\frac{5}{2}}^{4}{e}^{\omega }\left(4-\omega \right)d\omega \approx 11\left(1+\theta \right), \\ \frac{p}{{\nu }^{p}-{\mathit{u}}^{p}}{\int }_{1}^{4}{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega = \frac{1}{3}{\int }_{1}^{4}{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega \\ = \frac{1}{3}{\int }_{1}^{\frac{5}{2}}{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega +\frac{1}{3}{\int }_{\frac{5}{2}}^{4}{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega , \\ \begin{array}{c}\\ = \frac{2}{3}\left(2-\theta \right){\int }_{1}^{\frac{5}{2}}{e}^{\omega }\left(\omega -1\right)d\omega +\frac{2}{3}\left(2-\theta \right){\int }_{\frac{5}{2}}^{4}{e}^{\omega }\left(4-\omega \right)d\omega \approx 22\left(2-\theta \right), \\ \end{array}\end{array} (37)

    and

    \begin{array}{c}\\ \left[{\mathcal{F}}_{\mathcal{*}}\left(\mathit{u}, \theta \right)+{\mathcal{F}}_{\mathcal{*}}\left(\nu , \theta \right)\right]{\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta \\ \\ \left[{\mathcal{F}}^{\mathcal{*}}\left(\mathit{u}, \theta \right)+{\mathcal{F}}^{\mathcal{*}}\left(\nu , \theta \right)\right]{\int }_{0}^{1}\begin{array}{c}\eta \Omega \left({\left[\left(1-\eta \right){\mathit{u}}^{p}+\eta {\nu }^{p}\right]}^{\frac{1}{p}}\right)\end{array}d\eta \end{array}
    \begin{array}{c} = \left(1+\theta \right)\left[e+{e}^{4}\right]\left[{\int }_{0}^{\frac{1}{2}}3{\eta }^{2}d\omega +{\int }_{\frac{1}{2}}^{1}\eta \left(3-3\eta \right)d\eta \right]\approx \frac{43}{2}\left(1+\theta \right).\\ \\ = 2\left(2-\theta \right)\left[e+{e}^{4}\right]\left[{\int }_{0}^{\frac{1}{2}}3{\eta }^{2}d\omega +{\int }_{\frac{1}{2}}^{1}\eta \left(3-3\eta \right)d\eta \right]\approx 43\left(2-\theta \right).\end{array} (38)

    From (37) and (38), we have

    \left[11\left(1+\theta \right), 22\left(2-\theta \right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\left[\frac{43}{2}\left(1+\theta \right), 43\left(2-\theta \right)\right], for each \theta \in \left[0, 1\right].

    Hence, Theorem 3.10 is verified.

    For Theorem 3.11, we have

    \begin{array}{c}{\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right)\approx \frac{61}{5}\left(1+\theta \right), \\ {\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{{\mathit{u}}^{p}+{\nu }^{p}}{2}\right]}^{\frac{1}{p}}, \theta \right)\approx \frac{122}{5}\left(2-\theta \right), \\ \end{array} (39)
    {\int }_{\mathit{u}}^{\nu }\Omega \left(\omega \right)d\omega = {\int }_{1}^{\frac{5}{2}}\left(\omega -1\right)d\omega {\int }_{\frac{5}{2}}^{4}\left(4-\omega \right)d\omega = \frac{9}{4},
    \begin{array}{c}\\ \frac{p}{{\int }_{\mathit{u}}^{\nu }\Omega \left(\omega \right)d\omega }{\int }_{1}^{4}{\omega }^{p-1}{\mathcal{F}}_{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega \approx \frac{73}{5}\left(1+\theta \right), \\ \frac{p}{{\int }_{\mathit{u}}^{\nu }\Omega \left(\omega \right)d\omega }{\int }_{1}^{4}{\omega }^{p-1}{\mathcal{F}}^{\mathcal{*}}\left(\omega , \theta \right)\Omega \left(\omega \right)d\omega \approx \frac{293}{10}\left(2-\theta \right).\\ \end{array} (40)

    From (39) and (40), we have

    \left[\frac{61}{5}\left(1+\theta \right), \frac{122}{5}\left(2-\theta \right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\left[\frac{73}{5}\left(1+\theta \right), \frac{293}{10}\left(2-\theta \right)\right] ,

    hence, Theorem 3.11 is demonstrated.

    In this section, we propose the concept of discrete Jensen's and Schur's type inequality for p -convex FIVF. Some refinements of discrete Jensen's type inequality are also obtained. We begin by presenting the discrete Jensen's type inequality for p -convex FIVF in the following result.

    Theorem 4.1. (Discrete Jense's type inequality for p -convex FIVF) Let {\eta }_{j}\in {\mathbb{R}}^{+} , {\mathit{u}}_{j}\in \left[\mathit{u}, \nu \right], \left(j = 1, 2, 3, \dots, k, k\ge 2\right) and \mathcal{F}\in SXF\left(\left[\mathit{u}, \nu \right], {\mathbb{F}}_{0}, p\right) and for all \theta \in \left[0, 1\right] , \theta -levels define the family of IVFs {\mathcal{F}}_{\theta }:\left[\mathit{u}, \nu \right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathcal{F}}_{\theta }\left(\omega \right) = \left[{\mathcal{F}}_{\mathcal{*}}\left(\omega, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(\omega, \theta \right)\right] for all \omega \in \left[\mathit{u}, \nu \right] . Then,

    \mathcal{F}\left({\left[\frac{1}{{W}_{k}}\sum _{j = 1}^{k}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}\right)\preccurlyeq {\sum }_{j}^{k}\frac{{\eta }_{j}}{{W}_{k}}\mathcal{F}\left({\mathit{u}}_{j}\right), (41)

    where {W}_{k} = \sum _{j = 1}^{k}{\eta }_{j}. If \mathcal{F} is p -concave, then inequality (41) is reversed.

    Proof. When k = 2 then, inequality (41) is true. Consider inequality (19) is true for k = n-1, then

    \mathcal{F}\left({\left[\frac{1}{{W}_{n-1}}\sum \limits_{j = 1}^{n-1}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}\right)\preccurlyeq {\sum }_{j = 1}^{n-1}\frac{{\eta }_{j}}{{W}_{n-1}}\mathcal{F}\left({\mathit{u}}_{j}\right).

