Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

Refined estimates and generalization of some recent results with applications

  • Received: 31 May 2021 Accepted: 06 July 2021 Published: 23 July 2021
  • MSC : 26A15, 26A51, 26D10, 26D15

  • In this paper, we firstly give improvement of Hermite-Hadamard type and Fejˊer type inequalities. Next, we extend Hermite-Hadamard type and Fejˊer types inequalities to a new class of functions. Further, we give bounds for newly defined class of functions and finally presents refined estimates of some already proved results. Furthermore, we obtain some new discrete inequalities for univariate harmonic convex functions on linear spaces related to a variant most recently presented by Baloch et al. of Jensen-type result that was established by S. S. Dragomir.

    Citation: Aqeel Ahmad Mughal, Deeba Afzal, Thabet Abdeljawad, Aiman Mukheimer, Imran Abbas Baloch. Refined estimates and generalization of some recent results with applications[J]. AIMS Mathematics, 2021, 6(10): 10728-10741. doi: 10.3934/math.2021623

    Related Papers:

    [1] Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen . A variant of Jensen-type inequality and related results for harmonic convex functions. AIMS Mathematics, 2020, 5(6): 6404-6418. doi: 10.3934/math.2020412
    [2] Fangfang Shi, Guoju Ye, Dafang Zhao, Wei Liu . Some integral inequalities for coordinated log-$ h $-convex interval-valued functions. AIMS Mathematics, 2022, 7(1): 156-170. doi: 10.3934/math.2022009
    [3] Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121
    [4] Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Hassen Aydi, Manuel De la Sen . Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications. AIMS Mathematics, 2022, 7(3): 3418-3439. doi: 10.3934/math.2022190
    [5] Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683
    [6] Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283
    [7] Waqar Afzal, Khurram Shabbir, Savin Treanţă, Kamsing Nonlaopon . Jensen and Hermite-Hadamard type inclusions for harmonical $ h $-Godunova-Levin functions. AIMS Mathematics, 2023, 8(2): 3303-3321. doi: 10.3934/math.2023170
    [8] Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089
    [9] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [10] Asadullah Sohail, Muhammad Adil Khan, Emad Abouel Nasr, Xiaoye Ding . Further improvements of the Jensen inequality in the integral sense by virtue of 6-convexity along with applications. AIMS Mathematics, 2024, 9(5): 11278-11303. doi: 10.3934/math.2024553
  • In this paper, we firstly give improvement of Hermite-Hadamard type and Fejˊer type inequalities. Next, we extend Hermite-Hadamard type and Fejˊer types inequalities to a new class of functions. Further, we give bounds for newly defined class of functions and finally presents refined estimates of some already proved results. Furthermore, we obtain some new discrete inequalities for univariate harmonic convex functions on linear spaces related to a variant most recently presented by Baloch et al. of Jensen-type result that was established by S. S. Dragomir.



    Functions with convexity property have been frequently deployed in numerous fields of pure and applied mathematics, by way of illustration in function theory, mathematical analysis, functional analysis, probability theory, optimization theory, operational research and information theory. Briefly, convex functions entail a strong and elegant interaction between analysis and geometry, and convex functions got prominence in the mathematical inequalities and applications, and most of inequalities are regularly used in solving several problems of the applied sciences like as, Jensen's inequality [1] which is lord among inequalities because it make out at once the main part of the other classical inequalities (e.g., those by Hölder, Minkowski, Beckenbach-Dresher and Young, the A-G inequality etc.) that holds for the class of convex functions under certain conditions. Some recent work on the applications of mathematical inequalities can be found in [2,3,4,5,6,7,8,9]. The following inequality holds for any convex function Φ defined on R

    Φ(w1+w22)1w2w1w2w1Φ(w)dwΦ(w1)+Φ(w2)2,w1,w2R,w1w2. (1.1)

    Further, the simple generalization to a convex function extensively widens our scope for analysis, and during the investigation of convexity, many researchers founded new classes of functions which are not convex in general. Some of them are the so called harmonic convex functions [10], harmonic (w1,m)-convex functions [11], harmonic (s,m)-convex functions [12,13] and harmonic (p,(s,m))-convex functions [14]. For a quick glance on importance of these classes and applications see [15–29] and references therein.

    It is import to bring into your kind knowledge that the harmonic property has taken a significant apart in different fields of pure and applied sciences. In [30], the authors have emphasized on the important character of the harmonic mean in Asian stock options. More interestingly, harmonic means are applied in electric circuit theory. Specifically, the total resistance of a set of parallel resistor is just half of the harmonic mean of the total resistors. For instance, suppose R1 and R2 are the resistances of two parallel resistors, then the total resistance RT is computed by the following formula:

    RT=R1R2R1+R2.

    Definition 1.1. A function Φ:IR{0}R is said to be harmonic convex function on I if

    Φ(w1w2tw1+(1t)w2)tΦ(w2)+(1t)Φ(w1) (1.2)

    holds for all w1,w2I and t[0,1]. If the inequality is reversed, then Φ is said to be harmonic concave.

    Example 1.2. Here, we present some non-trivial examples

    ● The functions Φ1(w)=lnw, Φ2(w)=w for all w(0,), are examples of harmonic convex functions as well as concave functions.

    ● The functions Φ3(w)=(w1)2+1w and Φ4(w)=1w2 for all w(0,), are examples of harmonic convex function which are also convex functions.

    ● The function Ψ(w)={1ww,if0<w10,if1<w2w2w,ifw>2 is an example of harmonic convex function that is neither convex nor concave function.

    Clearly, the function π(w)=lnw, is example of convex functions which is not harmonic convex function. In the presence of these example, Baloch et al. [31] claimed that class of harmonic convex functions is neither exactly that of convex functions nor it is entirely different from class of convex functions. More precisely, they investigated remarkable relations between these two classes under certain conditions as follows:

    Lemma 1.3. Let IR/{0} be a real interval. Define I1={w2¯R,w2=1w1,w1I}. A function Φ:IR is harmonic convex if and only if Ψ:I1R is convex, where Ψ is defined as Ψ(w2)=Φ(w1).

    Lemma 1.4. Let I(0,) and I1 has similar definition as given in Lemma 1.3. A function Φ:IR is harmonic convex if and only if Ψ:IR is convex, where Ψ is defined as Ψ(w)=wΦ(w).

    Proposition 1.5. Let IR/{0} be a real interval and Φ:IR is a function, then;

    1). If I(0,) and Φ is convex and nondecreasing function, then Φ is harmonic convex function.

    2). If I(0,) and Φ is harmonic convex and nonincreasing function, then Φ is convex function.

    3). If I(,0) and Φ is harmonic convex and nondecreasing function, then Φ is convex function.

    4). If I(,0) and Φ is convex and nonincreasing function, then Φ is harmonic convex function.

    In [10], İ. İşcan proved the following result, which is known as Hermite-Hadamard type inequality for harmonic convex functions.

    Theorem 1.6. Let Φ:IR/{0}R be a harmonic convex function and w1,w2I with w1<w2. If ΦL[w1,w2], then the following inequalities hold

    Φ(2w1w2w1+w2)w1w2w2w1w2w1Φ(w)w2dwΦ(w1)+f(w2)2. (1.3)

    In [32], Chen et al. proved Fejˊer type inequalities for harmonic convex functions as follows:

    Theorem 1.7. Let Φ:IR/{0}R be a harmonic convex function and w1,w2I with w1<w2. If ΦL[w1,w2], then the following inequalities hold

    Φ(2w1w2w1+w2)w2w1Ψ(w)w2dww1w2w2w1w2w1Φ(w)Ψ(w)w2dwΦ(w1)+Φ(w2)2w2w1Ψ(w)w2dw, (1.4)

    where Ψ:[w1,w2]R is non-negative, integral and satisfies

    Ψ(w1w2w)=Ψ(w1w2w1+w2w) (1.5)

    Note: Here, we mention the worth of the class of harmonic convex functions in view of following applications in the field of mathematics.

    ● Baloch et al. [31] proved many outstanding facts and disclosed that harmonic convexity gives an analytic tool to estimate several known definite integrals like w2w1ewwndw, w2w1ew2dw, w2w1sinwwndw and w2w1coswwndw, nN, where w1,w2(0,).

    ● Secondly, Baloch et al. [33] explored that the inequality (1.6) provides a very nice short proof of Discrete form of Hölder's inequality.

    ● Thirdly, Baloch et al. [34] used inequalities (1.6) and (1.7) to establish a very simple short proof of weighted {HGA} inequality.

    In [35], S. S. Dragomir proved the following result, which is known as Jensen-type inequality for harmonic convex functions.

    Theorem 1.8. Let I(0,) be an interval. If Φ:IR is harmonic convex function, then

    Φ(1nk=1akwk)nk=1akΦ(wk), (1.6)

    holds for all w1,...,wnI and ak[0,1] with nk=1ak=1.

    In [33], Baloch et al. proved the subsequent result which is a variant of Jensen-type inequality for harmonic convex functions.

    Theorem 1.9. Let [m,M](0,) be an interval. If Φ:[m,M]R is harmonic convex function, then for any finite sequence (wk)nk=1[m,M] and ak[0,1] with nk=1ak=1, we have

    Φ(11m+1Mnk=1akwk)Φ(m)+Φ(M)nk=1akΦ(wk) (1.7)

    In [36], Baloch et al. also proved the following nice result:

    Theorem 1.10. If Φ:IR is harmonic convex function on harmonic convex subset IR{0}, then for any finite positive sequence {wk}nk=1I and ak with An:=nk=1ak>0, we have

    nmin (1.8)
    \leq \frac{1}{A_{n}} \sum\limits_{k = 1}^{n} a_{k} \Phi(w_{k}) - \Phi (\frac{1}{\frac{1}{A_{n}}\sum_{k = 1}^{n}\frac{a_{k}}{w_{k}}} )
    \leq n \;\max\limits_{1 \leq k \leq n}\{a_{k}\}\;\; [ \frac{1}{n} \sum\limits_{k = 1}^{n} \Phi(w_{k}) - \Phi (\frac{1}{\frac{1}{n}\sum_{k = 1}^{n}\frac{1}{w_{k}}} ) ]

    In this section, we firstly give refinement of Hermite-Hadamard type inequalities (1.2) for univariate harmonic convex functions.

    Theorem 2.1. Let \Phi:\boldsymbol{I}\subset \mathbb{R}/\{0\} \rightarrow \mathbb{R} be a harmonic convex function and w_{1}, w_{2} \in \boldsymbol{I} with w_{1} < w_{2} . If \Phi \in L[w_{1}, w_{2}] , then for all \lambda \in [0, 1] , the following inequalities hold

    \begin{eqnarray} \Phi ( \frac{2w_{1} w_{2}}{w_{1} + w_{2}} ) \leq l(\lambda) \leq \frac{w_{1} w_{2}}{ w_{2} - w_{1}}\int_{w_{1}}^{w_{2}}\frac{\Phi(w)}{w^{2}}dw \leq L(\lambda) \leq \frac{\Phi(w_{1}) + \Phi(w_{2})}{2} \end{eqnarray} (2.1)

    where

    l(\lambda) : = \lambda \Phi ( \frac{2w_{1} w_{2}}{\lambda w_{1} + (2 - \lambda)w_{2}} ) + (1 - \lambda) \Phi ( \frac{2w_{1} w_{2}}{(1 - \lambda) w_{2} + (1 + \lambda)w_{1}} )

    and

    L(\lambda) : = \frac{\lambda \Phi(w_{1}) + \Phi ( \frac{w_{1} w_{2}}{\lambda w_{1} + (1 - \lambda)w_{2}} ) + (1 - \lambda)\Phi( w_{2})}{2}

    Proof. Let \Phi be harmonic convex function on \textbf{I} , applying (1.6) on the sub-interval [w_{1}, \frac{w_{1} w_{2}}{\lambda w_{1} + (1 - \lambda)w_{2}}] , with \lambda \neq 0, we get

    \begin{eqnarray} \Phi ( \frac{2w_{1} w_{2}}{\lambda w_{1} + (2 - \lambda)w_{2}} ) &\leq& \frac{w_{1} w_{2}}{\lambda (w_{2} - w_{1})}\int_{w_{1}}^{\frac{w_{1} w_{2}}{\lambda w_{1} + (1 - \lambda)w_{2}}}\frac{\Phi(w)}{w^{2}}dw \\ &\leq& \frac{\Phi(w_{1}) + \Phi ( \frac{w_{1} w_{2}}{\lambda w_{1} + (1 - \lambda)w_{2}} )}{2}. \end{eqnarray} (2.2)

    Applying (1.6) again on the sub-interval [\frac{w_{1} w_{2}}{\lambda w_{1} + (1 - \lambda)w_{2}}, w_{2}] , with \lambda \neq 0, we get

    \begin{eqnarray} \Phi ( \frac{2w_{1} w_{2}}{(1 - \lambda) w_{2} + (1 + \lambda)w_{1}} ) &\leq& \frac{w_{1} w_{2}}{(1 - \lambda) (w_{2} - w_{1})}\int_{\frac{w_{1} w_{2}}{\lambda w_{1} + (1 - \lambda)w_{2}}}^{w_{2}}\frac{\Phi(w)}{w^{2}}dw \\ &\leq& \frac{\Phi (\frac{w_{1} w_{2}}{\lambda w_{1} + (1 - \lambda)w_{2}} ) + \Phi( w_{2})}{2}. \end{eqnarray} (2.3)

    Multiply (2.2) by \lambda , (2.3) by 1 - \lambda and adding the resulting inequalities, we get

    \begin{equation} l(\lambda) \leq \frac{w_{1} w_{2}}{ w_{2} - w_{1}}\int_{w_{1}}^{w_{2}}\frac{\Phi(w)}{w^{2}}dw \leq L(\lambda) \end{equation} (2.4)

    where l(\lambda) and L(\lambda) are same as defined in Theorem 2.1.

    Using the fact that \Phi is harmonic convex, we obtain

    \begin{eqnarray} \Phi ( \frac{2w_{1} w_{2}}{w_{1} + w_{2}} ) & = & \Phi ( \frac{1}{\lambda \frac{\lambda w_{1} + (2 - \lambda)w_{2}}{2w_{1} w_{2}} + (1 - \lambda) \frac{(1 - \lambda) w_{2} + (1 + \lambda)w_{1}}{2w_{1} w_{2}}} )\\ &\leq& \lambda \Phi ( \frac{2w_{1} w_{2}}{\lambda w_{1} + (1 - \lambda)w_{2} + w_{2}} ) + (1 - \lambda)\Phi ( \frac{2w_{1} w_{2}}{(1 - \lambda) w_{2} + \lambda w_{1} + w_{1}} )\\ &\leq& \frac{1}{2} [\lambda \Phi ( \frac{2w_{1} w_{2}}{\lambda w_{1} + (1 - \lambda)w_{2}} ) + \lambda \Phi(w_{1}) + (1 - \lambda)\Phi ( \frac{2w_{1} w_{2}}{\lambda w_{1} + (1 - \lambda) w_{2}} ) + (1 - \lambda)\Phi(w_{2}) ]\\ &\leq& \frac{\Phi(w_{1}) + \Phi(w_{2})}{2}. \end{eqnarray} (2.5)

    Then by (2.4) and (2.5), we get (2.1).

    Corollary 2.2. Under the assumptions of Theorem 2.1, we have

    \begin{eqnarray} \Phi ( \frac{2w_{1} w_{2}}{w_{1} + w_{2}} ) \leq l \leq \frac{w_{1} w_{2}}{ w_{2} - w_{1}}\int_{w_{1}}^{w_{2}}\frac{\Phi(w)}{w^{2}}dw \leq L \leq \frac{\Phi(w_{1}) + \Phi(w_{2})}{2} \end{eqnarray} (2.6)

    where

    l : = \frac{1}{2} [\Phi ( \frac{4w_{1} w_{2}}{ w_{1} + 3w_{2}} ) + \Phi ( \frac{4w_{1} w_{2}}{3w_{1} + w_{2}} ) ]

    and

    L : = \frac{\Phi(w_{1}) + 2\Phi( \frac{2w_{1} w_{2}}{w_{1} + w_{2}}) + f\Phi ( w_{2})}{4}

    Corollary 2.3. Under the assumptions of Theorem 2.1, we have

    \begin{eqnarray} \Phi ( \frac{2w_{1} w_{2}}{w_{1} + w_{2}} ) \leq \sup\limits_{\lambda \in [0,1]} l(\lambda) \leq \frac{w_{1} w_{2}}{ w_{2} - w_{1}}\int_{w_{1}}^{w_{2}}\frac{\Phi(w)}{w^{2}}dw \leq \inf\limits_{\lambda \in [0,1]} L(\lambda) \leq \frac{\Phi(w_{1}) + \Phi(w_{2})}{2}. \end{eqnarray} (2.7)

    Theorem 2.4. Let \Phi:\textbf{I}\subset \mathbb{R}/\{0\} \rightarrow \mathbb{R} be a harmonic convex function and w_{1}, w_{2} \in \textbf{I} with w_{1} < w_{2} . If \Phi, \Psi\in L[w_{1}, w_{2}] , \Psi is non-negative and satisfies condition (1.8), then for all \lambda \in [0, 1] , the following inequalities hold

    \begin{eqnarray} \Phi ( \frac{2w_{1} w_{2}}{w_{1} + w_{2}} )\int_{w_{1}}^{w_{2}}\frac{\Psi(w)}{w^{2}} dw &\leq& l(\lambda)\int_{w_{1}}^{w_{2}}\frac{\Psi(w)}{w^{2}} dw \\ &\leq& \frac{w_{1} w_{2}}{ w_{2} - w_{1}}\int_{w_{1}}^{w_{2}}\frac{\Phi(w)\Psi(w)}{w^{2}}dw\\ &\leq& L(\lambda)\int_{w_{1}}^{w_{2}}\frac{\Psi(w)}{w^{2}} dw \\ &\leq& \frac{\Phi(w_{1}) + \Phi(w_{2})}{2}\int_{w_{1}}^{w_{2}}\frac{\Psi(w)}{w^{2}} dw, \end{eqnarray} (2.8)

    where l(\lambda) and L(\lambda) are as defined in Theorem 2.1.

    Proof. The proof follows on the same lines as that of Theorem 2.1.

    Corollary 2.5. Under the assumptions of Theorem 2.4, we have

    \begin{eqnarray} \Phi ( \frac{2w_{1} w_{2}}{w_{1} + w_{2}} )\int_{w_{1}}^{w_{2}}\frac{\Psi(w)}{w^{2}} dw &\leq& l\int_{w_{1}}^{w_{2}}\frac{\Psi(w)}{w^{2}} dw\\ &\leq& \frac{w_{1} w_{2}}{ w_{2} - w_{1}}\int_{w_{1}}^{w_{2}}\frac{\Phi(w)\Psi(w)}{w^{2}}dw\\ &\leq& L \int_{w_{1}}^{w_{2}}\frac{\Psi(w)}{w^{2}} dw\\ &\leq& \frac{\Phi(w_{1}) + \Phi(w_{2})}{2}\int_{w_{1}}^{w_{2}}\frac{\Psi(w)}{w^{2}} dw, \end{eqnarray} (2.9)

    where l and L are same as defined in Corollary 2.13.

    Corollary 2.6. Under the assumptions of Theorem 2.4, we have

    \begin{eqnarray} \Phi ( \frac{2w_{1} w_{2}}{w_{1} + w_{2}} ) \int_{w_{1}}^{w_{2}}\frac{\Psi(w)}{w^{2}} dw &\leq& \sup\limits_{\lambda \in [0,1]} l(\lambda)\int_{w_{1}}^{w_{2}}\frac{\Psi(w)}{w^{2}} dw \\ &\leq& \frac{w_{1} w_{2}}{ w_{2} - w_{1}}\int_{w_{1}}^{w_{2}}\frac{\Phi(w)\Psi(w)}{w^{2}}dw\\ &\leq& \inf\limits_{\lambda \in [0,1]} L(\lambda)\int_{w_{1}}^{w_{2}}\frac{\Psi(w)}{w^{2}} dw\\ &\leq& \frac{\Phi(w_{1}) + \Phi(w_{2})}{2}\int_{w_{1}}^{w_{2}}\frac{\Psi(w)}{w^{2}} dw \end{eqnarray} (2.10)

    For a function \Phi:\textbf{I}\subset \mathbb{R}/\{0\} \rightarrow \mathbb{C}, we consider the symmetrical transform of \Phi on interval \textbf{I} denoted by \breve{\Phi}_{\textbf{I}} or simply \breve{\Phi} as defined by

    \begin{equation*} \breve{\Phi}(t) : = \frac{1}{2} [ \Phi(t) + \Phi ( \frac{w_{1} w_{2} t}{(w_{1} + w_{2})t - w_{1} w_{2}} ) ],\; t \in \textbf{I}. \end{equation*}

    The anti-symmetrical transform of \Phi on interval I denoted by \tilde{\Phi}_{\textbf{I}} or simply \breve{\Phi} as defined by

    \begin{equation*} \tilde{\Phi}(t) : = \frac{1}{2} [ \Phi(t) - \Phi ( \frac{w_{1} w_{2} t}{(w_{1} + w_{2})t - w_{1} w_{2}} ) ],\; t \in \textbf{I}. \end{equation*}

    It is obvious for any function \Phi , we have \Phi = \breve{\Phi} + \tilde{\Phi} and further, if \Phi is harmonic convex on \textbf{I} then \breve{\Phi} is also harmonic convex on \textbf{I} but reverse is not true in general.

    Definition 2.7. A function \Phi:\textbf{I}\subset \mathbb{R}/\{0\} \rightarrow \mathbb{C} is said to be symmetrized harmonic convex (concave) on \textbf{I} if \breve{\Phi} is harmonic convex (concave) on \Phi .

    Theorem 2.8. Assume that function \Phi:\boldsymbol{I}\subset \mathbb{R}/\{0\} \rightarrow \mathbb{C} is symmetrized harmonic convex, integrable on \boldsymbol{I} and \Psi is non-negative integrable function that satisfies condition

    \begin{equation} \int_{w_{1}}^{w_{2}} \frac{\Phi(w)\Psi ( \frac{w_{1} w_{2} t}{(w_{1} + w_{2})t - w_{1} w_{2}} )}{w^{2}}dw = \int_{w_{1}}^{w_{2}} \frac{\Phi(x)\Psi(w)}{w^{2}}dw, \end{equation} (2.11)

    then we have inequalities (1.6) and (1.7).

    Proof. Since, function \Phi:\textbf{I}\subset \mathbb{R}/\{0\} \rightarrow \mathbb{C} is symmetrized harmonic convex, integrable on \textbf{I} , then by Hermite-Hadamard type inequality (1.6) for \breve{\Phi} , we have

    \begin{equation} \breve{\Phi} \left(\frac{2w_{1} w_{2}}{w_{1} + w_{2}} \right) \leq \frac{w_{1} w_{2}}{w_{2} - w_{1}}\int_{w_{1}}^{w_{2}} \frac{\breve{\Phi}(w)}{w^{2}} dw \leq \frac{\breve{\Phi}(w_{1}) + \breve{\Phi}(w_{2})}{2}. \end{equation} (2.12)

    After some simple calculations, we see that \breve{\Phi} \left(\frac{2w_{1} w_{2}}{w_{1} + w_{2}} \right) = \Phi \left(\frac{2w_{1} w_{2}}{w_{1} + w_{2}} \right), \; \breve{\Phi}(w_{1}) + \breve{\Phi}(w_{2}) = \Phi(w_{1}) + \Phi(w_{2}) and

    \int_{w_{1}}^{w_{2}}\frac{\breve{\Phi}(w)}{w^{2}}dw = \int_{w_{1}}^{w_{2}}\frac{\Phi(w)}{w^{2}}dw

    Therefore, by substituting these values in (2.12), we get (1.6).

    Similarly, we can prove (1.7) for symmetrized harmonic convex function \Phi .

    Corollary 2.9. Assume that function \Phi:\boldsymbol{I}\subset \mathbb{R}/\{0\} \rightarrow \mathbb{C} is symmetrized harmonic convex, integrable on \boldsymbol{I} and \Psi is non-negative integrable function that satisfies condition (1.8), then we have (1.7).

    Theorem 2.10. Assume that function \Phi:[w_{1}, w_{2}]\subset \mathbb{R}/\{0\} \rightarrow \mathbb{C} is symmetrized harmonic convex on [w_{1}, w_{2}] , then for any w \in [w_{1}, w_{2}] we have bounds

    \begin{equation} \Phi\left(\frac{2w_{1} w_{2}}{w_{1} + w_{2}} \right) \leq \breve{\Phi}(w) \leq \frac{\Phi(w_{1}) + \Phi(w_{2})}{2}. \end{equation} (2.13)

    Proof. Since, \breve{\Phi} is harmonic convex on [w_{1}, w_{2}] , then for any w \in [w_{1}, w_{2}] we have

    \breve{\Phi} \left(\frac{2w_{1} w_{2}}{w_{1} + w_{2}} \right) \leq \frac{\breve \Phi(w) + \breve \phi ( \frac{w_{1} w_{2} t}{(w_{1} + w_{2})t - w_{1} w_{2}} ) }{2}

    and simple calculations shows that \breve{\Phi} \left(\frac{2w_{1} w_{2}}{w_{1} + w_{2}} \right) = \Phi \left(\frac{2w_{1} w_{2}}{w_{1} + w_{2}} \right), \; \breve \Phi(w) = \Phi(w) and

    \breve \Phi ( \frac{w_{1} w_{2} t}{(w_{1} + w_{2})t - w_{1} w_{2}} ) = \Phi ( \frac{w_{1} w_{2} t}{(w_{1} + w_{2})t - w_{1} w_{2}} ),

    we get first inequality in (2.13).

    Also, by the harmonic convexity of \breve{f} on [w_{1}, w_{2}] , we have

    \begin{eqnarray*} \breve{\Phi}(w)&\leq& \frac{w_{2}(w_{1} - w)}{w(w_{1} - w_{2})} \breve{\Phi}(w_{1}) + \frac{w_{1}(w - w_{2})}{w(w_{1} - w_{2})} \breve{\Phi}(w_{2})\\ & = & \frac{w_{2}(w_{1} - w)}{w(w_{1} - w_{2})} \frac{\Phi(w_{1}) + \Phi(w_{2})}{2} + \frac{w_{1}(w - w_{2})}{w(w_{1} - w_{2})} \frac{\Phi(w_{1}) + \Phi(w_{2})}{2}\\ & = & \frac{\Phi(w_{1}) + \Phi(w_{2})}{2}, \end{eqnarray*}

    which gives second inequality in (2.13).

    More precisely,

    Corollary 2.11. Assume that function \Phi:[w_{1}, w_{2}]\subset \mathbb{R}/\{0\} \rightarrow \mathbb{C} is symmetrized harmonic convex on [w_{1}, w_{2}] , then for any w \in[w_{1}, w_{2}] we have

    \inf\limits_{w \in [w_{1},w_{2}]} \breve{\Phi}(w) = \breve{\Phi}\left(\frac{2w_{1} w_{2}}{w_{1} + w_{2}} \right) = \Phi \left(\frac{2w_{1} w_{2}}{w_{1} + w_{2}} \right),

    and

    \sup\limits_{w \in [w_{1},w_{2}]} \breve{\Phi}(w) = \breve{\Phi}(w_{1}) = \breve{\Phi}(w_{2}) = \frac{\Phi(w_{1}) + \Phi(w_{2})}{2}.

    Next, we obtain some new discrete inequalities for univariate harmonic convex functions that can be seen as counterparts of Baloch's et al. result in Theorem 1.10.

    Theorem 2.12. Let [m, M] \subseteq (0, \infty) be an interval. If \Phi: [m, M] \rightarrow \mathbb{R} is harmonic convex function, then for any finite sequence (w_{k})_{k = 1}^{n}\in [m, M] and a_{k} \in [0, 1] with \sum_{k = 1}^{n} a_{k} = 1 , we have

    \begin{eqnarray} &{}&\Phi\left( \frac{1}{\frac{1}{m} + \frac{1}{M} - \sum _{k = 1}^{n}\frac{a_{k}}{w_{k}}}\right)\\ &\geq& \Phi\left( \frac{1}{\frac{1}{m} + \frac{1}{M} - \sum _{k = 1}^{n}\frac{a_{k}}{w_{k}}}\right) - \min\limits_{1 \leq k \leq n}\{a_{k}\}\;\; [\sum\limits_{k = 1}^{n} \Phi(w_{k}) - n \Phi (\frac{1}{\frac{1}{n}\sum _{k = 1}^{n}\frac{1}{w_{k}}} ) ]\\ &\geq& \Phi\left( \frac{1}{\frac{1}{m} + \frac{1}{M} - \sum _{k = 1}^{n}\frac{a_{k}}{w_{k}}}\right) - [\sum\limits_{k = 1}^{n} a_{k} \Phi(w_{k}) - \Phi (\frac{1}{\sum _{k = 1}^{n}\frac{a_{k}}{w_{k}}} ) ]\\ &\geq& 2 \Phi (\frac{2mM}{m + M} ) - \sum\limits_{k = 1}^{n} a_{k} \Phi(w_{k}). \end{eqnarray} (2.14)

    Proof. Since, \frac{1}{\frac{1}{m} + \frac{1}{M} - \sum_{k = 1}^{n}\frac{a_{k}}{w_{k}}}, \frac{2mM}{m + M} \in [m, M] , then by the harmonic convexity of \Phi on [m, M] , we have

    \begin{eqnarray} &{}&\frac{1}{2} [ \Phi\left( \frac{1}{\frac{1}{m} + \frac{1}{M} - \sum _{k = 1}^{n}\frac{a_{k}}{\Phi_{k}}}\right) + \Phi\left( \frac{1}{ \sum _{k = 1}^{n}\frac{a_{k}}{w_{k}}}\right) ]\\ &\geq& \Phi\left( \frac{1}{\frac{1}{2} [\frac{1}{m} + \frac{1}{M} - \sum _{k = 1}^{n}\frac{a_{k}}{w_{k}} + \sum _{k = 1}^{n}\frac{a_{k}}{w_{k}} ]}\right)\\ & = & \Phi (\frac{2mM}{m + M} ). \end{eqnarray} (2.15)

    Equivalently

    \begin{equation} \Phi\left( \frac{1}{\frac{1}{m} + \frac{1}{M} - \sum _{k = 1}^{n}\frac{a_{k}}{w_{k}}}\right) + \Phi\left( \frac{1}{ \sum _{k = 1}^{n}\frac{a_{k}}{w_{k}}}\right) \geq 2 \Phi (\frac{2mM}{m + M} ). \end{equation} (2.16)

    By subtracting in both sides of (2.16)the same quantity \sum_{k = 1}^{n} a_{k} \Phi(w_{k}), we get

    \begin{eqnarray} &{}&\Phi\left( \frac{1}{\frac{1}{m} + \frac{1}{M} - \sum _{k = 1}^{n}\frac{a_{k}}{w_{k}}}\right) - [\sum\limits_{k = 1}^{n} a_{k} \Phi(w_{k}) - \Phi\left( \frac{1}{ \sum _{k = 1}^{n}\frac{a_{k}}{w_{k}}}\right) ]\\ &\geq& 2 \Phi (\frac{2mM}{m + M} ) - \sum\limits_{k = 1}^{n} a_{k} \Phi(w_{k}). \end{eqnarray} (2.17)

    By using first inequality in (1.8), we get

    - [ \sum\limits_{k = 1}^{n} a_{k} \Phi(w_{k}) - \Phi (\frac{1}{\sum\limits_{k = 1}^{n}\frac{a_{k}}{w_{k}}} ) ]
    \leq - \min\limits_{1 \leq k \leq n}\{a_{k}\}\;\; [ \sum\limits_{k = 1}^{n} \Phi(w_{k}) - n \Phi (\frac{1}{\frac{1}{n}\sum _{k = 1}^{n}\frac{1}{w_{k}}} ) ],

    which implies

    \begin{eqnarray} &{}&\left( \frac{1}{\frac{1}{m} + \frac{1}{M} - \sum _{k = 1}^{n}\frac{a_{k}}{w_{k}}}\right) - [ \sum\limits_{k = 1}^{n} a_{k} \Phi(w_{k}) - \Phi (\frac{1}{\sum _{k = 1}^{n}\frac{a_{k}}{w_{k}}} ) ]\\ &\leq& \left( \frac{1}{\frac{1}{m} + \frac{1}{M} - \sum _{k = 1}^{n}\frac{a_{k}}{w_{k}}}\right) - \min\limits_{1 \leq k \leq n}\{a_{k}\}\;\; [ \sum\limits_{k = 1}^{n} \Phi(w_{k}) - n \Phi (\frac{1}{\frac{1}{n}\sum _{k = 1}^{n}\frac{1}{w_{k}}} ) ]. \end{eqnarray} (2.18)

    By making the use of inequalities (2.17) and (2.18), we get second and third inequalities in (2.14).

    Corollary 2.13. With the assumptions of Theorem 2.1, we have

    \begin{eqnarray} &{}&\frac{1}{2} [\Phi\left( \frac{1}{\frac{1}{m} + \frac{1}{M} - \sum _{k = 1}^{n}\frac{a_{k}}{w_{k}}}\right) + \sum\limits_{k = 1}^{n} a_{k} \Phi(w_{k}) ] - \Phi (\frac{2mM}{m + M} )\\ &\geq& \frac{1}{2} [\sum\limits_{k = 1}^{n} a_{k} \Phi(w_{k}) - \Phi (\frac{1}{\sum _{k = 1}^{n}\frac{a_{k}}{w_{k}}} ) ] - \frac{1}{2} \min\limits_{1 \leq k \leq n}\{a_{k}\}\;\; [\sum\limits_{k = 1}^{n} \Phi(w_{k}) - n \Phi (\frac{1}{\frac{1}{n}\sum _{k = 1}^{n}\frac{1}{w_{k}}} ) ] \\ &\geq&0, \end{eqnarray} (2.19)

    for all (w_{k})_{k = 1}^{n}\in [m, M] and a_{k} \in [0, 1] with \sum_{k = 1}^{n} a_{k} = 1.

    Throughout this section, l(\lambda) and L(\lambda) are same as in Theorem 2.1.

    Consider the harmonic convex function \Phi:[w_{1}, w_{2}] \subset (0, \infty) \rightarrow \mathbb{R} , \Phi(w) = w , , then by using (2.1) we get

    \begin{eqnarray} \frac{2w_{1} w_{2}}{w_{1} + w_{2}} \leq l(\lambda) \leq \frac{w_{1}w_{2}}{w_{2} - w_{1}} (\ln w_{2} - \ln w_{1}) \leq L(\lambda) \leq \frac{w_{1} + w_{2}}{2}, \end{eqnarray} (3.1)

    the inequality (3.1) is a refinement of inequality presented in [31].

    For harmonic convex function \Phi:[w_{1}, w_{2}] \subset (0, \infty) \rightarrow \mathbb{R} , \Phi(w) = \ln w , using (2.1) we get

    \begin{eqnarray} \frac{2w_{1} w_{2}}{w_{1} + w_{2}} \leq \exp (l(\lambda)) \leq e ( \frac{w_{1}^{w_{2}}}{w_{2}^{w_{1}}} )^{\frac{1}{w_{2} - w_{1}}} \leq \exp (L(\lambda)) \leq \sqrt{w_{1} w_{2}}, \end{eqnarray} (3.2)

    the inequality (3.2) is a refinement of inequality presented in [31].

    For harmonic convex function \Phi:[w_{1}, w_{2}] \subset (0, \infty) \rightarrow \mathbb{R} , \Phi(w) = e^{w} , using (2.1) we get

    \begin{eqnarray} e^{\frac{2w_{1} w_{2}}{w_{1} + w_{2}}} \leq l(\lambda) \leq \frac{w_{1} w_{2}}{w_{2} - w_{1}} \int_{w_{1}}^{w_{2}}\frac{e^{w}}{w^{2}}dw \leq L(\lambda) \leq \frac{e^{w_{1}} + e^{w_{2}}}{2}, \end{eqnarray} (3.3)

    the inequality (3.3) is a refinement of inequality presented in [31].

    For harmonic convex function \Phi:[w_{1}, w_{2}] \subset (0, \infty) \rightarrow \mathbb{R} , \Phi(w) = w^{2}e^{w^{2}} , using (2.1) we get

    \begin{eqnarray} (\frac{2w_{1} w_{2}}{w_{1} + w_{2}} )^{2} e^{(\frac{2w_{1} w_{2}}{w_{1} + w_{2}})^{2}} \leq l(\lambda) \leq \frac{w_{1} w_{2}}{w_{2} - w_{1}} \int_{w_{1}}^{w_{2}} e^{w^{2}}dw \leq L(\lambda) \leq \frac{w_{1}^{2}e^{w_{1}^{2}} + w_{2}^{2}e^{w_{2}^{2}}}{2}, \end{eqnarray} (3.4)

    the inequality (3.4) is a refinement of inequality presented in [31].

    Now by considering the harmonic convex function \Phi:[m, M] \subset (0, \infty) \rightarrow \mathbb{R} , \Phi(w) = \ln w , w_{k} \in [m, M] , a_{k} \geq 0 , for k \in \{1, ..., n\} and such that \sum_{k = 1}^{n} a_{k} = 1 . Then by using (2.19) we get

    \begin{eqnarray} &{}&\frac{1}{2} [\ln \left( \frac{1}{\frac{1}{m} + \frac{1}{M} - \sum _{k = 1}^{n}\frac{a_{k}}{w_{k}}}\right) + \sum\limits_{k = 1}^{n} a_{k} \ln (w_{k}) ] - \ln (\frac{2mM}{m + M} )\\ &\geq& \frac{1}{2} [\sum\limits_{k = 1}^{n} a_{k} \ln (w_{k}) - \ln (\frac{1}{\sum _{k = 1}^{n}\frac{a_{k}}{w_{k}}} ) ] - \frac{1}{2} \min\limits_{1 \leq k \leq n}\{a_{k}\}\;\; [\sum\limits_{k = 1}^{n} \ln (w_{k}) - n \ln (\frac{1}{\frac{1}{n}\sum _{k = 1}^{n}\frac{1}{w_{k}}} ) ] \\ &\geq&0, \end{eqnarray} (3.5)

    which is equivalent to

    \begin{equation} ( \frac{\prod _{k = 1}^{n} w_{k}^{a_{k}}}{\frac{1}{m} + \frac{1}{M} - \sum _{k = 1}^{n} \frac{a_{k}}{w_{k}}} )^{\frac{1}{2}} ( \frac{m + M}{2mM} ) \end{equation} (3.6)
    \geq ( \frac{ (\prod _{k = 1}^{n} w_{k}^{a_{k}} ) (\sum _{k = 1}^{n} \frac{a_{k}}{w_{k}} )}{ [ (\prod _{k = 1}^{n} w_{k} ) ( \frac{1}{n}\sum _{k + 1}^{n}\frac{1}{w_{k}} )^{n} ]^{\min\limits_{1 \leq k \leq n}\{a_{k}\}}} )^{\frac{1}{2}} \geq 1

    Now, we consider the harmonic convex function \Phi:[m, M] \subset (0, \infty) \rightarrow \mathbb{R} , \Phi(w) = w , w_{k} \in [m, M] , a_{k} = \frac{1}{n} , for k \in \{1, ..., n\} . Then by using (2.19) and (1.7), we get

    \begin{equation} \frac{1}{2} [ \left( \frac{1}{\frac{1}{m} + \frac{1}{M} - \frac{1}{n}\sum _{k = 1}^{n}\frac{1}{w_{k}}}\right) + \frac{1}{n}\sum\limits_{k = 1}^{n} w_{k} ] \geq \frac{2mM}{m + M}, \end{equation} (3.7)

    and

    \begin{equation} \frac{1}{2} [ \left( \frac{1}{\frac{1}{m} + \frac{1}{M} - \frac{1}{n}\sum _{k = 1}^{n}\frac{1}{w_{k}}}\right) + \frac{1}{n}\sum\limits_{k = 1}^{n} w_{k} ] \leq \frac{m + M}{2}. \end{equation} (3.8)

    From (3.7) and (3.8), we get

    \begin{equation} \frac{2mM}{m + M} \leq \frac{1}{2} [ \left( \frac{1}{\frac{1}{m} + \frac{1}{M} - \frac{1}{n}\sum _{k = 1}^{n}\frac{1}{w_{k}}}\right) + \frac{1}{n}\sum\limits_{k = 1}^{n} w_{k} ] \leq \frac{m + M}{2}, \end{equation} (3.9)

    and hence, using (3.9), we get another improvement of inequality (2.2) presented by Baloch et al. in [33] as follow:

    \begin{eqnarray} (\frac{2mM}{m + M} )^{2} &\leq& \frac{1}{4} [ \left( \frac{1}{\frac{1}{m} + \frac{1}{M} - \frac{1}{n}\sum _{k = 1}^{n}\frac{1}{w_{k}}}\right) + \frac{1}{n}\sum\limits_{k = 1}^{n} w_{k} ]^{2}\\ &\leq& (\frac{m + M}{2} )^{2} \\ &\leq& \frac{1}{3}(m^{2} + m M + M^{2})\\ &\leq& \frac{m^{2} + M^{2}}{2}. \end{eqnarray} (3.10)

    We presented refinements of Hermite-Hadamard type and Fej \acute{e} r types inequalities. Further, we generalized Hermite-Hadamard type and Fej \acute{e} r types inequalities for a class which is not harmonic convex and next we gave bounds for functions of this new class. Moreover, we discussed the importance of this class by giving lot of applications in the theory of inequalities. Our techniques and results are new in the field of mathematics for the class of harmonic convex functions and believe that it will be source of motivation for further research.

    The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.

    The authors A. Mukheimer and T. Abdeljawad would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Method in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17. The work was also supported by the Higher Education Commission of Pakistan.

    The authors declare no conflict of interest.

    Imran Abbas Baloch provided the main idea, carried out the proof of Theorems 2.1, 2.4, 2.8, 2.10, 2.12 and presented related Corollaries with applications. Thabet Abdeljawad, Aiman Mukheimer, Deeba Afzal and Aqeel Ahmad Mughal reviewed whole mathematics of article, completed the final revision of the article. All authors read and approved the final manuscript.



    [1] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalits entre les valeurs moyennes, Acta Math., 30 (1906), 175–193. doi: 10.1007/BF02418571
    [2] S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Aust. Math. Soc., 74 (2006), 471–478. doi: 10.1017/S000497270004051X
    [3] L. Horvath, K. A. Khan, J. Pecaric, Cyclic refinements of the discrete and integral form of Jensen's inequality with applications, Analysis, 36 (2016), 253–262.
    [4] L. Horvath, D. Pecaric, J. Pecaric, Estimations of f-and Renyi divergences by using a cyclic refinement of the Jensen's inequality, Bull. Malays. Math. Sci. Soc., 42 (2019), 933–946. doi: 10.1007/s40840-017-0526-4
    [5] J. Jaksetic, D. Pecaric, J. Pecaric, Some properties of Zipf-Mandelbrot law and Hurwitz-function, Math. Inequal. Appl., 21 (2018), 575–584.
    [6] J. Jaksetic, J. Pecaric, Exponential convexity method, J. Convex Anal., 20 (2013), 181–197.
    [7] C. Niculescu, L. E. Persson, Convex functions and their applications, New York: Springer-Verlag, 2006.
    [8] J. E. Pecaric, F. Proschan, Y. L. Tong, Convex functions, partial orderings and statistical applications, New York: Academic Press, 1992.
    [9] S. Varošanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311.
    [10] İ. İşcan, Hermite-Hadamard type inequaities for harmonically functions, Hacet. J. Math. Stat., 43 (2014), 935–942.
    [11] İ. İşcan, Hermite-Hamard type inequalities for harmonically (\alpha, m)-convex functions, 2015. Avaliable from: https://arXiv.org/pdf/1307.5402v3.
    [12] I. A. Baloch, I. Işcan, S. S. Dragomir, Fej\acute{e}r's type inequalities for harmonically (s, m)-convex functions, Int. J. Anal. Appl., 12 (2016), 188–197.
    [13] I. A. Baloch, I. Işcan, Some Ostrowski type inequalities for harmonically (s, m)-convex functions in Second Sense, Int. J. Anal., 2015 (2015), 672675.
    [14] I. A. Baloch, I. Işcan, Some Hermite-Hadamard type integral inequalities for Harmonically (p, (s, m))-convex functions, J. Inequal. Spec. Funct., 8 (2017), 65–84.
    [15] M. U. Awan, N. Akhtar, S. Iftikhar, M. A. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 125. doi: 10.1186/s13660-020-02393-x
    [16] I. A. Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 3075390.
    [17] T. Abdeljawad, S. Rashid, Z. Hammouch, Y. M. Chu, Some new local fractional inequalities associated with generalized (s, m)-convex functions and applications, Adv. Differ. Equ., 2020 (2020), 406. doi: 10.1186/s13662-020-02865-w
    [18] I. A. Baloch, I. Işcan, Integral inequalities for differentiable harmonically (s, m)-preinvex functions, Open J. Math. Anal., 1 (2017), 25–33.
    [19] I. A. Baloch, S. S. Dragomir, New inequalities based on harmonic log-convex functions, Open J. Math. Anal., 3 (2019), 103–105. doi: 10.30538/psrp-oma2019.0043
    [20] X. Z. Yang, G. Farid, W. Nazeer, M. Yussouf, Y. M. Chu, C. F. Dong, Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex function, AIMS Mathematics., 5 (2020), 6325–6340. doi: 10.3934/math.2020407
    [21] S. H. Wu, I. A. Baloch, I. Iscan, On Harmonically (p, h, m)-preinvex functions, J. Funct. Space., 2017 (2017), 2148529.
    [22] I. A. Baloch, New ostrowski type inequalities for functions whose derivatives are p-preinvex, J. New Theory, 16 (2017), 68–79.
    [23] I. A. Baloch, M. Bohner, M. D. L. Sen, Petrovic-type inequalities for harmonic convex functions on coordinates, J. Inequal. Spec. Funct., 11 (2020), 16–23.
    [24] S. Y. Guo, Y. M. Chu, G. Farid, S. Mehmood, W. Nazeer, Fractional Hadamard and Fejér-Hadamard inequaities associated with exponentially (s, m)-convex functions, J. Funct. Space., 2020 (2020), 2410385.
    [25] M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, A. G. Khan, Some new bounds for Simpson's rule involving special functions via harmonic h-convexity, J. Nonlinear Sci. Appl., 10 (2017), 1755–1766. doi: 10.22436/jnsa.010.04.37
    [26] M. R. Delavar, S. S. Dragomir, M. De La Sen, A note on characterization of h-convex functions via Hermite-Hadamard type inequality, Probl. Anal. Issues Anal., 8 (2019), 28–36.
    [27] I. A. Baloch, B. R. Ali, On new inequalities of Hermite-Hadamard type for functions whose fourth derivative absolute values are quasi-convex with applications, J. New Theory, 10 (2016), 76–85.
    [28] M. B. Khan, P. O. Mohammed, M. A. Noor, Y. S. Hamed, New Hermit Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities, Symmetry, 13 (2021), 673. doi: 10.3390/sym13040673
    [29] M. A. Alqudah, A. Kashuri, P. O. Mohammed, T. Abdeljawad, M. Raees, M. Anwar, et al., Hermite Hadamard integral inequalities on coordinated convex functions in quantum calculus, Adv. Differ. Equ., 2021 (2021), 264. doi: 10.1186/s13662-021-03420-x
    [30] F. Al-Azemi, O. Calin, Asian options with harmonic average, Appl. Math. Inf. Sci., 9 (2015), 1–9.
    [31] I. A. Baloch, M. De La Sen, İ. İşcan, Characterizations of classes of harmonic convex functions and applications, Int. J. Anal. Appl., 17 (2019), 722–733.
    [32] F. X. Chen, S. H. Wu, Fej\acute{e}r and Hermite-Hadamard type inequalities for harmonically convex functions, J. Appl. Math., 2014 (2014), 386806.
    [33] I. A. Baloch, A. H. Mughal, Y. M. Chu, A. U. Haq, M. De la Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, AIMS Mathematics, 5 (2020), 6404–6418. doi: 10.3934/math.2020412
    [34] I. A. Baloch, A. A. Mughal, Y. M. Chu, A. U. Haq, M. D. L. Sen, Improvement and generalization of some results related to the class of harmonically convex functions and applications, J. Math. Comput. Sci., 22 (2021), 282–294.
    [35] S. S. Dragomir, Inequalities of Jensen type for HA-convex functions, Analele Universitatii Oradea Fasc. Matematica, 27 (2020), 103–124.
    [36] A. A. Mughal, H. Almusawa, A. U. Haq, I. A. Baloch, Properties and bound of functionals related to Jensen-type inequalities via harmonic convex functions, In press.
  • This article has been cited by:

    1. Imran Abbas Baloch, Aqeel Ahmad Mughal, Absar Ul Haq, Kamsing Nonlaopon, Some Inequalities Related to Jensen-Type Results with Applications, 2022, 14, 2073-8994, 1585, 10.3390/sym14081585
    2. Imran Abbas Baloch, Thabet Abdeljawad, Sidra Bibi, Aiman Mukheimer, Ghulam Farid, Absar Ul Haq, Some new Caputo fractional derivative inequalities for exponentially (\theta, h-m) –convex functions, 2022, 7, 2473-6988, 3006, 10.3934/math.2022166
    3. Gunaseelan Mani, Arul Joseph Gnanaprakasam, Absar Ul Haq, Imran Abbas Baloch, Choonkil Park, On solution of Fredholm integral equations via fuzzy b -metric spaces using triangular property, 2022, 7, 2473-6988, 11102, 10.3934/math.2022620
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2709) PDF downloads(121) Cited by(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog