A comprehensive study on the (2+1)-dimensional hyperbolic nonlinear Schrödinger (2D-HNLS) equation describing the propagation of electromagnetic fields in self-focusing and normally dispersive planar wave guides in optics is conducted in the current paper. To this end, after reducing the 2D-HNLS equation to a one-dimensional nonlinear ordinary differential (1D-NLOD) equation in the real regime using a traveling wave transformation, its optical solitons are formally obtained through a group of well-established methods such as the exponential and Kudryashov methods. Some graphical representations regarding optical solitons that are categorized as bright and dark solitons are considered to clarify the dynamics of the obtained solutions. It is noted that some of optical solitons retrieved in the current study are new and have been not retrieved previously.
Citation: Dumitru Baleanu, Kamyar Hosseini, Soheil Salahshour, Khadijeh Sadri, Mohammad Mirzazadeh, Choonkil Park, Ali Ahmadian. The (2+1)-dimensional hyperbolic nonlinear Schrödinger equation and its optical solitons[J]. AIMS Mathematics, 2021, 6(9): 9568-9581. doi: 10.3934/math.2021556
[1] | Xue Han, Tingting Wang . The hybrid power mean of the generalized Gauss sums and the generalized two-term exponential sums. AIMS Mathematics, 2024, 9(2): 3722-3739. doi: 10.3934/math.2024183 |
[2] | Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638 |
[3] | Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937 |
[4] | Wenpeng Zhang, Yuanyuan Meng . On the sixth power mean of one kind two-term exponential sums weighted by Legendre's symbol modulo p. AIMS Mathematics, 2021, 6(7): 6961-6974. doi: 10.3934/math.2021408 |
[5] | Jin Zhang, Wenpeng Zhang . A certain two-term exponential sum and its fourth power means. AIMS Mathematics, 2020, 5(6): 7500-7509. doi: 10.3934/math.2020480 |
[6] | Xiaoxue Li, Wenpeng Zhang . A note on the hybrid power mean involving the cubic Gauss sums and Kloosterman sums. AIMS Mathematics, 2022, 7(9): 16102-16111. doi: 10.3934/math.2022881 |
[7] | Wenpeng Zhang, Yuanyuan Meng . On the fourth power mean of one special two-term exponential sums. AIMS Mathematics, 2023, 8(4): 8650-8660. doi: 10.3934/math.2023434 |
[8] | Junfeng Cui, Li Wang . The generalized Kloosterman's sums and its fourth power mean. AIMS Mathematics, 2023, 8(11): 26590-26599. doi: 10.3934/math.20231359 |
[9] | Xiaoge Liu, Yuanyuan Meng . On the k-th power mean of one kind generalized cubic Gauss sums. AIMS Mathematics, 2023, 8(9): 21463-21471. doi: 10.3934/math.20231093 |
[10] | Xuan Wang, Li Wang, Guohui Chen . The fourth power mean of the generalized quadratic Gauss sums associated with some Dirichlet characters. AIMS Mathematics, 2024, 9(7): 17774-17783. doi: 10.3934/math.2024864 |
A comprehensive study on the (2+1)-dimensional hyperbolic nonlinear Schrödinger (2D-HNLS) equation describing the propagation of electromagnetic fields in self-focusing and normally dispersive planar wave guides in optics is conducted in the current paper. To this end, after reducing the 2D-HNLS equation to a one-dimensional nonlinear ordinary differential (1D-NLOD) equation in the real regime using a traveling wave transformation, its optical solitons are formally obtained through a group of well-established methods such as the exponential and Kudryashov methods. Some graphical representations regarding optical solitons that are categorized as bright and dark solitons are considered to clarify the dynamics of the obtained solutions. It is noted that some of optical solitons retrieved in the current study are new and have been not retrieved previously.
Let q,m,n∈Z+ with q>2 and m>n≥1. For any u,v∈Z, we are concerned with the two-term exponential sums
G(u,v,m,n;q)=q∑j=1eq(ujm+vjn), |
where eq(x)=exp(2πix/q) and i2=−1.
For convenience, the following letters and symbols are commonly used in this paper and should be interpreted in the following sense unless otherwise stated.
● χ is Dirichlet character.
● χk is k-order Dirichlet character.
● ϕ(a) is Euler function.
● α is uniquely determined by 4p=α2+27β2 and α≡1mod3.
● τ(χ) is Gauss sums defined by
τ(χ)=q∑s=1χ(s)eq(s). |
The mean value calculation and upper bound estimation of exponential sums has always been a classical problem in analytic number theory. As a special kind of exponential sums, Gauss sums have had an important effect on both cryptography and analytic number theory. Analytic number theory and cryptography will benefit greatly from any significant advancements made in this area. In this paper, we will estimate and calculate the fourth power mean value of two-term exponential sums weighted by a character χ3. In this field, many scholars have investigated the results of G(u,v,m,n;q) in various forms, and obtained many meaningful results, see [3,5,7,8,11,15]. For instance, Zhang and Zhang [9] obtained the power mean about G(u,v,3,1;p)
p−1∑u=1|p∑i=1ep(ui3+vi)|4={2p3−p2 if3∤p−1,2p3−7p2 if3∣p−1, |
where p is an odd prime and v is not divisible by p.
Wang and Zhang [6] obtained the eighth power mean of G(u,v,3,1;p)
p−1∑u=1|p∑i=1ep(ui3+vi)|8={7(2p5−3p4)if6∣p−5,14p5−75p4−8p3α2if6∣p−1. |
In addition, Zhang and Han [12] shown the power mean of G(1,v,3,1;p)
p−1∑v=1|p∑i=1ep(i3+vi)|6=5p4−8p3−p2, | (1.1) |
where p is an odd prime with 3∤ϕ(p).
But if 3∣ϕ(p), whether there exists an exact formula for (1.1). Consider the mean of the simplest
p−1∑v=1|p∑i=1ep(i3+vi)|4. | (1.2) |
It is worth mentioning that, Zhang and Zhang [10] studied the power mean of the exponential sums weight by χ2, one has the identities
p−1∑u=1χ2(u)|p∑i=1ep(ui3+i)|4={p2(ζ+3)if6∣p−5,p2(ζ−3)if6∣p−1, |
where ζ=∑p−1t=1(t−1+¯tp) with ζ∈Z satisfies inequality |ζ|≤2√p.
Cao and Wang (see Lemma 3 in [2]) proved the following conclusion, that is, if p is a prime with 3∣ϕ(p), then for any χ3modp, one has the identity
p−1∑u=1χ3(u)(p∑i=1ep(ui3+i))4=(¯χ3(3)−3p−¯χ3(3)p)τ2(¯χ3)−αpτ(χ3). |
Unfortunately, this lemma is incorrect, there is a calculation error in it. It is precisely because of the computational error in this lemma that the main result in the whole text is wrong.
The following year, Zhang and Meng [16] studied the power mean of G(u,1,3,1;p) weighted by χ2. In this paper, We intend to correct the error in [2] and give a correct conclusion. At the same time, as an application, we give an exact result for (1.2). That is, it will prove these two conclusions:
Theorem 1. If p is a prime with 3∣ϕ(p), then we have
p−1∑u=1χ3(u)|p∑i=1ep(ui3+i)|4=−αpτ(χ3)−3p⋅τ2(¯χ3). |
Theorem 2. If p is a prime with 3∣ϕ(p), then we have
p−1∑v=1|p∑i=1ep(i3+vi)|4=2p3−p2−3pA2k−pαAk, |
where Ak=ωk[αp2+((αp2)2−p3)12]13+ω−k[αp2−((αp2)2−p3)12]13, k=1,2 or 3 is dependent on p, and ω=−1+√3i2.
Corollary 1. If p is a prime with 3∣ϕ(p), then we have the asymptotic formula
p−1∑v=1|p∑i=1ep(i3+vi)|4=2p3+O(p2). |
Corollary 2. If p is a prime with 3∣ϕ(p), then for any integer l, we have recursive formula
Vl(p)=p−1∑u=1ϑl(u)|p∑j=1ep(uj3+j)|4=αpp−1∑u=1ϑl−3(u)|p∑j=1ep(uj3+j)|4+3pp−1∑u=1ϑl−2(u)|p∑j=1ep(uj3+j)|4=αpVl−3(p)+3pVl−2(p), |
when l take 1–3, the following equations hold
V1(p)=p−1∑u=1ϑ(u)|p∑j=1ep(uj3+j)|4=−5αp2,V2(p)=p−1∑u=1ϑ2(u)|p∑j=1ep(uj3+j)|4=4p4−20p3−α2p2,V3(p)=p−1∑u=1ϑ3(u)|p∑j=1ep(uj3+j)|4=2αp4−22αp3, |
where ϑ(u)=p∑i=1ep(ui3).
In fact, with the third-order linear recursive formula in Corollary 2 and its three initial values V1(p), V2(p) and V3(p), we can easily give the general term formula for the sequence {Vl(p)}.
Corollary 3. If p is a prime with 3∣ϕ(p), then we have
p−1∑u=1|p∑j=1ep(uj3+j)p∑i=1ep(ui3)|4=54p3α4−p2α2−27p2α4+2pα2−1. |
Before starting our proofs of main results, we present the proofs of several key equations in preparation for the next chapter. The properties of Gauss sums and reduced (complete) residue systems are used repeatedly in the proof. In addition, we will refer to the basic contents of number theory in references [1] and [14].
Lemma 1. If p is a prime with 3∣ϕ(p), then
τ3(χ3)+τ3(¯χ3)=αp. | (2.1) |
Proof. This is consequence of [4] or [13], herein we omit it.
Lemma 2. If p is a prime with 3∣ϕ(p), then
p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−s3−1)=p(α−3)+3τ3(¯χ3). |
Proof. Recall that τ(χ3)⋅τ(¯χ3)=p and (2.1), we have
p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−s3−1)=1τ(χ3)p−1∑t=1χ3(t)p∑i=1p∑j=1p∑s=1ep(t(i3+j3−s3−1))=1τ(χ3)p−1∑t=1χ3(t)ep(−t)(p∑i=1ep(it3))2(p∑s=1ep(−st3))=1τ(χ3)p−1∑t=1χ3(t)ep(−t)(1+p−1∑i=1(1+χ3(i)+¯χ3(i))ep(it))3=1τ(χ3)p−1∑t=1χ3(t)ep(−t)(¯χ3(t)⋅τ(χ3)+χ3(t)⋅τ(¯χ3))3=1τ(χ3)p−1∑t=1χ3(t)ep(−t)[τ3(χ3)+τ3(¯χ3)+3p(¯χ3(t)⋅τ(χ3)+χ3(t)⋅τ(¯χ3))]=αp+3pτ(χ3)⋅τ(χ3)⋅p−1∑t=1ep(−t)+3pτ(χ3)⋅τ(¯χ3)⋅p−1∑t=1χ23(t)ep(−t)=p(α−3)+3p⋅τ2(¯χ3)τ(χ3)=p(α−3)+3τ3(¯χ3). |
This completes the proof.
Lemma 3. If p is a prime with 3∣ϕ(p), then
τ(¯χ3χ2)=¯χ3(2)⋅τ2(χ3)⋅τ(χ2)p. |
Proof. Recall that τ(χ3)⋅τ(¯χ3)=p, we obtain
p∑i=1χ3(i2−1)=p∑i=1χ3(i2+2i)=1τ(¯χ3)p−1∑j=1¯χ3(j)p−1∑i=1χ3(i)ep(j(i+2))=τ(χ3)τ(¯χ3)p−1∑j=1χ3(j)ep(2j)=¯χ3(2)⋅τ2(χ3)τ(¯χ3)=¯χ3(2)⋅τ3(χ3)p. | (2.2) |
From another perspective, we have
p∑i=1χ3(i2−1)=1τ(¯χ3)p−1∑j=1¯χ3(j)p∑i=1ep(j(i2−1))=1τ(¯χ3)p−1∑j=1¯χ3(j)ep(−j)p∑i=1ep(i2j)=1τ(¯χ3)p−1∑j=1¯χ3(j)ep(−j)[1+p−1∑i=1(1+χ2(i))ep(ij)]=1τ(¯χ3)p−1∑j=1¯χ3(j)ep(−j)p−1∑i=1χ2(i)ep(ij)=τ(χ2)τ(¯χ3)p−1∑j=1¯χ3χ2(j)ep(−j)=χ2(−1)⋅τ(χ2)⋅τ(¯χ3χ2)τ(¯χ3)=χ2(−1)⋅τ(χ2)⋅τ(¯χ3χ2)⋅τ(χ3)p. | (2.3) |
Combining (2.2) and (2.3), we determine the relationship equation between τ(¯χ3χ2), τ(χ3) and τ(χ2)
τ(¯χ3χ2)=¯χ3(2)⋅τ2(χ3)⋅τ(χ2)p. |
This completes the proof.
Lemma 4. If p is a prime with 3∣ϕ(p), then
p∑i=1p∑j=1p∑s=1i+j−s−1≡0modp¯χ3(i3+j3−s3−1)=−¯χ3(3)⋅τ3(¯χ3)p. |
Proof. Using Lemma 3, we have
p∑i=1p∑j=1p∑s=1i+j−s−1≡0modp¯χ3(i3+j3−s3−1)=p∑i=1p∑j=1p∑s=1i+j≡1modp¯χ3(i3+j3+3j2s+3js2−1)=χ3(4)p∑i=1p∑j=1p∑s=1i+j≡1modp¯χ3(4i3+j3+3j(2s+j)2−4)=χ3(4)τ(χ3)p∑i=1p∑j=1p−1∑t=1i+j≡1modpχ3(t)p∑s=1ep(t(4i3+j3+3js2−4))=χ3(4)τ(χ3)p∑i=1p∑j=1p−1∑t=1i+j≡1modpχ3(t)ep(t(4i3+j3−4))[1+p−1∑s=1(1+χ2(s))ep(3jst)]=χ3(4)τ(χ3)p∑i=1p∑j=1p−1∑t=1i+j≡1modpχ3(t)ep(t(4i3+j3−4))χ2(3jt)τ(χ2)=χ3(4)⋅χ2(3)⋅τ(χ2)τ(χ3)p∑i=1p∑j=1i+j≡1modpχ2(j)τ(χ3χ2)¯χ3χ2(4i3+j3−4)=χ3(4)⋅χ2(3)⋅τ(χ2)⋅τ(χ3χ2)τ(χ3)p∑i=1χ2(1−i)¯χ3χ2(3i3+3i2−3i−3)=¯χ3(6)⋅χ2(−1)⋅τ(χ2)⋅τ(χ3χ2)τ(χ3)p−1∑i=1¯χ3((i+2)2i)=¯χ3(6)⋅χ2(−1)⋅τ(χ2)⋅τ(χ3χ2)τ(χ3)p−1∑i=1¯χ3(i)χ3(i+2)=¯χ3(6)⋅χ2(−1)⋅τ(χ2)⋅τ(χ3χ2)τ(χ3)p−1∑i=1χ3(1+2⋅¯i)=¯χ3(6)⋅χ2(−1)⋅τ(χ2)⋅τ(χ3χ2)τ(χ3)(−1+p∑i=1χ3(i))=−χ2(−1)⋅¯χ3(6)⋅τ(χ2)⋅τ(¯χ3)⋅τ(χ3χ2)p=−¯χ3(3)⋅τ3(¯χ3)p. |
This completes the proof.
Lemma 5. If p is a prime and 3∣ϕ(p), then
p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−s3)ep(i+j−s)=−3p+¯χ3(3)⋅τ3(¯χ3). |
Proof. Note that τ(χ3)⋅τ(¯χ3)=p and ¯χ3(i3)=1 with i is an integer relatively prime to p. Therefore we have
p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−s3)ep(i+j−s)=p∑i=1p∑j=1¯χ3(i3+j3)ep(i+j)+p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−1)ep(s(i+j−1))−p∑i=1p∑j=1¯χ3(i3+j3−1)=p∑i=1¯χ3(i3)ep(i)+p∑i=1p∑j=1¯χ3(i3+1)ep(j(i+1))−p∑i=1¯χ3(i3+1)+pp∑i=1p∑j=1i+j≡1modp¯χ3(i3+j3−1)−1τ(χ3)p−1∑t=1χ3(t)p∑i=1p∑j=1ep(t(i3+j3−1))=p−1∑i=1ep(i)+pp∑i=1i+1≡0modp¯χ3(i3+1)−1−p−1∑i=1(1+χ3(i)+¯χ3(i))¯χ3(i+1)+pp∑i=1p∑j=1i+j≡0modp¯χ3(i3+j3+3j2+3j)−1τ(χ3)p−1∑t=1χ3(t)ep(−t)(p∑i=1ep(it3))2=−1−p∑i=1¯χ3(i+1)−p−1∑i=1χ3(i)¯χ3(i+1)−p−1∑i=1¯χ3(i)¯χ3(i+1)+pp∑j=1¯χ3(3j2+3j)−1τ(χ3)p−1∑t=1χ3(t)ep(−t)[1+p−1∑i=1(1+χ3(i)+¯χ3(i))ep(it)]2=−1−p−1∑i=1¯χ3(1+¯i)−p−1∑i=1¯χ3(i2+i)+p¯χ3(3)p−1∑j=1¯χ3(j2+j)−1τ(χ3)p−1∑t=1χ3(t)ep(−t)(¯χ3(t)τ(χ3)+χ3(t)τ(¯χ3))2=−1τ(χ3)(τ2(χ3)p−1∑t=1¯χ3(t)ep(−t)+τ2(¯χ3)p−1∑t=1ep(−t)+2pp−1∑t=1χ3(t)ep(−t))+(−1+p¯χ3(3))1τ(χ3)p−1∑s=1χ3(s)p−1∑i=1¯χ3(i)ep(s(i+1))=−1τ(χ3)(τ2(χ3)⋅τ(¯χ3)−τ2(¯χ3)+2p⋅τ(χ3))−τ2(¯χ3)τ(χ3)+p⋅¯χ3(3)⋅τ2(¯χ3)τ(χ3)=¯χ3(3)⋅τ3(¯χ3)−3p. |
This proves Lemma 5.
Proof of Theorem 1. Recall that ¯χ3(i3)=1 with (i,p)=1. Hence
p−1∑u=1χ3(u)|p∑i=1ep(ui3+i)|4=p∑i=1p∑j=1p∑s=1p∑t=1p−1∑u=1χ3(u)ep(u(i3+j3−s3−t3)+i+j−s−t)=τ(χ3)p∑i=1p∑j=1p∑s=1p∑t=1¯χ3(i3+j3−s3−t3)ep(i+j−s−t)=τ(χ3)p∑i=1p∑j=1p∑s=1p−1∑t=1¯χ3(i3t3+j3t3−s3t3−t3)ep(it+jt−st−t)+τ(χ3)p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−s3)ep(i+j−s)=τ(χ3)p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−s3−1)p∑t=1ep(t(i+j−s−1))+τ(χ3)p−1∑i=0p∑j=1p∑s=1¯χ3(i3+j3−s3)ep(i+j−s)−τ(χ3)p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−s3−1)=pτ(χ3)p∑i=1p∑j=1p∑s=1i+j−s≡1modp¯χ3(i3+j3−s3−1)−τ(χ3)p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−s3−1)+τ(χ3)p∑i=1p∑j=1p∑s=1¯χ3(i3+j3−s3)ep(i+j−s). |
Applying Lemmas 2, 4 and 5 we obtain
p−1∑u=1χ3(u)|p∑i=1ep(ui3+i)|4=−τ(χ3)⋅¯χ3(3)⋅τ3(¯χ3)−τ(χ3)(p(α−3)+3τ3(¯χ3))+τ(χ3)(¯χ3(3)⋅τ3(¯χ3)−3p)=−αp⋅τ(χ3)−3p⋅τ2(¯χ3). |
Proof of Theorem 2. Based on Theorem 1 and the identities obtained in [9]
p−1∑u=1|p∑i=1ep(ui3+vi)|4={2p3−p2 if3∤p−1,2p3−7p2if3∣p−1. |
We have
p−1∑v=1|p∑i=1ep(i3+vi)|4=p−1∑v=1|p∑i=1ep((¯vi)3+i)|4=p−1∑v=1(1+χ3(v)+¯χ3(v))|p∑i=1ep(vi3+i)|4=p−1∑v=1|p∑i=1ep(vi3+i)|4+p−1∑v=1χ3(v)|p∑i=1ep(vi3+i)|4+p−1∑v=1¯χ3(v)|p∑i=1ep(vi3+i)|4=2p3−7p2−αpτ(χ3)−3p⋅τ2(¯χ3)−αpτ(¯χ3)−3p⋅τ2(χ3)=2p3−p2−3p(τ(χ3)+τ(¯χ3))2−αp(τ(χ3)+τ(¯χ3)). | (3.1) |
Now we need to determine the value of the real number τ(χ3)+τ(¯χ3) in (3.1). For convenience, write the A=τ(χ3)+τ(¯χ3), we construct cubic equation A3−3pA−αp=0 based on (2.1) and τ(χ3)⋅τ(¯χ3)=p. According to Cardans formula (formula of roots of a cubic equation), the three roots of the equation are
A1=[αp2+((αp2)2+(−p)3)12]13+[αp2−((αp2)2+(−p)3)12]13,A2=ω[αp2+((αp2)2+(−p)3)12]13+ω2[αp2−((αp2)2+(−p)3)12]13,A3=ω2[αp2+((αp2)2+(−p)3)12]13+ω[αp2−((αp2)2+(−p)3)12]13, |
where ω=−1+√3i2.
It is clear that all Ak (k=1,2 or 3) are real numbers, So A=A1,A2 or A3. Therefore, the proof of theorem is complete.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors gratefully appreciates the referees and editor for their helpful and detailed comments.
This work is supported by Hainan Provincial Natural Science Foundation of China (123RC473) and Natural Science Foundation of China (12126357).
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] | Y. Yıldırım, Optical solitons to Sasa-Satsuma model with modified simple equation approach, Optik, 184 (2019), 271-276. |
[2] | Y. Yıldırım, Optical solitons to Sasa-Satsuma model with trial equation approach, Optik, 184 (2019), 70-74. |
[3] | K. Hosseini, M. Mirzazadeh, M. Ilie, J. F. Gómez-Aguilar, Soliton solutions of the Sasa-Satsuma equation in the monomode optical fibers including the beta-derivatives, Optik, 224 (2020), 165425. |
[4] | M. Mirzazadeh, M. Ekici, A. Sonmezoglu, M. Eslami, Q. Zhou. A. H. Kara, et al., Optical solitons with complex Ginzburg-Landau equation, Nonlinear Dyn., 85 (2016), 1979-2016. |
[5] | M. S. Osman, D. Lu, M. M. A. Khater, R. A. M. Attia, Complex wave structures for abundant solutions related to the complex Ginzburg-Landau model, Optik, 192 (2019), 162927. |
[6] | K. Hosseini, M. Mirzazadeh, M. S. Osman, M. Al Qurashi, D. Baleanu, Solitons and Jacobi elliptic function solutions to the complex Ginzburg-Landau equation, Front. Phys., 8 (2020), 225. |
[7] | A. Biswas, H. Rezazadeh, M. Mirzazadeh, M. Eslami, M. Ekici, Q. Zhou, et al., Optical soliton perturbation with Fokas-Lenells equation using three exotic and efficient integration schemes, Optik, 165 (2018), 288-294. |
[8] | N. A. Kudryashov, First integrals and general solution of the Fokas-Lenells equation, Optik, 195 (2019), 163135. |
[9] | K. Hosseini, M. Mirzazadeh, J. Vahidi, R. Asghari, Optical wave structures to the Fokas-Lenells equation, Optik, 207 (2020), 164450. |
[10] | A. Biswas, R. T. Alqahtani, Chirp-free bright optical solitons for perturbed Gerdjikov-Ivanov equation by semi-inverse variational principle, Optik, 147 (2017), 72-76. |
[11] | E. Yaşar, Y. Yıldırım, E. Yaşar, New optical solitons of space-time conformable fractional perturbed Gerdjikov-Ivanov equation by sine-Gordon equation method, Results Phys., 9 (2018), 1666-1672. |
[12] | K. Hosseini, M. Mirzazadeh, M. Ilie, S. Radmehr, Dynamics of optical solitons in the perturbed Gerdjikov-Ivanov equation, Optik, 206 (2020), 164350. |
[13] | A. Biswas, S. Arshed, Optical solitons in presence of higher order dispersions and absence of self-phase modulation, Optik, 174 (2018), 452-459. |
[14] | A. I. Aliyu, M. Inc, A. Yusuf, D. Baleanu, M. Bayram, Dark-bright optical soliton and conserved vectors to the Biswas-Arshed equation with third-order dispersions in the absence of self-phase modulation, Front. Phys., 7 (2019), 28. |
[15] | K. Hosseini, M. Mirzazadeh, M. Ilie, J. F. Gómez-Aguilar, Biswas-Arshed equation with the beta time derivative: Optical solitons and other solutions, Optik, 217 (2020), 164801. |
[16] | N. A. Kudryashov, A generalized model for description of propagation pulses in optical fiber, Optik, 189 (2019), 42-52. |
[17] | A. Biswas, M. Ekici, A. Sonmezoglu, A. S. Alshomrani, M. R. Belic, Optical solitons with Kudryashov's equation by extended trial function, Optik, 202 (2020), 163290. |
[18] | E. M. E. Zayed, R. M. A. Shohib, A. Biswas, M. Ekici, L. Moraruf, A. K. Alzahrani, et al., Optical solitons with differential group delay for Kudryashov's model by the auxiliary equation mapping method, Chinese J. Phys., 67 (2020), 631-645. |
[19] | B. K. Tan, R. S. Wu, Nonlinear Rossby waves and their interactions (I) - Collision of envelope solitary Rossby waves, Sci. China, Ser. B, 36 (1993), 1367. |
[20] | S. P. Gorza, M. Haelterman, Ultrafast transverse undulation of self-trapped laser beams, Opt. Express, 16 (2008), 16935. |
[21] | S. P. Gorza, P. Kockaert, P. Emplit, M. Haelterman, Oscillatory neck instability of spatial bright solitons in hyperbolic systems, Phys. Rev. Lett., 102 (2009), 134101. |
[22] | G. Ai-Lin, L. Ji, Exact solutions of (2+1)-dimensional HNLS equation, Commun. Theor. Phys., 54 (2010), 401-406. |
[23] | A. I. Aliyu, M. Inc, A. Yusuf, D. Baleanu, Optical solitary waves and conservation laws to the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation, Mod. Phys. Lett. B, 32 (2018), 1850373. |
[24] | W. O. Apeanti, A. R. Seadawy, D. Lu, Complex optical solutions and modulation instability of hyperbolic Schrödinger dynamical equation, Results Phys., 12 (2019), 2091-2097. |
[25] | H. Durur, E. Ilhan, H. Bulut, Novel complex wave solutions of the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation, Fractal Fract., 4 (2020), 41. |
[26] | E. Tala-Tebue, C. Tetchoka-Manemo, H. Rezazadeh, A. Bekir, Y. M. Chu, Optical solutions of the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation using two different methods, Results Phys., 19 (2020), 103514. |
[27] |
H. Ur Rehman, M. A. Imran, N. Ullah, A. Akgül, Exact solutions of (2+1)-dimensional Schrödinger's hyperbolic equation using different techniques, Numer. Meth. Part. Differ. Equ., 2020, doi: 10.1002/num.22644. doi: 10.1002/num.22644
![]() |
[28] | J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton. Fract., 30 (2006), 700-708. |
[29] | A. T. Ali, E. R. Hassan, General expa function method for nonlinear evolution equations, Appl. Math. Comput., 217 (2010), 451-459. |
[30] | K. Hosseini, M. Mirzazadeh, F. Rabiei, H. M. Baskonus, G. Yel, Dark optical solitons to the Biswas-Arshed equation with high order dispersions and absence of self-phase modulation, Optik, 209 (2020), 164576. |
[31] | K. Hosseini, R. Ansari, A. Zabihi, A. Shafaroody, M. Mirzazadeh, Optical solitons and modulation instability of the resonant nonlinear Schrӧdinger equations in (3+1)-dimensions, Optik, 209 (2020), 164584. |
[32] | K. Hosseini, M. S. Osman, M. Mirzazadeh, F. Rabiei, Investigation of different wave structures to the generalized third-order nonlinear Scrödinger equation, Optik, 206 (2020), 164259. |
[33] | K. Hosseini, R. Ansari, F. Samadani, A. Zabihi, A. Shafaroody, M. Mirzazadeh, High-order dispersive cubic-quintic Schrödinger equation and its exact solutions, Acta Phys. Pol. A, 136 (2019), 203-207. |
[34] | K. Hosseini, M. Mirzazadeh, Q. Zhou, Y. Liu, M. Moradi, Analytic study on chirped optical solitons in nonlinear metamaterials with higher order effects, Laser Phys., 29 (2019), 095402. |
[35] | A. Zafar, H. Rezazadeh, K. K. Ali, On finite series solutions of conformable time-fractional Cahn-Allen equation, Nonlinear Eng., 9 (2020), 194-200. |
[36] | N. A. Kudryashov, Method for finding highly dispersive optical solitons of nonlinear differential equation, Optik, 206 (2020), 163550. |
[37] | N. A. Kudryashov, Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations, Appl. Math. Comput., 371 (2020), 124972. |
[38] | N. A. Kudryashov, Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation, Optik, 206 (2020), 164335. |
[39] | K. Hosseini, M. Matinfar, M. Mirzazadeh, A (3+1)-dimensional resonant nonlinear Schrödinger equation and its Jacobi elliptic and exponential function solutions, Optik, 207 (2020), 164458. |
[40] | K. Hosseini, K. Sadri, M. Mirzazadeh, S. Salahshour, An integrable (2+1)-dimensional nonlinear Schrödinger system and its optical soliton solutions, Optik, 229 (2021), 166247. |
[41] | H. C. Ma, Z. P. Zhang, A. P. Deng, A new periodic solution to Jacobi elliptic functions of MKdV equation and BBM equation, Acta Math. Appl. Sin., 28 (2012), 409-415. |
[42] | K. Hosseini, M. Mirzazadeh, Soliton and other solutions to the (1+2)-dimensional chiral nonlinear Schrödinger equation, Commun. Theor. Phys., 72 (2020), 125008. |
[43] | H. Rezazadeh, S. M. Mirhosseini-Alizamini, M. Eslami, M. Rezazadeh, M. Mirzazadeh, S. Abbagari, New optical solitons of nonlinear conformable fractional Schrödinger-Hirota equation, Optik, 172 (2018), 545-553. |
[44] | H. M. Srivastava, D. Baleanu, J. A. T. Machado, M. S. Osman, H. Rezazadeh, S. Arshed, et al., Traveling wave solutions to nonlinear directional couplers by modified Kudryashov method, Phys. Scr., 95 (2020), 075217. |
[45] | H. B. Han, H. J. Li, C. Q. Dai, Wick-type stochastic multi-soliton and soliton molecule solutions in the framework of nonlinear Schrödinger equation, Appl. Math. Lett., 120 (2021), 107302. |
[46] | P. Li, R. Li, C. Dai, Existence, symmetry breaking bifurcation and stability of two-dimensional optical solitons supported by fractional diffraction, Opt. Express, 29 (2021), 3193-3210. |
[47] | C. Q. Dai, Y. Y. Wang, Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals, Nonlinear Dyn., 102 (2020), 1733-1741. |
[48] | C. Q. Dai, Y. Y. Wang, J. F. Zhang, Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials, Nonlinear Dyn., 102 (2020), 379-391. |
[49] | B. H. Wang, Y. Y. Wang, C. Q. Dai, Y. X. Chen, Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas-Lenells equation, Alex. Eng. J., 59 (2020), 4699-4707. |
[50] | S. Boulaaras, A. Choucha, B. Cherif, A. Alharbi, M. Abdalla, Blow up of solutions for a system of two singular nonlocal viscoelastic equations with damping, general source terms and a wide class of relaxation functions, AIMS Mathematics, 6 (2021), 4664-4676. |
[51] | A. Choucha, S. Boulaaras, D. Ouchenane, M. Abdalla, I. Mekawy, A. Benbella, Existence and uniqueness for Moore-Gibson-Thompson equation with, source terms, viscoelastic memory and integral condition, AIMS Mathematics, 6 (2021), 7585-7624. |
1. | Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas, On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions, 2022, 7, 2473-6988, 12718, 10.3934/math.2022704 | |
2. | M. Vellappandi, Venkatesan Govindaraj, José Vanterler da C. Sousa, Fractional optimal reachability problems with ψ ‐Hilfer fractional derivative , 2022, 45, 0170-4214, 6255, 10.1002/mma.8168 | |
3. | Fidel Meléndez-Vázquez, Guillermo Fernández-Anaya, Aldo Jonathan Muñóz-Vázquez, Eduardo Gamaliel Hernández-Martínez, Generalized conformable operators: Application to the design of nonlinear observers, 2021, 6, 2473-6988, 12952, 10.3934/math.2021749 | |
4. | Hamid Lmou, Khalid Hilal, Ahmed Kajouni, Serkan Araci, A New Result for ψ -Hilfer Fractional Pantograph-Type Langevin Equation and Inclusions, 2022, 2022, 2314-4785, 1, 10.1155/2022/2441628 | |
5. | Ravi P. Agarwal, Afrah Assolami, Ahmed Alsaedi, Bashir Ahmad, Existence Results and Ulam–Hyers Stability for a Fully Coupled System of Nonlinear Sequential Hilfer Fractional Differential Equations and Integro-Multistrip-Multipoint Boundary Conditions, 2022, 21, 1575-5460, 10.1007/s12346-022-00650-6 | |
6. | Abdulwasea Alkhazzan, Wadhah Al-Sadi, Varaporn Wattanakejorn, Hasib Khan, Thanin Sitthiwirattham, Sina Etemad, Shahram Rezapour, A new study on the existence and stability to a system of coupled higher-order nonlinear BVP of hybrid FDEs under the p-Laplacian operator, 2022, 7, 2473-6988, 14187, 10.3934/math.2022782 | |
7. | Sina Etemad, Iram Iqbal, Mohammad Esmael Samei, Shahram Rezapour, Jehad Alzabut, Weerawat Sudsutad, Izzet Goksel, Some inequalities on multi-functions for applying in the fractional Caputo–Hadamard jerk inclusion system, 2022, 2022, 1029-242X, 10.1186/s13660-022-02819-8 |