    Now, let us prove that inequality (41) holds for k = n.

    \mathcal{F}\left({\left[\frac{1}{{W}_{n}}\sum\limits _{j = 1}^{n}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}\right) = \mathcal{F}\left({\left[\frac{1}{{W}_{n}}\sum\limits _{j = 1}^{n-2}{\eta }_{j}{{\mathit{u}}_{j}}^{p}+\frac{{\eta }_{n-1}+{\eta }_{n}}{{W}_{n}}(\frac{{\eta }_{n-1}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n-1}}^{p}+\frac{{\eta }_{n}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n}}^{p}\right]}^{\frac{1}{p}}\right).

    Therefore, for each \theta \in \left[0, 1\right], we have

    \begin{array}{c}{\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{1}{{W}_{n}}\sum _{j = 1}^{n}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}, \theta \right)\\ {\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{1}{{W}_{n}}\sum _{j = 1}^{n}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}, \theta \right)\end{array}
    \begin{array}{c} = {\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{1}{{W}_{n}}\sum _{j = 1}^{n-2}{\eta }_{j}{{\mathit{u}}_{j}}^{p}+\frac{{\eta }_{n-1}+{\eta }_{n}}{{W}_{n}}(\frac{{\eta }_{n-1}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n-1}}^{p}+\frac{{\eta }_{n}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n}}^{p}\right]}^{\frac{1}{p}}, \theta \right), \\ = {\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{1}{{W}_{n}}\sum _{j = 1}^{n-2}{\eta }_{j}{{\mathit{u}}_{j}}^{p}+\frac{{\eta }_{n-1}+{\eta }_{n}}{{W}_{n}}(\frac{{\eta }_{n-1}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n-1}}^{p}+\frac{{\eta }_{n}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n}}^{p}\right]}^{\frac{1}{p}}, \theta \right), \end{array}
    \begin{array}{c}\le {\sum }_{j = 1}^{n-2}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)+\frac{{\eta }_{n-1}+{\eta }_{n}}{{W}_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{{\eta }_{n-1}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n-1}}^{p}+\frac{{\eta }_{n}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n}}^{p}\right]}^{\frac{1}{p}}, \theta \right), \\ \le {\sum }_{j = 1}^{n-2}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)+\frac{{\eta }_{n-1}+{\eta }_{n}}{{W}_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{{\eta }_{n-1}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n-1}}^{p}+\frac{{\eta }_{n}}{{\eta }_{n-1}+{\eta }_{n}}{{\mathit{u}}_{n}}^{p}\right]}^{\frac{1}{p}}, \theta \right), \end{array}
    \begin{array}{c}\le {\sum }_{j = 1}^{n-2}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)+\frac{{\eta }_{n-1}+{\eta }_{n}}{{W}_{n}}\left[\frac{{\eta }_{n-1}}{{\eta }_{n-1}+{\eta }_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{n-1}, \theta \right)+\frac{{\eta }_{n}}{{\eta }_{n-1}+{\eta }_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{n}, \theta \right)\right], \\ \le {\sum }_{j = 1}^{n-2}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)+\frac{{\eta }_{n-1}+{\eta }_{n}}{{W}_{n}}\left[\frac{{\eta }_{n-1}}{{\eta }_{n-1}+{\eta }_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{n-1}, \theta \right)+\frac{{\eta }_{n}}{{\eta }_{n-1}+{\eta }_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{n}, \theta \right)\right], \end{array}
    \begin{array}{c}\le {\sum }_{j = 1}^{n-2}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)+\left[\frac{{\eta }_{n-1}}{{W}_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{n-1}, \theta \right)+\frac{{\eta }_{n}}{{W}_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{n}, \theta \right)\right], \\ \le {\sum }_{j = 1}^{n-2}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)+\left[\frac{{\eta }_{n-1}}{{W}_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{n-1}, \theta \right)+\frac{{\eta }_{n}}{{W}_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{n}, \theta \right)\right], \end{array}
    \begin{array}{c} = {\sum }_{j = 1}^{n}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right), \\ = {\sum }_{j = 1}^{n}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right).\end{array}

    From which, we have

    \left[{\mathcal{F}}_{\mathcal{*}}\left({\left[\frac{1}{{W}_{n}}\sum \limits_{j = 1}^{n}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left({\left[\frac{1}{{W}_{n}}\sum\limits _{j = 1}^{n}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}, \theta \right)\right]{\le }_{I}\left[{\sum }_{j = 1}^{n}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right), {\sum }_{j = 1}^{n}\frac{{\eta }_{j}}{{W}_{n}}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)\right],

    that is,

    \mathcal{F}\left({\left[\frac{1}{{W}_{n}}\sum \limits_{j = 1}^{n}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}\right)\preccurlyeq {\sum }_{j = 1}^{n}\frac{{\eta }_{j}}{{W}_{n}}\mathcal{F}\left({\mathit{u}}_{j}\right),

    and the result follows.

    If {\eta }_{1} = {\eta }_{2} = {\eta }_{3} = \dots = {\eta }_{k} = 1, then Theorem 4.1 reduces to the following result:

    Corollary 4.2. Let {\mathit{u}}_{j}\in \left[\mathit{u}, \nu \right], \left(j = 1, 2, 3, \dots, k, k\ge 2\right) and \mathcal{F}\in SXF\left(\left[\mathit{u}, \nu \right], {\mathbb{F}}_{0}, p\right) . Then, \theta -levels define the family of IVFs {\mathcal{F}}_{\theta }:\left[\mathit{u}, \nu \right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathcal{F}}_{\theta }\left(\omega \right) = \left[{\mathcal{F}}_{\mathcal{*}}\left(\omega, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(\omega, \theta \right)\right] for all \omega \in \left[\mathit{u}, \nu \right] and for all \theta \in \left[0, 1\right] . Then,

    \mathcal{F}\left({\left[\frac{1}{{W}_{k}}\sum _{j = 1}^{k}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}\right)\preccurlyeq {\sum }_{J = 1}^{k}\frac{1}{k}\mathcal{F}\left({\mathit{u}}_{j}\right). (42)

    If \mathcal{F} is a p -concave, then inequality (42) is reversed.

    The next Theorem 4.3 gives the Schur's type inequality for p -convex FIVFs.

    Theorem 4.3. (Discrete Schur's type inequality for p -convex FIVF) Let \mathcal{F}\in SXF\left(\left[\mathit{u}, \nu \right], {\mathbb{F}}_{0}, p\right) . Then, \theta -levels define the family of IVFs {\mathcal{F}}_{\theta }:\left[\mathit{u}, \nu \right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathcal{F}}_{\theta }\left(\omega \right) = \left[{\mathcal{F}}_{\mathcal{*}}\left(\omega, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(\omega, \theta \right)\right] for all \omega \in \left[\mathit{u}, \nu \right] and for all \theta \in \left[0, 1\right] . If {\mathit{u}}_{1}, {\mathit{u}}_{2}, {\mathit{u}}_{3}\in \left[\mathit{u}, \nu \right] , such that {\mathit{u}}_{1} < {\mathit{u}}_{2} < {\mathit{u}}_{3} and {{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p} , {{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}, {{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}\in \left[0, 1\right] , then we have

    \left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right)\mathcal{F}\left({\mathit{u}}_{2}\right)\preccurlyeq \left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}\right)\mathcal{F}\left({\mathit{u}}_{1}\right)+\left({{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}\right)\mathcal{F}\left({\mathit{u}}_{3}\right). (43)

    If \mathcal{F} is a p -concave, then inequality (43) is reversed.

    Proof. Let {\mathit{u}}_{1}, {\mathit{u}}_{2}, {\mathit{u}}_{3}\in \left[\mathit{u}, \nu \right] and {{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p} > 0. Consider \eta = \frac{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}}{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}} , then {{\mathit{u}}_{2}}^{p} = \eta {{\mathit{u}}_{1}}^{p}+\left(1-\eta \right){{\mathit{u}}_{3}}^{p}. Since \mathcal{F} is a p -convex FIVF, then by hypothesis, we have

    \mathcal{F}\left({\mathit{u}}_{2}\right)\preccurlyeq \left(\frac{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}}{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}}\right)\mathcal{F}\left({\mathit{u}}_{1}\right)+\left(\frac{{{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}}{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}}\right)\mathcal{F}\left({\mathit{u}}_{3}\right).

    Therefore, for each \theta \in \left[0, 1\right], we have

    \begin{array}{c}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{2}, \theta \right)\le \left(\frac{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}}{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{1}, \theta \right)+\left(\frac{{{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}}{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{3}, \theta \right), \\ {\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{2}, \theta \right)\le \left(\frac{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}}{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{1}, \theta \right)+\left(\frac{{{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}}{{{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{3}, \theta \right), \end{array} (44)
    \begin{array}{c} = \frac{\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}\right)}{\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right)}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{1}, \theta \right)+\frac{\left({{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}\right)}{\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right)}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{3}, \theta \right), \\ = \frac{\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}\right)}{\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right)}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{1}, \theta \right)+\frac{\left({{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}\right)}{\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right)}{\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{3}, \theta \right).\end{array} (45)

    From (45), we have

    \begin{array}{c}\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{2}, \theta \right)\le \left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{1}, \theta \right)+\left({{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{3}, \theta \right), \\ \left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{2}, \theta \right)\le \left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{1}, \theta \right)+\left({{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{3}, \theta \right), \end{array}

    that is

    \left[\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{2}, \theta \right), \left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{2}, \theta \right)\right]{\le }_{I}\left[\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{1}, \theta \right)+\left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{3}, \theta \right), \left({{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{1}, \theta \right)+\left({{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{3}, \theta \right)\right],

    hence

    \left({{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{1}}^{p}\right)\mathcal{F}\left({\mathit{u}}_{2}\right)\preccurlyeq {{\mathit{u}}_{3}}^{p}-{{\mathit{u}}_{2}}^{p}\mathcal{F}\left({\mathit{u}}_{1}\right)+\left({{\mathit{u}}_{2}}^{p}-{{\mathit{u}}_{1}}^{p}\right)\mathcal{F}\left({\mathit{u}}_{3}\right).

    A refinement of Jense's type inequality for p -convex FIVF is given in the following theorem.

    Theorem 4.4. Let {\eta }_{j}\in {\mathbb{R}}^{+} , {\mathit{u}}_{j}\in \left[\mathit{u}, \nu \right], \left(j = 1, 2, 3, \dots, k, k\ge 2\right) and \mathcal{F}\in SXF\left(\left[\mathit{u}, \nu \right], {\mathbb{F}}_{0}, p\right) . Then, \theta -levels define the family of IVFs {\mathcal{F}}_{\theta }:\left[\mathit{u}, \nu \right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathcal{F}}_{\theta }\left(\omega \right) = \left[{\mathcal{F}}_{\mathcal{*}}\left(\omega, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(\omega, \theta \right)\right] for all \omega \in \left[\mathit{u}, \nu \right] and for all \theta \in \left[0, 1\right] . If \left(L, U\right)\subseteq [\mathit{u}, \nu] , then

    {\sum }_{j = 1}^{k}\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left({\mathit{u}}_{j}\right)\preccurlyeq {\sum }_{j = 1}^{k}\left(\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left(L, \theta \right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left(U, \theta \right)\right), (46)

    where {W}_{k} = \sum _{j = 1}^{k}{\eta }_{j}. If \mathcal{F} is p -concave, then inequality (46) is reversed.

    Proof. Consider = {\mathit{u}}_{1}, {\mathit{u}}_{j} = {\mathit{u}}_{2}, \left(j = 1, 2, 3, \dots, k\right) , U = {\mathit{u}}_{3} . Then, by hypothesis and inequality (44), we have

    \mathcal{F}\left({\mathit{u}}_{j}\right)\le \left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\mathcal{F}\left(L, \theta \right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\mathcal{F}\left(U, \theta \right).

    Therefore, for each \theta \in \left[0, 1\right] , we have

    \begin{array}{c}{\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)\le \left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right){\mathcal{F}}_{\mathcal{*}}\left(L, \theta \right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right){\mathcal{F}}_{\mathcal{*}}\left(U, \theta \right), \\ {\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)\le \left(\frac{U-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right){\mathcal{F}}^{\mathcal{*}}\left(L, \theta \right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right){\mathcal{F}}^{\mathcal{*}}\left(U, \theta \right).\end{array}

    Above inequality can be written as,

    \begin{array}{c}\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)\le \left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}_{\mathcal{*}}\left(L, \theta \right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}_{\mathcal{*}}\left(U, \theta \right), \\ \left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)\le \left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}^{\mathcal{*}}\left(L, \theta \right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}^{\mathcal{*}}\left(U, \theta \right).\end{array} (47)

    Taking sum of all inequalities (47) for j = 1, 2, 3, \dots, k, we have

    \begin{array}{c}{\sum }_{j = 1}^{k}\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)\le {\sum }_{j = 1}^{k}\left(\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}_{\mathcal{*}}\left(L, \theta \right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}_{\mathcal{*}}\left(U, \theta \right)\right), \\ {\sum }_{j = 1}^{k}\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)\le {\sum }_{j = 1}^{k}\left(\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}^{\mathcal{*}}\left(L, \theta \right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}^{\mathcal{*}}\left(U, \theta \right)\right).\end{array}

    that is

    {\sum }_{j = 1}^{k}\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left({\mathit{u}}_{j}\right) = \left[{\sum }_{j = 1}^{k}\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}_{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right), {\sum }_{j = 1}^{k}\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}^{\mathcal{*}}\left({\mathit{u}}_{j}, \theta \right)\right]
    {\le }_{I}\left[{\sum }_{j = 1}^{k}\left(\begin{array}{c}\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}_{\mathcal{*}}\left(L, \theta \right)\\ +\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}_{\mathcal{*}}\left(U, \theta \right)\end{array}\right), {\sum }_{j = 1}^{k}\left(\begin{array}{c}\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}^{\mathcal{*}}\left(L, \theta \right)\\ +\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right){\mathcal{F}}^{\mathcal{*}}\left(U, \theta \right)\end{array}\right)\right],
    {\le }_{I}{\sum }_{j = 1}^{k}\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\left[{\mathcal{F}}_{\mathcal{*}}\left(L, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(L, \theta \right)\right]+{\sum }_{j = 1}^{k}\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\left[{\mathcal{F}}_{\mathcal{*}}\left(U, \theta \right), {\mathcal{F}}^{\mathcal{*}}\left(U, \theta \right)\right].
    = {\sum }_{j = 1}^{k}\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left(L, \theta \right)+{\sum }_{j = 1}^{k}\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left(U, \theta \right).

    Thus,

    {\sum }_{j = 1}^{k}\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left({\mathit{u}}_{j}\right)\preccurlyeq {\sum }_{j = 1}^{k}\left(\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left(L\right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left(U\right)\right),

    this completes the proof.

    We now consider some special cases of Theorem 4.1 and 4.4.

    If {\mathcal{F}}_{\mathcal{*}}\left(\omega, \theta \right) = {\mathcal{F}}_{\mathcal{*}}\left(\omega, \theta \right) with \theta = 1 , then Theorem 3.1 and 3.4 reduce to the following results:

    Corollary 4.5. [42] (Jense's inequality for p -convex function) Let {\eta }_{j}\in {\mathbb{R}}^{+} , {\mathit{u}}_{j}\in \left[\mathit{u}, \nu \right], \left(j = 1, 2, 3, \dots, k, k\ge 2\right) and let \mathcal{F}:\left[\mathit{u}, \nu \right]\to {\mathbb{R}}^{+} be a non-negative real-valued function. If \mathcal{F} is a p -convex function, then

    \mathcal{F}\left({\left[\frac{1}{{W}_{k}}\sum _{j = 1}^{k}{\eta }_{j}{{\mathit{u}}_{j}}^{p}\right]}^{\frac{1}{p}}\right)\le {\sum }_{j = 1}^{k}\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left({\mathit{u}}_{j}\right), (48)

    where {W}_{k} = \sum _{j = 1}^{k}{\eta }_{j}. If \mathcal{F} is p -concave function, then inequality (48) is reversed.

    Corollary 4.6. Let {\eta }_{j}\in {\mathbb{R}}^{+} , {\mathit{u}}_{j}\in \left[\mathit{u}, \nu \right], \left(j = 1, 2, 3, \dots, k, k\ge 2\right) and \mathcal{F}:\left[\mathit{u}, \nu \right]\to {\mathbb{R}}^{+} be an non-negative real-valued function. If \mathcal{F} is a p -convex function and {\mathit{u}}_{1}, {\mathit{u}}_{2}, \dots, {\mathit{u}}_{j}\in \left(L, U\right)\subseteq [\mathit{u}, \nu] then,

    {\sum }_{j = 1}^{k}\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left({\mathit{u}}_{j}\right)\le {\sum }_{j = 1}^{k}\left(\left(\frac{{U}^{p}-{{\mathit{u}}_{j}}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left(L\right)+\left(\frac{{{\mathit{u}}_{j}}^{p}-{L}^{p}}{{U}^{p}-{L}^{p}}\right)\left(\frac{{\eta }_{j}}{{W}_{k}}\right)\mathcal{F}\left(U\right)\right), (49)

    where {W}_{k} = \sum _{j = 1}^{k}{\eta }_{j}. If \mathcal{F} is a p -concave function, then inequality (49) is reversed.

    In this we defined the p -convex (concave, affine) class for fuzzy-IVFs. We obtained some HH -inequalities for p -convex fuzzy-IVFs via fuzzy Riemann integrals. Moreover, we derived some novel discrete Jensen's and Schur's type inequalitities for p -convex fuzzy-IVFs. With the help of examples, we showed that our results include a wide class of new and known inequalities for p convex fuzzy-IVFs and their variant forms as special cases. In future, we try to explore these concepts and to investigate Jensen's and HH -inequalities for IVF and fuzzy-IVFs on time scale. In future, we will explore this by using fuzzy Katugampola fractional integrals for p -convex fuzzy-IVFs. We hope that the concepts and techniques of this paper may be starting point for further research in this area.

    The work was supported by Taif University Researches Supporting Project number (TURSP-2020/318), Taif University, Taif, Saudi Arabia.

    The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research and academic environments and work was supported by Taif University Researches Supporting Project number (TURSP-2020/318), Taif University, Taif, Saudi Arabia.

    The authors declare that they have no competing interests.



    [1] M. R. AlZgool, U. Ahmed, S. A. Shah, Q. AlMaamary, N. AlMahmoud, Examining the interplay of HR initiatives, knowledge management, technological capabilities and product innovation, J. Secur. Sustain. Issues, 10 (2020), 735–748. http://doi.org/10.9770/jssi.2020.10.2(29) doi: 10.9770/jssi.2020.10.2(29)
    [2] M. Tayyab, M. S. Habib, M. S. Jajja, B. Sarkar, Economic assessment of a serial production system with random imperfection and shortages: A step towards sustainability, Comput. Ind. Eng., 171 (2022), 108398. https://doi.org/10.1016/j.cie.2022.108398 doi: 10.1016/j.cie.2022.108398
    [3] A. S. Mahapatra, M. S. Mahapatra, B. Sarkar, S. K. Majumder, Benefit of preservation technology with promotion and time-dependent deterioration under fuzzy learning, Expert Syst. Appl., 201 (2022), 117169. https://doi.org/10.1016/j.eswa.2022.117169 doi: 10.1016/j.eswa.2022.117169
    [4] S. Khalilpourazari, A. Mirzazadeh, G. W. Weber, S. H. R. Pasandideh, A robust fuzzy approach for constrained multi-product economic production quantity with imperfect items and rework process, Optimization, 69 (2020), 63–90. https://doi.org/10.1080/02331934.2019.1630625 doi: 10.1080/02331934.2019.1630625
    [5] B. Sarkar, M. Ullah, M. Sarkar, Environmental and economic sustainability through innovative green products by remanufacturing, J. Clean. Prod., 332 (2022), 129813. https://doi.org/10.1016/j.jclepro.2021.129813 doi: 10.1016/j.jclepro.2021.129813
    [6] S. Kumar, M. Sigroha, K. Kumar, B. Sarkar, Manufacturing/remanufacturing based supply chain management under advertisements and carbon emission process, RAIRO- Oper. Res., 56 (2022), 831–851. https://doi.org/10.1051/ro/2021189 doi: 10.1051/ro/2021189
    [7] R. Lotfi, Y. Z. Mehrjerdi, M. S. Pishvaee, A. Sadeghieh, G. W. Weber, A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk, Numer. Algebra, Control. Optim., 11 (2021), 221–253. https://doi.org/10.3934/naco.2020023 doi: 10.3934/naco.2020023
    [8] T. Paksoy, T. Bektaş, E. Özceylan, Operational and environmental performance measures in a multi-product closed-loop supply chain, Transport Res E-Log, 47 (2011), 532–546. https://doi.org/10.1016/j.tre.2010.12.001 doi: 10.1016/j.tre.2010.12.001
    [9] A. Mondal, S. K. Roy, Multi-objective sustainable opened-and closed-loop supply chain under mixed uncertainty during COVID-19 pandemic situation, Comput. Ind. Eng., 159 (2021), 107453. https://doi.org/10.1016/j.cie.2021.107453 doi: 10.1016/j.cie.2021.107453
    [10] O. Theophilus, M. A. Dulebenets, J. Pasha, O. F. Abioye, M. Kavoosi, Truck scheduling at cross-docking terminals: A follow-up state-of-the-art review, Sustainability, 11 (2019), 5245. https://doi.org/10.3390/su11195245 doi: 10.3390/su11195245
    [11] J. Van Belle, P. Valckenaers, D. Cattrysse, Cross-docking: State of the art, Omega, 40 (2012), 827–846. https://doi.org/10.1016/j.omega.2012.01.005 doi: 10.1016/j.omega.2012.01.005
    [12] S. C. Corp, Cross-docking Trend Report, Whitepaper Series, Saddle Creek Corp: Lakeland, FL, USA, 2011. Available from: 070111DCMwe.pdf (distributiongroup.com)
    [13] G. Stalk, P. Evans, L. E. Shulman, Competing on capabilities: The new rules of corporate strategy, Harv. Bus. Rev., 70 (1992), 57–69.
    [14] N. S. Ankem, Models for performance analysis of a cross-dock, Master Thesis, University Park, Pennsylvania: Pennsylvania State University, USA, 2017.
    [15] Y. Kuo, Optimizing truck sequencing and truck dock assignment in a cross docking system, Expert Syst. Appl., 40 (2013), 5532–5541. https://doi.org/10.1016/j.eswa.2013.04.019 doi: 10.1016/j.eswa.2013.04.019
    [16] J. J. Bartholdi Ⅲ, S. T. Hackman, Warehouse and Distribution Science Release 0.94, Supply Chain and Logistics Institute, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, 2011.
    [17] K. K. Yang, J. Balakrishnan, C. H. Cheng, An analysis of factors affecting cross docking operations, J. Bus. Logist., 31 (2011), 121–148. https://doi.org/10.1002/j.2158-1592.2010.tb00131.x doi: 10.1002/j.2158-1592.2010.tb00131.x
    [18] J. J. Bartholdi Ⅲ, K. R. Gue, Best shape of a cross-dock, Transp. Sci., 38 (2004), 235–244. https://doi.org/10.1287/trsc.1030.0077 doi: 10.1287/trsc.1030.0077
    [19] I. F. Vis, K. J. Roodbergen, Positioning of goods in a cross-docking environment, Comput. Ind. Eng., 54 (2008), 677–689. https://doi.org/10.1016/j.cie.2007.10.004 doi: 10.1016/j.cie.2007.10.004
    [20] J. J. Bartholdi Ⅲ, K. R. Gue, Reducing labor costs in an LTL crossdocking terminal, Oper. Res., 48 (2000), 823–832. https://doi.org/10.1287/opre.48.6.823.12397 doi: 10.1287/opre.48.6.823.12397
    [21] J. F. Wang, A. Regan, Real-time trailer scheduling for cross dock operations, Transp. J., 47 (2008), 5–20. https://doi.org/10.5325/transportationj.47.2.0005 doi: 10.5325/transportationj.47.2.0005
    [22] G. Tadumadze, N. Boysen, S. Emde, F. Weidinger, Integrated truck and workforce scheduling to accelerate the unloading of trucks, Eur. J. Oper. Res., 278 (2019), 343–362. https://doi.org/10.1016/j.ejor.2019.04.024 doi: 10.1016/j.ejor.2019.04.024
    [23] H. G. Resat, P. Berten, Z. Kilek, M. B. Kalay, Design and development of robust optimization model for sustainable cross-docking systems: A case study in electrical devices manufacturing company, In: Muthu, SS (eds) Sustainable Packaging. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore, (2021), 203–224. https://doi.org/10.1007/978-981-16-4609-6_8
    [24] E. E. Zachariadis, A. I. Nikolopoulou, E. G. Manousakis, P. P. Repoussis, C. D. Tarantilis, The vehicle routing problem with capacitated cross-docking, Expert Syst. Appl., 196 (2022), 116620. https://doi.org/10.1016/j.eswa.2022.116620 doi: 10.1016/j.eswa.2022.116620
    [25] M. Madani-Isfahani, R. Tavakkoli-Moghaddam, B. Naderi, Multiple cross-docks scheduling using two meta-heuristic algorithms, Comput. Ind. Eng., 74 (2014), 129–138. https://doi.org/10.1016/j.cie.2014.05.009 doi: 10.1016/j.cie.2014.05.009
    [26] S. B. Choi, B. K. Dey, S. J. Kim, B. Sarkar, Intelligent servicing strategy for an online-to-offline (O2O) supply chain under demand variability and controllable lead time, RAIRO- Oper. Res., 56 (2022), 1623–1653. https://doi.org/10.1051/ro/2022026 doi: 10.1051/ro/2022026
    [27] B. Pal, A. Sarkar, B. Sarkar, Optimal decisions in a dual-channel competitive green supply chain management under promotional effort, Expert Syst. Appl., (2023), 118315. https://doi.org/10.1016/j.eswa.2022.118315 doi: 10.1016/j.eswa.2022.118315
    [28] B. Sarkar, S. Bhuniya, A sustainable flexible manufacturing–remanufacturing model with improved service and green investment under variable demand, Expert Syst. Appl., 202 (2022), 117154. https://doi.org/10.1016/j.eswa.2022.117154 doi: 10.1016/j.eswa.2022.117154
    [29] M. S. Habib, M. Omair, M. B. Ramzan, T. N. Chaudhary, M. Farooq, B. Sarkar, A robust possibilistic flexible programming approach toward a resilient and cost-efficient biodiesel supply chain network, J. Clean. Prod., 366 (2022), 132752. https://doi.org/10.1016/j.jclepro.2022.132752 doi: 10.1016/j.jclepro.2022.132752
    [30] B. Sarkar, A. Debnath, A. S. Chiu, W. Ahmed, Circular economy-driven two-stage supply chain management for nullifying waste, J. Clean. Prod., 339 (2022), 130513. https://doi.org/10.1016/j.jclepro.2022.130513 doi: 10.1016/j.jclepro.2022.130513
    [31] A. Garai, B. Sarkar, Economically independent reverse logistics of customer-centric closed-loop supply chain for herbal medicines and biofuel, J. Clean. Prod., 334 (2022), 129977. https://doi.org/10.1016/j.jclepro.2021.129977 doi: 10.1016/j.jclepro.2021.129977
    [32] T. Wu, J. Blackhurst, Modelling supply chain information and material perturbations, in Supply Chain Management and Knowledge Management (A. Dwivedi and T. Butcher eds), Palgrave Macmillan, London, (2009), 107–123. https://doi.org/10.1057/9780230234956_6
    [33] B. Ponte, J. Costas, J. Puche, R. Pino, D. de la Fuente, The value of lead time reduction and stabilization: A comparison between traditional and collaborative supply chains, Transport Res. E-Log., 111 (2018), 165–185. https://doi.org/10.1016/j.tre.2018.01.014 doi: 10.1016/j.tre.2018.01.014
    [34] E. B. Tirkolaee, A. Goli, A. Faridnia, M. Soltani, G. W. Weber, Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms, J. Clean. Prod., 276 (2020), 122927. https://doi.org/10.1016/j.jclepro.2020.122927 doi: 10.1016/j.jclepro.2020.122927
    [35] J. J. Vogt, The Successful cross-dock based supply chain, J. Bus. Logist., 31 (2010), 99–119. https://doi.org/10.1002/j.2158-1592.2010.tb00130.x doi: 10.1002/j.2158-1592.2010.tb00130.x
    [36] O. Theophilus, M. A. Dulebenets, J. Pasha, Y. Y. Lau, A. M. Fathollahi-Fard, A. Mazaheri, Truck scheduling optimization at a cold-chain cross-docking terminal with product perishability considerations, Comput. Ind. Eng., 156 (2021), 107240. https://doi.org/10.1016/j.cie.2021.107240 doi: 10.1016/j.cie.2021.107240
    [37] M. R. Galbreth, J. A. Hill, S. Handley, An investigation of the value of cross-docking for supply chain management, J. Bus. Logist., 29 (2008), 225–239. https://doi.org/10.1002/j.2158-1592.2008.tb00076.x doi: 10.1002/j.2158-1592.2008.tb00076.x
    [38] M. Vanajakumari, H. Sun, A. Jones, C. Sriskandarajah, Supply chain planning: A case for Hybrid Cross-Docks, Omega, 108 (2022), 102585. https://doi.org/10.1016/j.omega.2021.102585 doi: 10.1016/j.omega.2021.102585
    [39] D. Mardanya, G. Maity, S. K. Roy, The multi-objective multi-item just-in-time transportation problem, Optimization, (2021), 1–32. https://doi.org/10.1080/02331934.2021.1963246 doi: 10.1080/02331934.2021.1963246
    [40] P. B. Castellucci, A. M. Costa, F. Toledo, Network scheduling problem with cross-docking and loading constraints, Comput Oper Res, 132 (2021), 105271. https://doi.org/10.1016/j.cor.2021.105271 doi: 10.1016/j.cor.2021.105271
    [41] B. K. Giri, S. K. Roy, Neutrosophic multi-objective green four-dimensional fixed-charge transportation problem, Int. J. Mach. Learn. Cybern., (2022), 1–24. https://doi.org/10.1007/s13042-022-01582-y doi: 10.1007/s13042-022-01582-y
    [42] S. K. Das, M. Pervin, S. K. Roy, G. W. Weber, Multi-objective solid transportation-location problem with variable carbon emission in inventory management: a hybrid approach, Ann. Oper. Res., (2021), 1–27. https://doi.org/10.1007/s10479-020-03809-z doi: 10.1007/s10479-020-03809-z
    [43] A. M. Fathollahi-Fard, M. Ranjbar-Bourani, N. Cheikhrouhou, M. Hajiaghaei-Keshteli, Novel modifications of social engineering optimizer to solve a truck scheduling problem in a cross-docking system, Comput. Ind. Eng., 137 (2019), 106103, https://doi.org/10.1016/j.cie.2019.106103 doi: 10.1016/j.cie.2019.106103
    [44] M. A. Dulebenets, A diploid evolutionary algorithm for sustainable truck scheduling at a cross-docking facility, Sustainability, 10 (2018), 1333. https://doi.org/10.3390/su10051333 doi: 10.3390/su10051333
    [45] M. A. Dulebenets, A comprehensive evaluation of weak and strong mutation mechanisms in evolutionary algorithms for truck scheduling at cross-docking terminals, IEEE Access, 6 (2018), 65635–65650. https://doi.org/10.1109/ACCESS.2018.2874439 doi: 10.1109/ACCESS.2018.2874439
    [46] M. A. Dulebenets, An adaptive polyploid memetic algorithm for scheduling trucks at a cross-docking terminal, Inf. Sci., 565 (2021), 390–421. https://doi.org/10.1016/j.ins.2021.02.039 doi: 10.1016/j.ins.2021.02.039
    [47] G. C. Issi, R. Linfati, J. W. Escobar, Mathematical optimization model for truck scheduling in a distribution center with a mixed service-mode dock area, J. Adv. Transp., 2020 (2020). https://doi.org/10.1155/2020/8813372 doi: 10.1155/2020/8813372
    [48] A. H. Goodarzi, R. Tavakkoli-Moghaddam, A. Amini, A new bi-objective vehicle routing-scheduling problem with cross-docking: mathematical model and algorithms., Comput. Ind. Eng., 149 (2020), 106832. https://doi.org/10.1016/j.cie.2020.106832 doi: 10.1016/j.cie.2020.106832
    [49] F. Heidari, S. H. Zegordi, R. Tavakkoli-Moghaddam, Modeling truck scheduling problem at a cross-dock facility through a bi-objective bi-level optimization, J. Intell. Manuf., 29 (2018), 1155–1170. https://doi.org/10.1007/s10845-015-1160-3 doi: 10.1007/s10845-015-1160-3
    [50] W. Wisittipanich, T. Irohara, P. Hengmeechai, Truck scheduling problems in the cross docking network, Int. J. Logist. Syst. Manag., 33 (2019), 420–439. https://doi.org/10.1504/IJLSM.2019.101164 doi: 10.1504/IJLSM.2019.101164
    [51] A. Shahmardan, M. S. Sajadieh, Truck scheduling in a multi-door cross-docking center with partial unloading—Reinforcement learning-based simulated annealing approaches, Comput. Ind. Eng., 139 (2020), 106134. https://doi.org/10.1016/j.cie.2019.106134 doi: 10.1016/j.cie.2019.106134
    [52] S. I. Sayed, I. Contreras, J. A. Diaz, D. E. Luna, Integrated cross-dock door assignment and truck scheduling with handling times, TOP, 28 (2020), 705–727. https://doi.org/10.1007/s11750-020-00556-z doi: 10.1007/s11750-020-00556-z
    [53] H. Khorshidian, M. A. Shirazi, S. M. F. Ghomi, An intelligent truck scheduling and transportation planning optimization model for product portfolio in a cross dock, J. Intell. Manuf., 30 (2019), 163–184. https://doi.org/10.1007/s10845-016-1229-7 doi: 10.1007/s10845-016-1229-7
    [54] A. Motaghedi-Larijani, Solving the number of cross-dock open doors optimization problem by combination of NSGA-Ⅱ and multi-objective simulated annealing, Appl. Soft Comput., 128 (2022), 109448. https://doi.org/10.1016/j.asoc.2022.109448 doi: 10.1016/j.asoc.2022.109448
    [55] B. Werners, T. Wülfing, Robust optimization of internal transports at a parcel sorting center operated by Deutsche Post World Net, Eur. J. Oper. Res., 201 (2010), 419–426. https://doi.org/10.1016/j.ejor.2009.02.035 doi: 10.1016/j.ejor.2009.02.035
    [56] F. Essghaier, H. Allaoui, G. Goncalves, Truck to door assignment in a shared cross-dock under uncertainty, Expert Syst. Appl., 182 (2021), 114889. https://doi.org/10.1016/j.eswa.2021.114889 doi: 10.1016/j.eswa.2021.114889
    [57] S. Gelareh, F. Glover, O. Guemri, S. Hanafi, P. Nduwayo, R. Todosijević, A comparative study of formulations for a cross-dock door assignment problem, Omega, 91 (2020), 102015. https://doi.org/10.1016/j.omega.2018.12.004 doi: 10.1016/j.omega.2018.12.004
    [58] M. T. Kyi, S. S. Maw, L. L. Naing, Mathematical estimation for maximum flow in electricity distribution network by Ford-Fulkerson iteration algorithm, Int. J. Sci. Res. Publ., 9 (2019), https://doi.org/10.29322/IJSRP.9.08.2019.p9229 doi: 10.29322/IJSRP.9.08.2019.p9229
    [59] M. T. Kyi, L. L. Naing, Application of Ford-Fulkerson algorithm to maximum flow in water distribution pipeline network, Int. J Sci. Res. Publ., 8 (2018), https://doi.org/10.29322/IJSRP.8.12.2018.p8441 doi: 10.29322/IJSRP.8.12.2018.p8441
    [60] A. Özmen, E. Kropat, G. W. Weber, Robust optimization in spline regression models for multi-model regulatory networks under polyhedral uncertainty, Optimization, 66 (2017), 2135–2155. https://doi.org/10.1080/02331934.2016.1209672 doi: 10.1080/02331934.2016.1209672
    [61] A. Bellanger, S. Hanafi, C. Wilbaut, Three-stage hybrid-flowshop model for cross-docking, Comput Oper Res, 40 (2013), 1109–1121. https://doi.org/10.1016/j.cor.2012.11.009 doi: 10.1016/j.cor.2012.11.009
    [62] C. Daquin, H. Allaoui, G. Goncalves, T. Hsu, Variable neighborhood search based algorithms for crossdock truck assignment, RAIRO Oper. Res., 55 (2021), S2291–S2323. https://doi.org/10.1051/ro/2020087 doi: 10.1051/ro/2020087
    [63] L. R. J. Ford, D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, NJ. 1962
    [64] J. Edmonds, R. M. Karp, Theoretical improvements in algorithmic efficiency for network flow problems, J. ACM, 19 (1972), 248–264. https://doi.org/10.1145/321694.321699 doi: 10.1145/321694.321699
    [65] C. Jain, D. Garg, Improved Edmond Karp algorithm for network flow problem, Int. J. Comput. Appl., 37 (2012), 48–53. https://doi.org/10.5120/4576-6624 doi: 10.5120/4576-6624
    [66] K. K. Mallick, A. R. Khan, M. M. Ahmed, M. S. Arefin, M. S. Uddin, Modified Edmonds-Karp algorithm to solve maximum flow problem, Open J. App. Sci., 6 (2016), 131–140. https://doi.org/10.4236/ojapps.2016.62014 doi: 10.4236/ojapps.2016.62014
    [67] Y. Peretz, Y. Fischler, A fast parallel max-flow algorithm, J. Parallel Distrib. Comput., 169 (2022), 226–241. https://doi.org/10.1016/j.jpdc.2022.07.003 doi: 10.1016/j.jpdc.2022.07.003
    [68] M. Bulut, E. Özcan, Optimization of electricity transmission by Ford–Fulkerson algorithm, Sustain. Energy, Grids Netw., 28 (2021), 100544. https://doi.org/10.1016/j.segan.2021.100544 doi: 10.1016/j.segan.2021.100544
    [69] M. S. Sabbagh, H. Ghafari, S. R. Mousavi, A new hybrid algorithm for the balanced transportation problem, Comput. Ind. Eng., 82 (2015), 115–126. https://doi.org/10.1016/j.cie.2015.01.018 doi: 10.1016/j.cie.2015.01.018
    [70] D. Goldfarb, Z. Jin, A new scaling algorithm for the minimum cost network flow problem, Oper. Res. Lett., 25 (1999), 205–211. https://doi.org/10.1016/S0167-6377(99)00047-4 doi: 10.1016/S0167-6377(99)00047-4
    [71] H. Bui, E. S. Jung, V. Vishwanath, A. Johnson, J. Leigh, M. E. Papka, Improving sparse data movement performance using multiple paths on the Blue Gene/Q supercomputer, Parallel Comput., 51 (2016), 3–16. https://doi.org/10.1016/j.parco.2015.09.002 doi: 10.1016/j.parco.2015.09.002
    [72] R. M. Kaplan, An improved algorithm for multi-way trading for exchange and barter, Electron. Commer. Res. Appl., 10 (2011), 67–74. https://doi.org/10.1016/j.elerap.2010.08.001 doi: 10.1016/j.elerap.2010.08.001
    [73] G. R. Waissi, Worst case behavior of the Dinic algorithm, Appl. Math. Lett., 4 (1991), 57–60. https://doi.org/10.1016/0893-9659(91)90145-L doi: 10.1016/0893-9659(91)90145-L
  • This article has been cited by:

    1. Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Dumitru Baleanu, Bibhakar Kodamasingh, Hermite–Hadamard Type Inequalities for Interval-Valued Preinvex Functions via Fractional Integral Operators, 2022, 15, 1875-6883, 10.1007/s44196-021-00061-6
    2. Muhammad Bilal Khan, Gustavo Santos-García, Hatim Ghazi Zaini, Savin Treanță, Mohamed S. Soliman, Some New Concepts Related to Integral Operators and Inequalities on Coordinates in Fuzzy Fractional Calculus, 2022, 10, 2227-7390, 534, 10.3390/math10040534
    3. Muhammad Bilal Khan, Adriana Cătaș, Tareq Saeed, Generalized Fractional Integral Inequalities for p-Convex Fuzzy Interval-Valued Mappings, 2022, 6, 2504-3110, 324, 10.3390/fractalfract6060324
    4. Mudassir Shams, Nasreen Kausar, Praveen Agarwal, Shaher Momani, Mohd Asif Shah, Highly efficient numerical scheme for solving fuzzy system of linear and non-linear equations with application in differential equations, 2022, 30, 2769-0911, 777, 10.1080/27690911.2022.2147165
    5. T. Rasheed, S.I. Butt, Đ. Pečarić, J. Pečarić, Generalized cyclic Jensen and information inequalities, 2022, 163, 09600779, 112602, 10.1016/j.chaos.2022.112602
    6. Vuk Stojiljković, Rajagopalan Ramaswamy, Ola A. Ashour Abdelnaby, Stojan Radenović, Riemann-Liouville Fractional Inclusions for Convex Functions Using Interval Valued Setting, 2022, 10, 2227-7390, 3491, 10.3390/math10193491
    7. Gustavo Santos-García, Muhammad Bilal Khan, Hleil Alrweili, Ahmad Aziz Alahmadi, Sherif S. M. Ghoneim, Hermite–Hadamard and Pachpatte Type Inequalities for Coordinated Preinvex Fuzzy-Interval-Valued Functions Pertaining to a Fuzzy-Interval Double Integral Operator, 2022, 10, 2227-7390, 2756, 10.3390/math10152756
    8. Muhammad Bilal Khan, Savin Treanțǎ, Mohamed S. Soliman, Kamsing Nonlaopon, Hatim Ghazi Zaini, Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings, 2022, 10, 2227-7390, 611, 10.3390/math10040611
    9. Muhammad Bilal Khan, Hatim Ghazi Zaini, Savin Treanțǎ, Mohamed S. Soliman, Kamsing Nonlaopon, Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation, 2022, 10, 2227-7390, 204, 10.3390/math10020204
    10. Muhammad Bilal Khan, Muhammad Aslam Noor, Nehad Ali Shah, Khadijah M. Abualnaja, Thongchai Botmart, Some New Versions of Hermite–Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings, 2022, 6, 2504-3110, 83, 10.3390/fractalfract6020083
    11. Muhammad Bilal Khan, Hatim Ghazi Zaini, Savin Treanțǎ, Gustavo Santos-García, Jorge E. Macías-Díaz, Mohamed S. Soliman, Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities, 2022, 14, 2073-8994, 341, 10.3390/sym14020341
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3826) PDF downloads(176) Cited by(32)

Figures and Tables

Figures(8)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog