Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article

Bifurcation results of positive solutions for an elliptic equation with nonlocal terms

  • Received: 10 April 2021 Accepted: 17 June 2021 Published: 24 June 2021
  • MSC : 35J25, 35J61, 35B32, 35B45

  • In this paper, we investigate the local and global nature for the connected components of positive solutions set of an elliptic equation with nonlocal terms. The local bifurcation results of positive solutions are obtained by using the local bifurcation theory, Lyapunov-Schmidt reduction technique, etc. Under suitable conditions, we show two proofs of priori estimates by using blow-up technique, upper and lower solution method, etc. Finally, the global bifurcation results of positive solutions are obtained by using priori bounds, global bifurcation theory.

    Citation: Jiaqing Hu, Xian Xu, Qiangqiang Yang. Bifurcation results of positive solutions for an elliptic equation with nonlocal terms[J]. AIMS Mathematics, 2021, 6(9): 9547-9567. doi: 10.3934/math.2021555

    Related Papers:

    [1] Lin Zhao . Monotonicity and symmetry of positive solution for 1-Laplace equation. AIMS Mathematics, 2021, 6(6): 6255-6277. doi: 10.3934/math.2021367
    [2] Liye Wang, Wenlong Wang, Ruizhi Yang . Stability switch and Hopf bifurcations for a diffusive plankton system with nonlocal competition and toxic effect. AIMS Mathematics, 2023, 8(4): 9716-9739. doi: 10.3934/math.2023490
    [3] CaiDan LaMao, Shuibo Huang, Qiaoyu Tian, Canyun Huang . Regularity results of solutions to elliptic equations involving mixed local and nonlocal operators. AIMS Mathematics, 2022, 7(3): 4199-4210. doi: 10.3934/math.2022233
    [4] Changmu Chu, Yuxia Xiao, Yanling Xie . Infinitely many sign-changing solutions for a semilinear elliptic equation with variable exponent. AIMS Mathematics, 2021, 6(6): 5720-5736. doi: 10.3934/math.2021337
    [5] Mengyu Wang, Xinmin Qu, Huiqin Lu . Ground state sign-changing solutions for fractional Laplacian equations with critical nonlinearity. AIMS Mathematics, 2021, 6(5): 5028-5039. doi: 10.3934/math.2021297
    [6] Hui Wang, Xue Wang . Bifurcations of traveling wave solutions for the mixed Korteweg-de Vries equation. AIMS Mathematics, 2024, 9(1): 1652-1663. doi: 10.3934/math.2024081
    [7] Choukri Derbazi, Hadda Hammouche . Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory. AIMS Mathematics, 2020, 5(3): 2694-2709. doi: 10.3934/math.2020174
    [8] Labudan Suonan, Yonglin Xu . Existence of solutions to mixed local and nonlocal anisotropic quasilinear singular elliptic equations. AIMS Mathematics, 2023, 8(10): 24862-24887. doi: 10.3934/math.20231268
    [9] Xiangrui Li, Shuibo Huang, Meirong Wu, Canyun Huang . Existence of solutions to elliptic equation with mixed local and nonlocal operators. AIMS Mathematics, 2022, 7(7): 13313-13324. doi: 10.3934/math.2022735
    [10] Tomas Godoy . Existence of positive weak solutions for a nonlocal singular elliptic system. AIMS Mathematics, 2019, 4(3): 792-804. doi: 10.3934/math.2019.3.792
  • In this paper, we investigate the local and global nature for the connected components of positive solutions set of an elliptic equation with nonlocal terms. The local bifurcation results of positive solutions are obtained by using the local bifurcation theory, Lyapunov-Schmidt reduction technique, etc. Under suitable conditions, we show two proofs of priori estimates by using blow-up technique, upper and lower solution method, etc. Finally, the global bifurcation results of positive solutions are obtained by using priori bounds, global bifurcation theory.



    In this paper, we consider the elliptic problem with nonlocal terms

    {Δu=λm(x)u+h(x)up+Ωuβ,xΩ,un=0,xΩ, (1.1)

    where Ω is a bounded domain of RN with a smooth boundary, N2; n is the outward unit normal to Ω; m(x), h(x)Cα(ˉΩ) for some α(0,1) and m(x), h(x) may change sign in Ω; p,β>1 and p<N+2N2 for N3, λR is a parameter.

    Many physical phenomena were formulated into nonlocal mathematical models [1,2,3,11,12] and studied by many authors. For example, J. Bebernes and A. Bressan [11] studied an ignition model similar to (1.1) for a compressible reactive gas which is a nonlocal reaction-diffusion equation. In [11], u is the temperature perturbation of the gas and nonlocal term is due to the compressibility of the gas. Subsequently, some researchers [2,3,12] discussed the parabolic problems related to the equation

    {Δu=f(x,u)+g(Ωuβ),xΩ,u=0,xΩ.

    This type of problem is frequently encountered in nuclear reaction process, where it is known that the reaction is very strong, say like f(x,u)=λm(x)u+h(x)up with p>1 and constant functions m(x) and h(x), but the rate with respect to this power is unknown, say like g(Ωuβ)=Ωuβ. The above mathematical problem can also be used to population dynamics and biological science where the total mass is often conserved or known, but the growth of a certain cell is known to be of some form (see [12]). Thus, the problem (1.1) is worthy to be considered.

    Mathematically, the problem (1.1) combines local and nonlocal terms. It is well known [2,3] that the authors discussed that the case m(x)=0, h(x)h0<0, β>1 and p1. In two articles, the parabolic problem related to the equation was studied and the authors showed that the value p=β represents a critical blow-up exponent. They proved that if β>p or β=p and h0>|Ω|, the blow-up phenomenon can occur in finite time. If β<p or β=p and h0|Ω|, all the solutions are global and bounded. The authors also proved the existence of positive solution for h0 small in the particular case h0<0, p>β>1. In [1], F. Corrˆea and A. Suˊarez made a further study for the problem and proved the existence, uniqueness, stability and asymptotic properties of positive solutions for some values of p1 and β>0.

    We want to further consider the global bifurcation structure of the positive solutions set of the problem (1.1) when the function m(x) and h(x) are nonconstant functions because for general function h(x), especially sign-changing function, comparing with the local elliptic equation, we see that many methods that prove the boundedness of positive solutions cannot be used in nonlocal elliptic equation, such as the extremum principle, parameter control. Finally, we can obtain the existence, multiplicity and nonexistence of the positive solution for the problem (1.1) when a bounded connected branch of the positive solutions set is established by the global bifurcation theory.

    In an early paper, K. J. Brown [4] studied the local and global bifurcation of the semilinear elliptic boundary value problem

    {Δu=λm(x)u+b(x)uγ,xΩ,un=0,xΩ, (1.2)

    where 1<γ<N+2N2, m(x), b(x) may change sign in Ω. The cases where Ωm(x)dx0 and Ωm(x)dx=0 were discussed respectively and the author concluded that there are continua of positive solutions of (1.2) connecting λ=0 to the other principal eigenvalue for Ωm(x)dx0 when m(x) and b(x) are under suitable conditions. It was also showed that the closed loops of positive solutions occur naturally and properties of these loops are investigated.

    In this paper, we are interested in the problem (1.1), namely, the problem (1.2) added a nonlocal term. We want to investigate whether the local and global structures of positive solutions set for the problem (1.1) have similar properties to the problem (1.2). We also investigate sufficient conditions for a bounded continuum of positive solutions. In Theorem 2.2, we see that the direction of bifurcation curve is related to β and p. In Theorem 3.1, we get a priori bound of positive solution when m(x) is under suitable conditions and β>max{p,N(p1)/N(p1)22} by using upper and lower solution method, blow-up technique and boot-strapping method. Moreover, another way of proving boundedness shows that the priori bound still exists when β>max{p,N(p1)/N(p1)22} vanishes.

    Before proceeding to the study of local and global nature of positive solutions, we need to introduce some notations. If u>0 in Ω, we say u is a positive solution of the problem (1.1). (λ,u) is called a nonnegative solution of the problem (1.1) if u is a nonnegative solution of the problem (1.1) with λ. Obviously, (λ,0) is a nonnegative solution of the problem (1.1), we say it is a trivial solution.

    To investigate the bifurcation of problem (1.1) at the trivial solution (λ,0), we discuss the linear eigenvalue problem

    {Δw=λm(x)w,xΩ,wn=0,xΩ, (1.3)

    where m(x) changes sign in Ω. According to [5], we have the following results.

    (i) If Ωm<0, the problem (1.3) has the principal eigenvalues λ+>0 and λ0=0.

    (ii) If Ωm>0, the problem (1.3) has the principal eigenvalues λ<0 and λ0=0.

    (iii) If Ωm=0, the problem (1.3) has the unique principal eigenvalue λ0=0.

    The usual norms of the space Lp(Ω) for p[1,) and C(ˉΩ) are, respectively,

    Let

    \Omega _ + ^h = \left\{ {x \in \Omega : h(x) > 0} \right\},\; \; \Omega _ - ^h = \left\{ {x \in \Omega : h(x) < 0} \right\}.

    We use the following hypothesis.

    ({{\rm{H}}_1}) \; \Lambda = \left\{ {u \in H_0^1(\Omega _ + ^h):\int_{\Omega _ + ^h} {m{u^2}} > 0} \right\} \neq \varnothing .

    If m(x) changes sign in \Omega _ + ^h and ({{\rm{H}}_1}) holds, then the equation

    \begin{equation*} \left\{\begin{array}{ll} - \Delta u = \lambda m(x)u,\; \; &x \in \Omega _ + ^h, \\ u = 0,\; &x \in \partial \Omega _ + ^h \end{array}\right. \end{equation*}

    has unique positive principal eigenvalue [5,6].

    We have the following main global results of positive solutions in two cases where \int_{\Omega }{m} < 0 and \int_\Omega m > 0 by using priori bounds, global bifurcation theory.

    Theorem 1.1. Assume \int_\Omega m < 0 and

    \begin{equation*} \begin{array}{ll} \beta > p,\; \int_\Omega {h\varphi _1^{p + 1}} < 0, \end{array} \end{equation*}

    where {\varphi _1} is the positive eigenfunction of {\lambda _+} . Then there exists a continuous curve \left({\lambda (s), u(s)} \right) of s \in (0, \varepsilon) such that \left({\lambda (0), u(0)} \right) = ({\lambda _ + }, 0), \; \lambda (s) > {\lambda _ + } , \left({\lambda (s), u(s)} \right) are positive solutions of the problem (1.1), and for any positive solution (\lambda, u) of the problem (1.1) in a neighborhood of ({\lambda _ + }, 0) , we have (\lambda, u) = \left({\lambda (s), u(s)} \right) .

    Moreover, if m(x) changes sign in \Omega _ + ^h and ({\rm{H}}_1) holds, then the connected branch {C^ + } of positive solutions set containing \left({\lambda (s), u(s)} \right) satisfies the following conclusions.

    (i) The projection of {C^ + } on {\lambda } -axis is bounded, that is,

    {\lambda ^*} = \sup \left\{ {\left| \lambda \right| > 0:(\lambda ,u) \in {C^ + }} \right\} < + \infty.

    More generally, there is no positive solution of the problem (1.1) for any sufficiently large \left| \lambda \right| .

    (ii) If (\lambda, u) \in {C^ + } , then u is bounded in {C}(\bar \Omega) .

    (iii) The closure \overline {{C^ + }} of {C^ + } in \mathbb{R} \times {C}(\bar \Omega) satisfies

    \overline {{C^ + }} \cap \left\{ {(\lambda ,0):\lambda \in \mathbb{R},\lambda \ne {\lambda _ + },0} \right\} = \emptyset.

    The assertions of Theorem 1.1 may be illustrated by the bifurcation diagram shown in Figure 1.

    Figure 1.  Global bifurcation in case \int_\Omega m < 0 .

    Remark 1.1. (i) Theorem 1.1 shows the conditions that the connected branch is supercritical at \left({{\lambda _ + }, 0} \right) . In fact, according to Theorem 2.2, we obtain the conditions that the connected branch is supercritical or subcritical at (0, 0) . In Figure 1, it is clear that if \beta > p , \int_\Omega h < 0 (resp. \beta > p , \int_\Omega h > 0 ), the connected branch at (0, 0) is subcritical (resp. supercritical). Furthermore, by using Rabinowitz global bifurcation theory, we have that {C^ + } bifurcates from ({\lambda _ + }, 0) and backs to (0, 0) .

    (ii) Comparing with the results of [4], we see that directions of bifurcation curve depend on not only the sign of \int_\Omega m and {h\varphi _1^{p + 1}} but also the relationship of \beta and p . In Theorem 1.1, we only show the case of \beta > p , while the cases of \beta < p and \beta = p can also be listed.

    (iii) According to Theorem 1.1, we can obtain the existence, multiplicity and nonexistence of positive solutions for the problem (1.1). For example, the conditions of Theorem 1.1 hold and \int_\Omega h < 0 , then there exist constants \sigma _1 < 0 < \lambda _ + < \sigma _2 , such that

    \bullet the problem (1.1) has at least one positive solution for \lambda \in [0, {\lambda _ + }] ;

    \bullet the problem (1.1) has at least two positive solutions for \lambda \in (\sigma _1, 0) \cup ({\lambda _ + }, \sigma _2) .

    \bullet the problem (1.1) has no positive solution for \lambda \in (-\infty, \sigma _1) \cup (\sigma _2, +\infty) .

    These results are clearly shown in Figure 1.

    Similarly, we have the global bifurcation of the positive solutions set for \int_\Omega m > 0 .

    Theorem 1.2. Assume \int_\Omega m > 0 and

    \begin{equation*} \begin{array}{ll} \beta > p,{\rm{ }}\int_\Omega {h\varphi _1^{p + 1}} < 0, \end{array} \end{equation*}

    where {\varphi _1} is the positive eigenfunction of {\lambda _-} . Then there exists a continuous curve \left({\lambda (s), u(s)} \right) of s \in (0, \varepsilon) such that \left({\lambda (0), u(0)} \right) = ({\lambda _ - }, 0), \; \lambda (s) < {\lambda _ - } , \left({\lambda (s), u(s)} \right) are positive solutions of the problem (1.1), and for any positive solution (\lambda, u) of the problem (1.1) in a neighborhood of ({\lambda _ - }, 0) , we have (\lambda, u) = \left({\lambda (s), u(s)} \right) .

    Moreover, if m(x) changes sign in \Omega _ + ^h and ({\rm{H}}_1) holds, then the connected components {C^ + } of positive solutions set containing \left({\lambda (s), u(s)} \right) satisfies the claims (i), (ii) of Theorem 1.1 and the closure \overline {{C^ + }} of {C^ + } in \mathbb{R} \times {C}(\bar \Omega) satisfies

    \overline {{C^ + }} \cap \left\{ {(\lambda ,0):\lambda \in \mathbb{R},\lambda \ne {\lambda _ - },0} \right\} = \emptyset.

    The assertions of Theorem 1.2 may be illustrated by the bifurcation diagram shown in Figure 2.

    Figure 2.  Global bifurcation in case \int_\Omega m > 0 .

    Next, we consider the case \int_\Omega m = 0 . We shall then study the global bifurcation of positive solutions for the problem (1.1) by the approximation method. Let {m_\varepsilon }(x) = m(x) - \varepsilon for \varepsilon > 0 , we have the following conclusions.

    Theorem 1.3. Assume \int_\Omega m = 0 , p = 2 or 3 , m(x) changes sign in \Omega _ + ^h and {\rm{(}}{{\rm{H}}_1}) holds. If

    \begin{equation*} \begin{array}{ll} \frac{{2N}}{{N - 2}} > \beta > p,\; \int_\Omega h < 0, \end{array} \end{equation*}

    then there exists a connected components C^ + of positive solutions set for the problem (1.1), which bifurcates from the origin and backs to the origin in \lambda -norm plane, namely, the closure \overline {C ^ + } of C^ + in \mathbb{R} \times C(\bar \Omega) is a closed loop.

    Remark 1.2. For the case \int_\Omega m = 0 , the hypotheses for the Crandall and Rabinowitz theorem are no longer satisfied, and we use the Lyapunov-Schmidt technique to investigate how bifurcation occurs at (\lambda, u) = (0, 0) . Moreover, comparing with the global bifurcation results of [4], we see that the relationship of p and nonlocal term power \beta also has influence on the continuum.

    The assertions of Theorem 1.3 may be illustrated by the bifurcation diagram shown in Figure 3.

    Figure 3.  \overline {C_\varepsilon ^ + } approaches a closed loop as \varepsilon \to 0 .

    The rest of this article is organized as follows. In Section 2, we discuss the local properties of positive solutions set in the cases where \int_{\Omega }{m}\ne 0 and \int_{\Omega }{m} = 0 by using the local bifurcation theory, Liapunov-Schmidt reduction technique. In Section 3, we show that a priori estimate of positive solutions by using the blow-up technique, global bifurcation theory and upper and lower solution. In Section 4, we complete the proof of main results in two cases.

    Let's investigate local bifurcation in the cases where \int_\Omega m \ne 0 and \int_\Omega m = 0 , respectively.

    If \int_\Omega m < 0 , let {\lambda _1} = {\lambda _ + } or {\lambda _0} ; if \int_\Omega m > 0 , let {\lambda _1} = {\lambda _ - } or {\lambda _0} . Let {\varphi _1} be the positive eigenfunction of {\lambda _1} . If {\lambda _1} = 0 , {\varphi _1} is a constant and we take {\varphi _1} = 1 . Let 0 < \varepsilon \ll 1 be a constant. We have the following result.

    Theorem 2.1. Assume \int_\Omega m \ne 0 , then there exists a bifurcation curve \left({\lambda (s), u(s)} \right) of positive solutions of the problem (1.1) at \left({{\lambda _1}, 0} \right) parameterized by s \in (0, \varepsilon) , which satisfies

    \begin{align*} \begin{array}{l} \lambda (s) = {\lambda _1} + \gamma (s),\; \; u(s) = s\left( {{\varphi _1} + z(s)} \right), \\ z( \cdot ) \in Z,\; \; {\rm{span}}\{ {\varphi _1}\} \oplus Z = {C^{2 + \theta }}( {\bar \Omega } ). \end{array} \nonumber \end{align*}

    Here, \gamma (0) = 0 , z(0) = 0 . \gamma (s) and z(s) is analytic at s = 0 .

    Proof. We define the mapping

    F: \mathbb{R} \times X \to {C^\theta }\left( \Omega \right),
    \begin{equation} \begin{array}{ll} F(\lambda ,u) = \Delta u + \lambda m(x)u + h(x){u^p} + \int_\Omega {{u^\beta }}, \end{array} \end{equation} (2.1)

    where X = \left\{ {u \in {C^{2 + \theta }}(\Omega):\frac{{\partial u}}{{\partial n}} = 0, x \in \partial \Omega } \right\} .

    For any w \in X , we have

    \begin{array}{l} \begin{aligned} {F_u}\left( {\lambda ,u} \right)\left[ w \right] = \Delta w + \lambda m(x)w + ph(x){u^{p - 1}}w + \beta \int_\Omega {{u^{\beta - 1}}w} , \end{aligned} \end{array}

    then

    {F_u}\left( {\lambda ,0} \right)\left[ w \right] = \Delta w + \lambda m(x)w.

    Thus, we have

    \ker \left( {{F_u}({\lambda _1},0)} \right) = span\left\{ {{\varphi _1}} \right\},\; \dim \left( {\ker \left( {{F_u}({\lambda _1} ,0)} \right)} \right) = 1.

    The range of {F_u}({\lambda _1}, 0) is R\left({{F_u}({\lambda _1}, 0)} \right) = \left\{ {u \in {C^\theta }\left(\Omega \right):\int_\Omega {u{\varphi _1}} = 0} \right\} , so

    {\rm{codim}}R\left( {{F_u}({\lambda _1},0)} \right) = 1.

    Next, we prove

    \begin{equation} \begin{array}{ll} {F_{\lambda u}}({\lambda _1},0)[{\varphi _1}] \notin R\left( {{F_u}({\lambda _1},0)} \right). \end{array} \end{equation} (2.2)

    Since {F_{\lambda u}}({\lambda _1}, 0)[{\varphi _1}] = m(x){\varphi _1} , we have

    (i) if {\lambda _1} = 0 , then {\varphi _1} = 1 and m(x){\varphi _1} \notin R\left({{F_u}({\lambda _1}, 0)} \right) ;

    (ii) if {\lambda _1} \ne 0 , then \int_\Omega {{{\left| {\nabla {\varphi _1}} \right|}^2}} = {\lambda _1}\int_\Omega {m\varphi _1^2} > 0 , namely \int_\Omega {m\varphi _1^2} \ne 0 . Thus, we have m(x){\varphi _1} \notin R\left({{F_u}({\lambda _1}, 0)} \right) .

    Hence, we get (2.2). By virtue of the Crandall-Rabinowitz local bifurcation theory, we obtain Theorem 2.1.

    Next, we discuss the direction of bifurcation.

    Theorem 2.2. Assume \int_\Omega m \ne 0 . \left({\lambda (s), u(s)} \right) for s \in (0, \varepsilon) is a bifurcation curve of positive solutions obtained by Theorem 2.1, then we have the following conclusions.

    (1) {\lambda _1} = 0 .

    (i) \beta = p , then

    \mathop {\lim }\limits_{s \to 0} \frac{{\gamma (s)}}{{{s^{p - 1}}}} = - \frac{{|\Omega {|^2} + \int_\Omega h }}{{\int_\Omega m }}.

    If |\Omega {|^2} + \int_\Omega h and \int_\Omega m have same (resp. opposite) sign, then the bifurcation curve at ({\lambda _1}, 0) is subcritical (resp. supercritical).

    (ii) \beta < p , then

    \mathop {\lim }\limits_{s \to 0} \frac{{\gamma (s)}}{{{s^{\beta - 1}}}} = - \frac{{|\Omega {|^2}}}{{\int_\Omega m }}.

    If \int_\Omega m > 0 \; (resp. < 0) , then the bifurcation curve at ({\lambda _1}, 0) is subcritical (resp. supercritical).

    (iii) \beta > p , then

    \mathop {\lim }\limits_{s \to 0} \frac{{\gamma (s)}}{{{s^{p - 1}}}} = - \frac{{\int_\Omega h }}{{\int_\Omega m }}.

    If \int_\Omega h and \int_\Omega m have same (resp. opposite) sign, then the bifurcation curve at ({\lambda _1}, 0) is subcritical (resp. supercritical).

    (2) {\lambda _1} \ne 0 .

    (i) \beta = p , if \int_\Omega {h\varphi _1^{p + 1}} + \int_\Omega {{\varphi _1}} \int_\Omega {\varphi _1^p} and \int_\Omega m have opposite (resp. same) sign, then the bifurcation curve at ({\lambda _1}, 0) is subcritical (resp. supercritical).

    (ii) \beta < p , if \int_\Omega {{\varphi _1}} \int_\Omega {\varphi _1^\beta } and \int_\Omega m have opposite (resp. same) sign, then the bifurcation curve at ({\lambda _1}, 0) is subcritical (resp. supercritical).

    (iii) \beta > p , if \int_\Omega {h\varphi _1^{p + 1}} and \int_\Omega m have opposite (resp. same) sign, then the bifurcation curve at ({\lambda _1}, 0) is subcritical (resp. supercritical).

    Proof. Since \left({\lambda (s), u(s)} \right) is a positive solution of the problem (1.1), we have

    \begin{equation*} \left\{ \begin{array}{ll} - \Delta \left[ {s\left( {{\varphi _1} + z(s)} \right)} \right] = \lambda (s)ms\left( {{\varphi _1} + z(s)} \right)\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; + h{s^p}{\left( {{\varphi _1} + z(s)} \right)^p} + \int_\Omega {{{\left[ {s\left( {{\varphi _1} + z(s)} \right)} \right]}^\beta }} ,\; \; &x \in \Omega \\ \frac{{\partial \left( {s\left( {{\varphi _1} + z(s)} \right)} \right)}}{{\partial n}} = 0,\; &x \in \partial \Omega, \end{array} \right. \end{equation*}

    then

    \begin{equation} \left\{ \begin{array}{ll} - \Delta z(s) = \gamma (s)m{\varphi _1} + \lambda (s)mz(s)\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; + h{s^{p - 1}}{\left( {{\varphi _1} + z(s)} \right)^p} + {s^{\beta - 1}}\int_\Omega {{{\left( {{\varphi _1} + z(s)} \right)}^\beta }} ,\; \; &x \in \Omega, \\ \frac{{\partial \left( {z(s)} \right)}}{{\partial n}} = 0,\; &x \in \partial \Omega. \end{array} \right. \end{equation} (2.3)

    Multiplying the Eq (2.3) by \varphi _1 , integrating in \Omega , and using the Green formula, it follows that

    \begin{array}{l} \begin{aligned} 0 = &\int_\Omega {\gamma (s)m\varphi _1^2} + \int_\Omega {\gamma (s)mz{\varphi _1}} + {s^{p - 1}}\int_\Omega {h{{\left( {{\varphi _1} + z(s)} \right)}^p}{\varphi _1}}\\ &+ {s^{\beta - 1}}\int_\Omega {{\varphi _1}} \int_\Omega {{{\left( {{\varphi _1} + z(s)} \right)}^\beta }}. \end{aligned} \end{array}

    (i) If \beta = p , we get

    \frac{{\gamma (s)}}{{{s^{p - 1}}}} = - \frac{{\int_\Omega {h(x){{\left( {{\varphi _1} + z(s)} \right)}^p}{\varphi _1}} + \int_\Omega {{\varphi _1}} \int_\Omega {{{\left( {{\varphi _1} + z(s)} \right)}^p}} }}{{\int_\Omega {m\varphi _1^2} + \int_\Omega {mz{\varphi _1}} }}.

    So

    \mathop {\lim }\limits_{s \to 0} \frac{{\gamma (s)}}{{{s^{p - 1}}}} = - \frac{{\int_\Omega {h\varphi _1^{p + 1}} + \int_\Omega {{\varphi _1}} \int_\Omega {\varphi _1^p} }}{{\int_\Omega {m\varphi _1^2} }}.

    (ii) If \beta < p , we get

    \frac{{\gamma (s)}}{{{s^{\beta - 1}}}} = - \frac{{{s^{p - \beta }}\int_\Omega {h{{\left( {{\varphi _1} + z(s)} \right)}^p}{\varphi _1}} + \int_\Omega {{\varphi _1}} \int_\Omega {{{\left( {{\varphi _1} + z(s)} \right)}^\beta }} }}{{\int_\Omega {m\varphi _1^2} + \int_\Omega {mz{\varphi _1}} }}.

    So

    \mathop {\lim }\limits_{s \to 0} \frac{{\gamma (s)}}{{{s^{\beta - 1}}}} = - \frac{{\int_\Omega {{\varphi _1}} \int_\Omega {\varphi _1^\beta } }}{{\int_\Omega {m\varphi _1^2} }}.

    (iii) If \beta > p , we get

    \frac{{\gamma (s)}}{{{s^{p - 1}}}} = - \frac{{\int_\Omega {h{{\left( {{\varphi _1} + z(s)} \right)}^p}{\varphi _1}} + {s^{\beta - p}}\int_\Omega {{\varphi _1}} \int_\Omega {{{\left( {{\varphi _1} + z(s)} \right)}^\beta }} }}{{\int_\Omega {m\varphi _1^2} + \int_\Omega {mz{\varphi _1}} }}.

    So

    \mathop {\lim }\limits_{s \to 0} \frac{{\gamma (s)}}{{{s^{p - 1}}}} = - \frac{{\int_\Omega {h\varphi _1^{p + 1}} }}{{\int_\Omega {m\varphi _1^2} }}.

    Since \int_\Omega {m\varphi _1^2} and \int_\Omega m have opposite sign, then we get Theorem 2.2.

    If \int_\Omega m = 0 , (2.2) doesn't work, then the hypotheses for the Crandall and Rabinowitz theorem are no longer satisfied. However we can use the Lyapunov-Schmidt technique to investigate how bifurcation occurs.

    Assume u \in X is the solution of the problem (1.1), let u = s + w , where s is a constant and \int_\Omega w = 0 . Let Q be the projection of X onto W , where W = \left\{ {w \in X, \int_\Omega w = 0} \right\} . Then w = Q[u] = u - \frac{1}{{\left| \Omega \right|}}\int_\Omega u , so u = s + w is the solution of the problem (1.1) if and only if

    - \Delta w = \lambda m(x)(s + w) + h(x){(s + w)^p} + \int_\Omega {{{(s + w)}^\beta }}.

    The condition

    Q\left[ { - \Delta w} \right] = Q\left[ {\lambda m(x)(s + w) + h(x){{(s + w)}^p} + \int_\Omega {{{(s + w)}^\beta }} } \right],

    implies that

    \begin{equation} \begin{array}{ll} - \Delta w = Q\left[ {\lambda m(x)(s + w) + h(x){{(s + w)}^p}} \right]. \end{array} \end{equation} (2.4)

    The condition

    (I - Q)\left[ { - \Delta w} \right] = (I - Q)\left[ {\lambda m(x)(s + w) + h(x){{(s + w)}^p} + \int_\Omega {{{(s + w)}^\beta }} } \right],

    implies that

    \begin{equation} \begin{array}{ll} \int_\Omega {\left( {\lambda mw + h{{(s + w)}^p} + |\Omega |{{(s + w)}^\beta }} \right)} = 0. \end{array} \end{equation} (2.5)

    We consider F(\lambda, s, w) = 0 . Here F: \mathbb{R}\times \mathbb{R} \times W \to W ,

    F(\lambda ,s,w) = - \Delta w - Q\left[ {\lambda m(x)(s + w) + h(x){{(s + w)}^p}} \right].

    Note that F(0, 0, 0) = 0 , {F_w}(0, 0, 0)w = - \Delta w : W \; \to \; W is homeomorphism, by using implicit function theorem, there exists a unique solution w = w(\lambda, s) of the equation F(\lambda, s, w) = 0 around (\lambda, s, w) = (0, 0, 0) , being analytic at (0, 0) and having the condition w(0, 0) = 0 .

    Since W is complete, so w satisfies \int_\Omega {\frac{{{\partial ^k}w}}{{\partial {s^{k - l}}\partial {\lambda ^k}}}(0, 0)} = 0 , namely \frac{{{\partial ^k}w}}{{\partial {s^{k - l}}\partial {\lambda ^k}}}(0, 0) \in W . We substitute w = w(\lambda, s) for (2.5), then

    \Phi (\lambda ,s): = \int_\Omega {\left( {\lambda mw(\lambda ,s) + h{{\left( {s + w(\lambda ,s)} \right)}^p} + |\Omega |{{\left( {s + w(\lambda ,s)} \right)}^\beta }} \right)} = 0,

    where (\lambda, s) is in a neighborhood of (0, 0) and \Phi (\lambda, s) is analytic at (0, 0) .

    Let {w_m} be the solution of the problem

    \begin{equation*} \left\{\begin{array}{ll} - \Delta w = m,\; \; &x \in \Omega , \\ \frac{{\partial w}}{{\partial n}} = 0, &x \in \partial \Omega , \\ \int_\Omega w = 0. \end{array}\right. \end{equation*}

    We have the following conclusions.

    Theorem 2.3. Assume \int_\Omega m = 0 , p = 2 or 3 . If \beta = p , let \left| \Omega \right| + \int_\Omega h < 0 ; if \beta > p , let \int_\Omega h < 0 . Then there exists a continuous curve \left({\lambda (s), u(s)} \right) of s \in (0, \varepsilon) such that \left({\lambda (0), u(0)} \right) = (0, 0) , \left({\lambda (s), u(s)} \right) are positive solutions of the problem (1.1), and for any positive solution (\lambda, u) of the problem (1.1) in a neighborhood of (0, 0) , we have (\lambda, u) = \left({\lambda (s), u(s)} \right) . Moreover, if \beta = p , we have

    \begin{equation} \begin{array}{ll} \mathop {\lim }\limits_{s \to {0^ + }} \frac{{u(s)}}{{{{\left| {\lambda (s)} \right|}^{\frac{2}{{p - 1}}}}}} = {\left( {\frac{{\int_\Omega {{{\left| {\nabla {w_m}} \right|}^2}} }}{{ - \left( {\left| \Omega \right| + \int_\Omega h } \right)}}} \right)^{\frac{1}{{p - 1}}}} > 0. \end{array} \end{equation} (2.6)

    If \beta > p , we have

    \begin{equation} \begin{array}{ll} \mathop {\lim }\limits_{s \to {0^ + }} \frac{{u(s)}}{{{{\left| {\lambda (s)} \right|}^{\frac{2}{{p - 1}}}}}} = {\left( {\frac{{\int_\Omega {{{\left| {\nabla {w_m}} \right|}^2}} }}{{ - \int_\Omega h }}} \right)^{\frac{1}{{p - 1}}}} > 0. \end{array} \end{equation} (2.7)

    Proof. We shall solve that \Phi (\lambda, s) = 0 by considering the Taylor expansion of \Phi at (\lambda, s) = (0, 0) . Since w(0, 0) = 0 , we have \Phi (0, 0) = 0 . From F(\lambda, s, w) = 0 , we can calculate the partial derivative of w = w(\lambda, s) with respect to \lambda and s at (0, 0) respectively.

    Calculating derivative of F(\lambda, s, w) = 0 with respect to \lambda , when \lambda = 0 and s = 0 , we have

    \begin{equation*} \left\{\begin{array}{ll} - \Delta {w_\lambda }(0,0) = 0,\; \; &x \in \Omega , \\ \frac{{\partial {w_\lambda }}}{{\partial n}}(0,0) = 0, &x \in \partial \Omega . \end{array}\right. \end{equation*}

    So {w_\lambda }(0, 0) is a constant. By virtue of \frac{{{\partial ^k}w}}{{\partial {s^{k - l}}\partial {\lambda ^k}}}(0, 0) \in W , we get {w_\lambda }(0, 0) = 0 . Similarly, we have

    \frac{{{\partial ^k}w}}{{\partial {\lambda ^k}}}(0,0) = 0,\; \; k \ge 1.

    Calculating derivative of F(\lambda, s, w) = 0 with respect to s , when \lambda = 0 and s = 0 , we get

    \begin{aligned} \frac{{{\partial ^k}w}}{{\partial {s^k}}}(0,0) = \left\{ \begin{array}{ll} 0,\; &1 \le k \le p - 1,\\ {w_p},\; &k = p, \end{array} \right. \end{aligned}

    where {w_p} is the solution of the equation

    \begin{equation*} \left\{\begin{array}{ll} - \Delta w = p!Q\left[ {h\left( x \right)} \right],\; \; &x \in \Omega , \\ \frac{{\partial w}}{{\partial n}} = 0,\; &x \in \partial \Omega , \\ \int_\Omega w = 0. \end{array}\right. \end{equation*}

    Moreover, we have

    \frac{{{\partial ^2}w}}{{\partial s\partial \lambda }}(0,0) = {w_m}.

    Next, we calculate partial derivative of \Phi (\lambda, s) with respect to \lambda and s at (0, 0) respectively. By direct calculations, we have

    \frac{{{\partial ^k}\Phi }}{{\partial {\lambda ^k}}}(0,0) = 0,\; k \ge 1,

    (i) \beta = p ,

    \begin{equation*} \frac{{{\partial ^k}\Phi }}{{\partial {s^k}}}(0,0) = \left\{ \begin{array}{ll} 0, &1 \le k \le p - 1,\\ p!\left( {|\Omega | + \int_\Omega h } \right), &k = p, \end{array} \right. \end{equation*}

    (ii) \beta > p ,

    \begin{equation*} \frac{{{\partial ^k}\Phi }}{{\partial {s^k}}}(0,0) = \left\{ \begin{array}{ll} 0, &1 \le k \le p - 1,\\ p!\int_\Omega h , &k = p, \end{array} \right. \end{equation*}

    (iii) \beta < p ,

    \begin{equation*} \frac{{{\partial ^k}\Phi }}{{\partial {s^k}}}(0,0) = \left\{ \begin{array}{ll} 0, &1 \le k \le \beta - 1,\\ p!|\Omega |, &k = \beta . \end{array} \right. \end{equation*}

    Moreover, we have

    \frac{{{\partial ^2}\Phi }}{{\partial s\partial \lambda }}(0,0) = \int_\Omega m = 0,
    \frac{{{\partial ^3}\Phi }}{{\partial s^2\partial {\lambda }}}(0,0) = 0,\; p = 3,\; \beta \ge3,
    \frac{{{\partial ^3}\Phi }}{{\partial s\partial {\lambda ^2}}}(0,0) = 2\int_\Omega {m{w_m}} = 2\int_\Omega {{{\left| {\nabla {w_m}} \right|}^2}} > 0.

    Therefore, the Taylor expansion of \Phi at (0, 0) is \Phi (\lambda, s) = s\psi (\lambda, s) .

    (1) p = 2 .

    (i) If \beta = 2 , then

    \psi (\lambda ,s) = s\left( {\left| \Omega \right| + \int_\Omega h } \right) + {\lambda ^2}\int_\Omega {{{\left| {\nabla {w_m}} \right|}^2}} + higher \; order \; terms.

    (ii) If \beta > 2 , then

    \psi (\lambda ,s) = s\int_\Omega h + {\lambda ^2}\int_\Omega {{{\left| {\nabla {w_m}} \right|}^2}} + higher \; order \; terms.

    (2) p = 3 .

    (i) If \beta = 2 , then

    \psi (\lambda ,s) = s\left| \Omega \right| + {\lambda ^2}\int_\Omega {{{\left| {\nabla {w_m}} \right|}^2}} + higher \; order \; terms.

    (ii) If \beta = 3 , then

    \psi (\lambda ,s) = {\lambda ^2}\int_\Omega {{{\left| {\nabla {w_m}} \right|}^2}} + {s^2}\left( {\left| \Omega \right| + \int_\Omega h } \right) + higher \; order \; terms.

    (iii) If \beta > 3 , then

    \psi (\lambda ,s) = {\lambda ^2}\int_\Omega {{{\left| {\nabla {w_m}} \right|}^2}} + {s^2}\int_\Omega h + higher \; order \; terms.

    For (1) (i), we note that {\psi _s}(0, 0) = \left| \Omega \right| + \int_\Omega h < 0 , and that by using implicit function theorem, there exists a unique solution s = s(\lambda) of the equation \psi (\lambda, s) = 0 around (0, 0) , which satisfies

    \; s'\left( 0 \right) = - \frac{{\frac{{\partial \psi }}{{\partial \lambda }}\left( {0,0} \right)}}{{\frac{{\partial \psi }}{{\partial s}}\left( {0,0} \right)}} = 0,\; \; s''(0) = - \frac{{\frac{{{\partial ^2}\psi }}{{\partial {\lambda ^2}}}(0,0)}}{{\frac{{\partial \psi }}{{\partial s}}(0,0)}} = - \frac{{2\int_\Omega {{{\left| {\nabla {w_m}} \right|}^2}} }}{{\left| \Omega \right| + \int_\Omega h }}.\;

    So

    \begin{array}{l} \begin{aligned} s(\lambda ) = s(0) + s'(0)\lambda + \frac{{s''}}{2}{\lambda ^2} + o({\lambda ^2})\\ = {\lambda ^2}\left( { - \frac{{\int_\Omega {{{\left| {\nabla {w_m}} \right|}^2}} }}{{\left| \Omega \right| + \int_\Omega h }} + o(1)} \right). \end{aligned} \end{array}

    Moreover, we have

    \begin{array}{l} \begin{aligned} u = & s + w(\lambda ,s)\\ = & s + w(0,0) + \left( {{w_\lambda }(0,0)\lambda + {w_s}(0,0)s} \right)\\ &+ \frac{1}{2}\left( {{w_{\lambda \lambda }}(0,0){\lambda ^2} + 2{w_{\lambda s}}(0,0)\lambda s + {w_{ss}}(0,0){s^2}} \right) + ...\\ = & s + {w_m}\lambda s + \frac{1}{2}{w_p}{s^2} + ...\\ = & s\left( {1 + o(1)} \right). \end{aligned} \end{array}

    Therefore, combining the above two equations, we obtain (2.6).

    For (1) (ii), {\psi _s}(0, 0) = \int_\Omega h < 0 , using a similar argument as that of (1) (i), we have

    s(\lambda ) = {\lambda ^2}\left( { - \frac{{\int_\Omega {{{\left| {\nabla {w_m}} \right|}^2}} }}{{\int_\Omega h }} + o(1)} \right),\; u = s\left( {1 + o(1)} \right).

    For (2) (i), since \left| \Omega \right| > 0, \; \int_\Omega {{{\left| {\nabla {w_m}} \right|}^2}} > 0 , so the problem (1.1) is no positive solution in the neighborhood of (0, 0) .

    For (2) (ii), since

    \begin{array}{l} \begin{aligned} \det {D^2}\psi (0,0) & = \det \left( {\begin{array}{*{20}{c}} {2\int_\Omega {{{\left| {\nabla {w_m}} \right|}^2}} }&0\\ 0&{2\left( {\left| \Omega \right| + \int_\Omega h } \right)} \end{array}} \right)\\ & = 4\left( {\left| \Omega \right| + \int_\Omega h } \right)\int_\Omega {{{\left| {\nabla {w_m}} \right|}^2}} < 0, \end{aligned} \end{array}

    by using the Morse lemma, we see that for any s > 0 , \psi (\lambda, s) = 0 has a unique solution s = s(\lambda) in a neighborhood of (0, 0) and we have

    s(\lambda ) = \left( {{{\left( {\frac{{\int_\Omega {{{\left| {\nabla {w_m}} \right|}^2}} }}{{ - \left( {\left| \Omega \right| + \int_\Omega h } \right)}}} \lambda^{2} \right)}^{\frac{1}{2}}} + o(1)} \right),\; u = s\left( {1 + o(1)} \right).

    So we get the conclusion.

    For (2) (iii), since

    \begin{array}{l} \begin{aligned} \det {D^2}\psi (0,0) & = \det \left( {\begin{array}{*{20}{c}} {2\int_\Omega {{{\left| {\nabla {w_m}} \right|}^2}} }&0\\ 0&{2\int_\Omega h } \end{array}} \right)\\ & = 4\int_\Omega h \int_\Omega {{{\left| {\nabla {w_m}} \right|}^2}} < 0, \end{aligned} \end{array}

    using a similar argument as that of (2) (ii), we get

    s(\lambda ) = \left( {{{\left( {\frac{{\int_\Omega {{{\left| {\nabla {w_m}} \right|}^2}} }}{{ - \int_\Omega h }}} \lambda^{2} \right)}^{\frac{1}{2}}} + o(1)} \right),\; u = s\left( {1 + o(1)} \right).

    We first prove that under the suitable conditions, the problem (1.1) has no positive solution for any sufficiently large \left| \lambda \right| . More precisely, we have the following results.

    Proposition 3.1. Assume that m(x) changes sign in \Omega _ + ^h , ({{\rm{H}}_1}) holds and \left({\lambda, u} \right) is a positive solution of the problem (1.1). Then \lambda \in (\lambda _1^ -, \lambda _1^ +) , where \lambda _1^ - < 0 and \lambda _1^ + > 0 are the principal eigenvalue of the equation

    \begin{equation*} \left\{\begin{array}{ll} - \Delta u = \lambda m(x)u,\; \; &x \in \Omega _ + ^h, \\ u = 0,\; &x \in \partial \Omega _ + ^h. \end{array}\right. \end{equation*}

    Proof. If (\tilde \lambda, \tilde u) is a positive solution of the problem (1.1), then

    \begin{equation*} \left\{\begin{array}{ll} - \Delta \tilde u = \tilde \lambda m(x)\tilde u + h(x){\tilde u^p}+\int_\Omega {\tilde u{}^ \beta},\; \; &x \in \Omega, \\ \frac{{\partial \tilde u}}{{\partial n}} = 0 ,\; &x \in \partial \Omega , \end{array}\right. \end{equation*}

    thus, we have

    \begin{equation*} \left\{\begin{array}{ll} - \Delta \tilde u - \tilde \lambda m(x)\tilde u = h(x){\tilde u^p}+\int_\Omega {\tilde u{}^ \beta} > 0,\; \; &x \in \Omega _ + ^h, \\ \tilde u \ge 0,\; &x \in \partial \Omega _ + ^h. \end{array}\right. \end{equation*}

    It follows that the principal eigenvalue {\mu _1}({\tilde \lambda }) of the eigenvalue problem

    \begin{equation*} \left\{\begin{array}{ll} - \Delta u - \tilde \lambda m(x)u = \mu ( {\tilde \lambda } )u,\; &x \in \Omega _ + ^h, \\ {u} = 0,\; &x \in \partial \Omega _ + ^h \end{array}\right. \end{equation*}

    is positive. Then \lambda _1^ - < \tilde \lambda < \lambda _1^ + .

    Assume m(x) changes sign in \Omega _ + ^h , ({{\rm{H}}_1}) holds. For any \lambda \in \left({\lambda _1^ -, \lambda _1^ + } \right) , {e_\lambda } is the unique positive solution of the equation

    \begin{equation*} \left\{ \begin{array}{ll} - \Delta u - \lambda m(x)u = 1,\; \; &x \in \Omega _ + ^h, \\ u = 0,\; &x \in \partial \Omega _ + ^h. \end{array} \right. \end{equation*}

    We have the following lemma.

    Lemma 3.1. Assume m(x) changes sign in \Omega _ + ^h , ({{\rm{H}}_1}) holds and (\lambda, u) is a positive solution of the problem (1.1). Then

    u \ge {e_\lambda }\int_\Omega {{u^\beta }} ,\; x \in \Omega _ + ^h.

    Proof. If (\lambda, u) is a positive solution of the problem (1.1), then \lambda \in \left({\lambda _1^ -, \lambda _1^ + } \right) , and we have

    \begin{equation*} \left\{ \begin{array}{ll} - \Delta u - \lambda m(x)u = h(x){u^p} + \int_\Omega {{u^\beta }} \ge \int_\Omega {{u^\beta }} ,\; \; &x \in \Omega _ + ^h, \\ u \ge 0,\; &x \in \partial \Omega _ + ^h, \end{array} \right. \end{equation*}

    so

    \begin{equation*} \left\{ \begin{array}{ll} - \Delta \left( {\frac{u}{{\int_\Omega {{u^\beta }} }}} \right) - \lambda m(x)\left( {\frac{u}{{\int_\Omega {{u^\beta }} }}} \right) \ge 1 ,\; \; &x \in \Omega _ + ^h, \\ \frac{u}{{\int_\Omega {{u^\beta }} }} \ge 0,\; &x \in \partial \Omega _ + ^h. \end{array} \right. \end{equation*}

    Thus, we have \frac{u}{{\int_\Omega {{u^\beta }} }} \ge {e_\lambda } , namely, u \ge {e_\lambda }\int_\Omega {{u^\beta }} for x \in \Omega _ + ^h .

    We will use the method of Gidas-Spruck [7] to discuss the priori estimate of positive solutions.

    Lemma 3.2. Assume m(x) changes sign in \Omega _ + ^h , ({{\rm{H}}_1}) holds and \left\{ {({\lambda _k}, {u_k})} \right\} is a sequence of positive solutions of the problem (1.1) with {\left\| {{u_k}} \right\|_{C\left({\bar \Omega _ + ^h} \right)}} \to \infty as k \to \infty . Then there exists a constant C > 0 such that {\left\| {{u_k}} \right\|_{C\left({\bar \Omega _ + ^h} \right)}} \le Ct_k^{\frac{1}{p}} for sufficiently large k , where {t_k} = \int_\Omega {u_k^\beta } .

    Proof. If ({\lambda _k}, {u_k}) is a positive solution of the problem (1.1), then {\lambda _k} \in \left({\lambda _1^ -, \lambda _1^ + } \right) . Choose {x_k}\in\bar \Omega _ + ^h such that

    {u_k}({x_k}) = \mathop {\max }\limits_{\bar \Omega _ + ^h} {u_k},\; k = 1,2...

    and let {M_k} = {u_k}({x_k}) . Assume {M_k}t_k^{ - \frac{1}{p}} \to \infty as k \to + \infty . Take a change of variables

    \begin{equation} \begin{array}{ll} {u_k}(x) = {M_k}{v_k}(y),\; \; y = {\rho _k}(x - {x_k}),\; \; x \in \Omega _ + ^h, \end{array} \end{equation} (3.1)

    where {\rho _k} = M_k^{\frac{{p - 1}}{2}} , y \in {\Omega _k}: = {\rho _k}(\Omega_+^h - \{ {x_k}\}) . It is clear that 0 < {v_k} \le 1 , {v_k}(0) = 1 . Substituting (3.1) into the problem (1.1), by direct calculations, we have

    \begin{equation} \begin{array}{ll} - \Delta {v_k}(y) = {\lambda _k}{\bar m_k}(y)M_k^{1 - p}{v_k}(y) + {\bar h_k}(y)v_k^p(y) + {\left( {{M_k}t_k^{ - \frac{1}{p}}} \right)^{ - p}},\; \; y \in {\Omega _k}, \end{array} \end{equation} (3.2)

    where {\bar m_k}(y) = m(\rho _k^{ - 1}y + {x_k}) , {\bar h_k}(y) = h(\rho _k^{ - 1}y + {x_k}) . Since \bar \Omega _ + ^h is compact, then there exists a subsequence of \{ {x_k}\} , still denoted by \{ {x_k}\} , such that {x_k} \to {x_0} \in \bar \Omega _ + ^h . Now, we distinguish two cases.

    Case 1. {x_0} \in \Omega _ + ^h . It is seen in this case that {\Omega _k} \to {\mathbb{R}}^{N} as k \to \infty . Hence, for any compact subset \mathbb{K}_1 , we have \mathbb{K}_1 \subset \Omega_k for sufficiently large k . Since 0 < {v_k} \le 1 , there exist a positive constant C_2 , such that

    \left| {{\lambda _k}{{\bar m}_k}(y)M_k^{1 - p}{v_k}(y) + {{\bar h}_k}(y)v_k^p(y) + {{\left( {{M_k}t_k^{ - \frac{1}{p}}} \right)}^{ - p}}} \right| \le {C_2}.

    By using the regularity theory of the elliptic equation, we know that, there exists a subsequence of \left\{ {{v_k}} \right\} , still denoted by itself, such that

    {v_k} \to v \; in \; {C^1}({\mathbb{K}_1}),\; \; k \to + \infty,

    where v \in {C^1}({\mathbb{K}_1}) . Since {\mathbb{K}_1} \subset \subset {\Omega _k} is arbitrarily given, by a diagonal process, we can choose a subsequence, still denoted by \left\{ {{v_k}} \right\} , such that

    {v_k} \to v \; in \; C_{loc}^1({\mathbb{R}}^{N}),\; \; k \to + \infty.

    Thus, we have

    \begin{equation} \begin{array}{ll} -\Delta v(y) = h({x_0 }){v^p}(y),\; \; y \in {\mathbb{R}}^{N}. \end{array} \end{equation} (3.3)

    Note that v(0) = 1 , by (3.3) and a linear change of coordinates, we find that there exists a nontrivial non-negative function w \in {C^2}({\mathbb{R}}^{N}) satisfying - \Delta w = {w^p} , which contradicts [7].

    Case 2. {x_0} \in \partial \Omega _ + ^h . By an additional change of coordinates, we can assume that a neighborhood of {x_0} in \partial \Omega _ + ^h is a hyperplane {x^N} = 0 and \bar \Omega _ + ^h \subset H = \{ x \in {\mathbb{R}}{^N}, {x^N} > 0\} . Hence, given R > 0 , there exists {k_R} such that for k \ge {k_R} , {v_k} is well defined on

    {H_{R,k}}: = B(0,R) \cap \left\{ {{y^N} > - M_k^{\frac{{p - 1}}{2}}x_k^N} \right\}.

    Now, we have the following three cases.

    (i) \left\{ M_k^{\frac{{p - 1}}{2}}x_k^N \right\} is not bounded from upper. Assume without loss of generality that M_k^{\frac{{p - 1}}{2}}x_k^N \to \infty . Then, we have

    {H_{R,k}} \to B(0,R),\; k \to \infty.

    We may argue exactly as in Case 1.

    (ii) \left\{ M_k^{\frac{{p - 1}}{2}}x_k^N \right\} is not bounded from below. Assume without loss of generality that M_k^{\frac{{p - 1}}{2}}x_k^N \to 0 . Then, we have

    {H_{R,k}} \to B(0,R) \cap H,\; k \to \infty.

    Arguing as in Case 1, there exists v \; \in \; {C^2}(\bar H) such that v \ge 0 , v(0) = 1 , and v satisfies

    - \Delta v = h({x_0}){v^p},\; in\; {\mathbb{R}}_ + ^N.

    This contradicts Corollary 2.1 of [7].

    (iii) \left\{ M_k^{\frac{{p - 1}}{2}}x_k^N \right\} is bounded from below. Assume without loss of generality that M_k^{\frac{{p - 1}}{2}}x_k^N \to s, \; s > 0 . Then, we have

    {H_{R,k}} \to B(0,R) \cap \left\{ {y \in {\mathbb{R}}{^N}:{y^N} > - s} \right\} = {B_R} \cap {H_s}.

    We can proceed as in (ii) and there exists v \; \in \; C_{loc}^2({H_s}) such that v \ge 0 , v(0) = 1 , and v satisfies

    - \Delta v = h({x_0}){v^p},\; in\; {H_s}.

    Taking a change of variable through {y^N} = - s , we have that v \in {C^2}(\bar H) , v \ge 0 , v(0) = 1 , and v satisfies

    - \Delta v = h({x_0}){v^p},\; in\; {\mathbb{R}}_ + ^N,

    a contradiction.

    Lemma 3.3. Assume m(x) changes sign in \Omega _ + ^h and ({{\rm{H}}_1}) holds, then there exists a constant C > 0 such that {\left\| u \right\|_{C\left({\bar \Omega _ + ^h} \right)}} \le C for any positive solution (\lambda, u) of the problem (1.1).

    Proof. If ({\lambda _k}, {u_k}) is a positive solution of the problem (1.1), then {\lambda _k} \in \left({\lambda _1^ -, \lambda _1^ + } \right) . Assume

    {\lambda _k} \to {\lambda _0} \in \left( {\lambda _1^ - ,\lambda _1^ + } \right),\; {\left\| {{u_k}} \right\|_{C\left( {\bar \Omega _ + ^h} \right)}} \to \infty,\; k \to \infty.

    By virtue of Lemma 3.2, we have

    {u_k} \le {\left\| {{u_k}} \right\|_{C\left( {\bar \Omega _ + ^h} \right)}} \le Ct_k^{\frac{1}{p}},{\rm{ }}x \in \Omega _ + ^h,

    where {t_k} = \int_\Omega {u_k^\beta } . Moreover, we have {t_k} \to \infty . But by using Lemma 3.1, we have {u_k} \ge {e_{{\lambda _k}}}{t_k} , a contradiction. Therefore, there exists a constant C > 0 such that {\left\| u \right\|_{C\left({\bar \Omega _ + ^h} \right)}} \le C .

    Theorem 3.1. Assume m(x) changes sign in \Omega _ + ^h , ({{\rm{H}}_1}) holds and \beta > \max \left\{ {p, {{N(p - 1)} \mathord{\left/ {\vphantom {{N(p - 1)} 2}} \right. } 2}} \right\} . Then there exists a constant C > 0 such that {\left\| u \right\|_{C(\bar \Omega)}} \le C for any positive solution (\lambda, u) of the problem (1.1).

    Proof. Let f(u) = \lambda m(x)u + h(x){u^p} + \int_\Omega {{u^\beta }} . By Lemma 3.3, there exists a constant {C_ 1 } > 0 , such that u \le {\left\| u \right\|_{C\left({\bar \Omega _ + ^h} \right)}} \le {C_ 1 }, {\rm{ }}x \in \Omega _ + ^h . It follows that \int_\Omega {{u^\beta }} is bounded by Lemma 3.1, so f(u) is bounded in {L^{{\beta \mathord{\left/ {\vphantom {\beta p}} \right. } p}}}(\Omega) . Thus, u is bounded in {W^{2, {\beta \mathord{\left/ {\vphantom {\beta p}} \right. } p}}}(\Omega) . By using boot-strapping method [1], it follows that there exists a constant C > 0 , such that {\left\| u \right\|_{C(\bar \Omega)}} \le C .

    Next, we give another way of proving boundedness. We first show two results about eigenvalue problem. We consider the eigenvalue problem

    \begin{equation} \left\{ \begin{array}{ll} - \Delta u + a(x)u = \sigma u,&x \in \Omega , \\ {B_\Omega }u = 0,&x \in \partial \Omega , \end{array} \right. \end{equation} (3.4)

    where

    {B_\Omega }u = \left\{ \begin{array}{l} v,\; \; \; \; x \in {\Gamma _1}(\Omega ),\\ \frac{{\partial u}}{{\partial n}},\; \; x \in {\Gamma _2}(\Omega ), \end{array} \right.

    \partial \Omega = {\Gamma _1}(\Omega) \cup {\Gamma _2}(\Omega) , {\Gamma _1}(\Omega) is nonempty. {\sigma _1}(- \Delta + a(x), {B_\Omega }, \Omega) is the principal eigenvalue of problem (3.4). Generally, we denote {B_\Omega } by B . We have the following results.

    (1) If a(x) \le \tilde a(x) , then {\sigma _1}(- \Delta + a(x), B, \Omega) \le {\sigma _1}(- \Delta + \tilde a(x), B, \Omega) .

    Proof. Let \tilde a(x) = a(x) + b(x) , then b(x) \ge 0 . Let F(u) = \int_\Omega {|\nabla u{|^2}} + \int_\Omega {a{u^2}} , \tilde F(u) = \int_\Omega {|\nabla u{|^2}} + \int_\Omega {\tilde a{u^2}} , then

    \begin{array}{l} \begin{aligned} {\sigma _1}( - \Delta + a(x),B,\Omega ) & = \inf \left\{ {F(u):u \in {H^1}(\Omega ),{{\left\| u \right\|}_{{L^2}(\Omega )}} = 1,Bu = 0} \right\}\\ & \le \inf \left\{ {F(u) + \int_\Omega {b{u^2}} :u \in {H^1}(\Omega ),{{\left\| u \right\|}_{{L^2}(\Omega )}} = 1,Bu = 0} \right\}\\ & = \inf \left\{ {\tilde F(u):u \in {H^1}(\Omega ),{{\left\| u \right\|}_{{L^2}(\Omega )}} = 1,Bu = 0} \right\}\\ & \le {\sigma _1}( - \Delta + \tilde a(x),B,\Omega ). \end{aligned} \end{array}

    (2) If \Omega \subset {\Omega ^*} and {\mathop{\rm int}} (\Omega ^*) \cap {\Gamma _2}(\Omega) = \emptyset , then

    {\sigma _1}( - \Delta + a(x),B,\Omega ) \ge {\sigma _1}( - \Delta + a(x),B,{\Omega ^*}).

    Proof. Let {F_\Omega }(u) = \int_\Omega {|\nabla u{|^2}} + \int_\Omega {a{u^2}} , \tilde u denote that the function u \in {H^1}(\Omega) extends to {\Omega ^*} and {\mathop{\rm int}} (\Omega ^*) \cap {\Gamma _2}(\Omega) = \emptyset . Then \tilde u satisfies {\left. {\tilde u} \right|_{\partial {\Omega ^*}\backslash \partial \Omega }} = 0 , {\left. {{B_{{\Omega ^*}}}\tilde u} \right|_{\partial {\Omega ^*} \cap \partial \Omega }} = 0 . Therefore,

    \begin{array}{l} \begin{aligned} &{\sigma _1}( - \Delta + a(x),B,\Omega ) \\ & = \inf \left\{ {{F_\Omega }(u):u \in {H^1}(\Omega ),{{\left\| u \right\|}_{{L^2}(\Omega )}} = 1,{B_\Omega }u = 0} \right\}\\ & = \inf \left\{ {{F_{{\Omega ^*}}}(\tilde u):\tilde u \in {H^1}(\Omega ),{{\left\| {\tilde u} \right\|}_{{L^2}(\Omega )}} = 1,{{\left. {{B_{{\Omega ^*}}}\tilde u} \right|}_{\partial {\Omega ^*} \cap \partial \Omega }} = 0,{{\left. {\tilde u} \right|}_{\partial {\Omega ^*}\backslash \partial \Omega }} = 0} \right\}\\ & \ge \inf \left\{ {{F_{{\Omega ^*}}}({u^*}):{u^*} \in {H^1}(\Omega ),{{\left\| {{u^*}} \right\|}_{{L^2}(\Omega )}} = 1,{{\left. {{B_{{\Omega ^*}}}{u^*}} \right|}_{\partial {\Omega ^*} \cap \partial \Omega }} = 0,{{\left. {{u^*}} \right|}_{\partial {\Omega ^*}\backslash \partial \Omega }} = 0} \right\}\\ & = \inf \left\{ {{F_{{\Omega ^*}}}({u^*}):{u^*} \in {H^1}(\Omega ),{{\left\| {{u^*}} \right\|}_{{L^2}(\Omega )}} = 1,{{\left. {{B_{{\Omega ^*}}}{u^*}} \right|}_{\partial {\Omega ^*} \cap \partial \Omega }} = 0,} \right.{\left. {{u^*}} \right|_{{\Gamma _1}(\partial {\Omega ^*}\backslash \partial \Omega )}} = 0,\\ \; \; \; \; \; &\; \; {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left. {{{\left. {{u^*}} \right|}_{{\Gamma _2}(\partial {\Omega ^*}\backslash \partial \Omega )}} = 0} \right\} \\ & \ge \inf \left\{ {{F_{{\Omega ^*}}}({u^*}):{u^*} \in {H^1}(\Omega ),{{\left\| {{u^*}} \right\|}_{{L^2}(\Omega )}} = 1,{{\left. {{B_{{\Omega ^*}}}{u^*}} \right|}_{\partial {\Omega ^*} \cap \partial \Omega }} = 0,} \right.{\left. {{u^*}} \right|_{{\Gamma _1}(\partial {\Omega ^*}\backslash \partial \Omega )}} = 0,\\ \; \; \; \; \; &\; \; {\kern 1pt} \left. {{{\left. {\frac{{\partial {u^*}}}{{\partial n}}} \right|}_{{\Gamma _2}(\partial {\Omega ^*}\backslash \partial \Omega )}} = 0} \right\}\\ & = \inf \left\{ {{F_{{\Omega ^*}}}(u):u \in {H^1}({\Omega ^*}),{{\left\| u \right\|}_{{L^2}({\Omega ^*})}} = 1,{B_{{\Omega ^*}}}u = 0} \right\}\\ & = {\sigma _1}( - \Delta + a(x),B,{\Omega ^*}). \end{aligned} \end{array}

    Let S is the positive solution set of the problem (1.1) and {\Lambda _S}: = \left\{ {\lambda \in R; (\lambda, u) \in S} \right\} is bounded. we have

    Theorem 3.2. If \mathop {\sup }\limits_{(\lambda, u) \in S} \mathop {\sup }\limits_{\Omega _ + ^h} {\rm{u}} < \infty , then \mathop {\sup }\limits_{(\lambda, u) \in S} \mathop {\sup }\limits_\Omega u < \infty .

    Proof. If (\lambda, u) is a positive solution of the problem (1.1), then

    \begin{equation*} \left\{\begin{array}{ll} - \Delta u - \lambda m(x)u = h(x){u^p} + \int_\Omega {{u^\beta}} > 0,\; \; &x \in \Omega \backslash \bar \Omega _ - ^h, \\ u \ge 0,\; &x \in {\Gamma _1}(\Omega \backslash \bar \Omega _ - ^h), \\ \frac{{\partial u}}{{\partial n}} = 0,\; &x \in {\Gamma _2}(\Omega \backslash \bar \Omega _ - ^h), \end{array}\right. \end{equation*}

    where {\Gamma _1}(\Omega \backslash \bar \Omega _ - ^h) \subset \Omega , {\Gamma _2}(\Omega \backslash \bar \Omega _ - ^h) \subset \partial \Omega , {\Gamma _1}(\Omega) is nonempty. Then (\lambda, u) is a strict upper solution of the equation

    \begin{equation*} \left\{\begin{array}{ll} - \Delta v - \lambda m(x)v = 0,\; \; &x \in \Omega \backslash \bar \Omega _ - ^h, \\ v = 0,\; &x \in {\Gamma _1}(\Omega \backslash \bar \Omega _ - ^h), \\ \frac{{\partial v}}{{\partial n}} = 0,\; &x \in {\Gamma _2}(\Omega \backslash \bar \Omega _ - ^h), \end{array}\right. \end{equation*}

    so

    {\sigma _1}( - \Delta - \lambda m(x),B,\Omega \backslash \bar \Omega _ - ^h) > 0.

    By \Omega _0^h \subset \Omega \backslash \bar \Omega _ - ^h and result (2) , we have

    {\sigma _1}( - \Delta - \lambda m(x),B,\Omega _0^h) \ge {\sigma _1}( - \Delta - \lambda m(x),B,\Omega \backslash \bar \Omega _ - ^h).

    Let

    {\Omega _\delta } = \Omega _0^h \cup \left\{ {x \in \Omega _ - ^h:d(x , \partial \Omega _ - ^h) < \delta } \right\} \cup \left\{ {\partial \Omega _ - ^h \cap (\Omega \backslash \partial \Omega _ + ^h)} \right\},

    then {\Omega _\delta } \to \Omega _0^h when \delta \to 0 . So there exists a sufficiently small \delta > 0 , such that {\sigma _1}(- \Delta - \lambda m(x), B, {\Omega _\delta }) > 0 , so that {\sigma _1}(- \Delta - \lambda m(x), B, {\Omega _\delta }) > 0 satisfies the strong maximum principle.

    Let M = \mathop {\sup }\limits_{(\lambda, u) \in S} \mathop {\sup }\limits_{\Omega _ + ^h} u and \psi be the unique solution of

    \begin{equation*} \left\{\begin{array}{ll} - \Delta v - \lambda m(x)v = 1,\; \; &x \in {\Omega _\delta }, \\ v = M,\; &x \in {\Gamma _1}({\Omega _\delta }), \\ \frac{{\partial v}}{{\partial n}} = 0,\; &x \in {\Gamma _2}({\Omega _\delta }). \end{array}\right. \end{equation*}

    Since {\sigma _1}(- \Delta - \lambda m(x), B, {\Omega _\delta }) > 0 , we have \psi > 0, x \in {\Omega _\delta } by the strong maximum principle. Denote by w an extension of {\left. \psi \right|_{{\Omega _{{\delta \mathord{\left/ {\vphantom {\delta 2}} \right. } 2}}}}} with \mathop {\min }\limits_{\bar \Omega } w > 0 , {\left. {{\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{{\partial w}}{{\partial n}}} \right|_{{\Gamma _2}(\Omega)}} = 0 . Then \bar u = kw is for sufficiently large k > 0 a positive strict upper solution of

    \begin{equation*} \left\{\begin{array}{ll} - \Delta v = \lambda m(x)v + h(x){v^p} + {k_2},\; \; &x \in \Omega \backslash \bar \Omega _ + ^h, \\ v = M,\; &x \in {\Gamma _1}(\Omega \backslash \bar \Omega _ + ^h), \\ \frac{{\partial v}}{{\partial n}} = 0,\; &x \in {\Gamma _2}(\Omega \backslash \bar \Omega _ + ^h), \end{array}\right. \end{equation*}

    where {k_2} > \int_\Omega {{u^\beta}} . Indeed, in {\Omega _{{\delta \mathord{\left/ {\vphantom {\delta 2}} \right. } 2}}} we have

    \begin{array}{l} \begin{aligned} - \Delta kw & = - k\Delta w\\ & = k\lambda m(x)w + k\\ & \ge k\lambda m(x)w + h(x){(kw)^p} + k\\ & \ge \lambda m(x)(kw) + h(x){(kw)^p} + {k_2}. \end{aligned} \end{array}

    In {\Sigma _\delta } = \left\{ {x \in \Omega _ - ^h:d(x, \partial \Omega _ - ^h) \ge \frac{\delta }{2}} \right\} , since w(x) and - h(x) are positive and bounded away from zero, then h(x){k^{p - 1}}{w^p} \to - \infty as k \to \infty , namely

    - \Delta w \ge \lambda m(x)w + h(x){k^{p - 1}}{w^p} + {{{k_2}} \mathord{\left/ {\vphantom {{{k_2}} k}} \right. } k}.

    On {\Gamma _1}(\Omega \backslash \bar \Omega _ + ^h) , since \mathop {\min }\limits_{\bar \Omega } w > 0 , we know kw \ge M ; on {\Gamma _2}(\Omega \backslash \bar \Omega _ + ^h) , we have \frac{{\partial kw}}{{\partial n}} = 0 . Thus \bar u = kw is a positive strict upper solution. Moreover, by the relationship between the strict upper solution and the principal eigenvalues, we have

    {\sigma _1}( - \Delta - \lambda m(x) - {\bar u^{p - 1}}h(x),B,\Omega \backslash \bar \Omega _ + ^h) > 0.

    If (\lambda, u) \in S then it follows that v = \bar u - u satisfies

    \begin{equation*} \left\{\begin{array}{ll} - \Delta v - \lambda m(x)v - ({{\bar u}^{p - 1}} + {{\bar u}^{p - 2}}u + ... + {u^{p - 1}})h(x)v > 0,\; \; &x \in \Omega \backslash \bar \Omega _ + ^h, \\ v \ge 0,\; &x \in {\Gamma _1}(\Omega \backslash \bar \Omega _ + ^h), \\ \frac{{\partial v}}{{\partial n}} = 0,\; &x \in {\Gamma _2}(\Omega \backslash \bar \Omega _ + ^h). \end{array}\right. \end{equation*}

    Indeed, in \Omega \backslash \bar \Omega _ + ^h , since

    - \Delta \bar u \ge \lambda m(x)\bar u + h(x){{\bar u}^p} + {k_2},
    - \Delta u = \lambda m(x)u + h(x){u^p} + \int_\Omega {{u^\beta}},

    so

    \begin{array}{l} \begin{aligned} - \Delta v & > \lambda m(x)v + h(x)({{\bar u}^p} - {u^p}) + ({k_2} - \int_\Omega {{u^\beta}} )\\ & > \lambda m(x)v + ({{\bar u}^{p - 1}} + {{\bar u}^{p - 2}}u + ... + {u^{p - 1}})h(x)v. \end{aligned} \end{array}

    Thus by result (1) we have

    \begin{array}{l} \begin{aligned} &{\sigma _1}( - \Delta - \lambda m(x) - ({{\bar u}^{p - 1}} + {{\bar u}^{p - 2}}u + ... + {u^{p - 1}})h(x),B,\Omega \backslash \bar \Omega _ + ^h) \\ &\; \; \; \; \ge {\sigma _1}( - \Delta - \lambda m(x) - {{\bar u}^{p - 1}}h(x),B,\Omega \backslash \bar \Omega _ + ^h)\\ &\; \; \; \; > 0. \end{aligned} \end{array}

    By the relationship between the principal eigenvalues and the strong maximum principle, we have u \le \bar u . The proof is completed.

    proof of Theorem 1.1. If \int_\Omega m < 0 , by virtue of Theorem 2.1, we obtain the bifurcation curve of positive solutions of the problem (1.1), and the direction of bifurcation is given by Theorem 2.2. When m(x) changes sign in \Omega _ + ^h and {\rm{(}}{{\rm{H}}_1}) holds, we have (i) by Proposition 3.1. Finally, we have (ii) by the priori estimate of positive solutions of Theorem 3.2.

    Next, we prove (iii). We assume by contradiction that ({\lambda _k}, {u_k}) are positive solutions of the problem (1.1), and ({\lambda _k}, {u_k}) \to (\gamma, 0) in \mathbb{R} \times {C}(\bar \Omega) , where \gamma \ne {\lambda _ + } and 0. Let {v_k} = \frac{{{u_k}}}{{{{\left\| {{u_k}} \right\|}_{C(\bar \Omega)}}}} , by the problem (1.1), we have

    \begin{equation*} \left\{\begin{array}{ll} - \Delta {v_k} = {\lambda _k}m(x){v_k} + h(x)v_k^p\left\| {u{}_k} \right\|_{C(\bar \Omega )}^{p - 1} + \left\| {u{}_k} \right\|_{C(\bar \Omega )}^{\beta - 1}\int_\Omega {v_k^\beta } ,\; \; &x \in \Omega , \\ \frac{{\partial {v_k}}}{{\partial n}} = 0,\; &x \in \partial \Omega. \end{array}\right. \end{equation*}

    By virtue of the regularity theory of the elliptic equation, we know that there is a subsequence, still denoted by \{ {v_k}\} , such that {v_k} \to {v_0} in {C^2}({\bar \Omega }) , {v_0} is a solution of the equation

    \begin{equation*} \left\{\begin{array}{lll} - \Delta {v_0} = \gamma m(x){v_0},\; \; &x \in \Omega , \\ \frac{{\partial {v_0}}}{{\partial n}} = 0,\; &x \in \partial \Omega . \end{array}\right. \end{equation*}

    So \gamma = {\lambda _ + } or 0 , a contradiction. Moreover, by using Rabinowitz global bifurcation theory, we see that {C^ + } bifurcates from ({\lambda _ + }, 0) and backs to (0, 0) .

    Similarly, we obtain the global bifurcation results of the problem (1.1) for \int_\Omega m > 0 .

    proof of Theorem 1.3. Since m(x) changes sign in \Omega _ + ^h and {m_\varepsilon }(x) = m(x) - \varepsilon for \varepsilon > 0 , so {m_\varepsilon } changes sign and \int_\Omega {{m_\varepsilon }} < 0 for sufficiently small \varepsilon . Thus, we know that

    \begin{equation*} \left\{\begin{array}{ll} -\Delta u = \lambda {m_\varepsilon }(x)u,\; \; &x \in \Omega, \\ \frac{{\partial u}}{{\partial n}} = 0,\; &x \in \partial \Omega \end{array}\right. \end{equation*}

    has the principal eigenvalue 0 and {\lambda _ + }({m_\varepsilon }) > 0 . Substituting {m_\varepsilon }(x) for m(x) , we can see that u is bounded in {C}(\bar \Omega) with {m_\varepsilon }(x) through the proof of a priori estimate of positive solutions. By Theorem 1.1, we see that the problem (1.1) with {m_\varepsilon } has a connected branch C_\varepsilon ^ + of positive solutions set in \mathbb{R} \times C(\bar \Omega) such that its closure \overline {C_\varepsilon ^ + } contains (0, 0) and \left({{\lambda _ + }({m_\varepsilon }), 0} \right) . Suppose that {\varphi _\varepsilon } > 0 is the principal eigenfunction corresponding to {\lambda _ + }({m_\varepsilon }) normalized so that {\left\| {{\varphi _\varepsilon }} \right\|_{{W^{1, 2}}(\Omega)}} = 1 . According to [4], we have \mathop {\lim }\limits_{\varepsilon \to 0} {\lambda _ + }({m_\varepsilon }) = 0 and {\varphi _\varepsilon } \to C in {W^{1, 2}}(\Omega) , where C is a positive constant.

    If \beta > p and \int_\Omega h < 0 , then C_\varepsilon ^ + is subcritical at (0, 0) by Theorem 2.2. Since {\lambda _ + }({m_\varepsilon }) \to 0 and {\varphi _\varepsilon } \to C , so for sufficiently small \varepsilon , we have \int_\Omega {h\varphi _1^{p + 1}} and \int_\Omega h have same sign for \beta > p . So C_\varepsilon ^ + is supercritical at \left({{\lambda _ + }({m_\varepsilon }), 0} \right) for \beta > p and \int_\Omega h < 0 . Therefore, \overline {C_\varepsilon ^ + } is likely to approach a closed loop as \varepsilon \to 0 , which bifurcates from the origin and backs to the origin, as Figure 3.

    We now investigate \overline {C_\varepsilon ^ + } as \varepsilon \to 0 . Although it seems likely in Figure 3 that \overline {C_\varepsilon ^ + } approaches a closed loop joining the origin to itself as \varepsilon \to 0 , this seems difficult to establish. We can, however, prove that \overline {C_\varepsilon ^ + } does not shrink to a point. For sets {E_n} , n \in \mathbb{N} , we define

    \mathop {\lim }\limits_{n \to \infty } \inf {E_n} = \{x: there exists {{N_0} \in \mathbb{N}} such that any neighborhood of x intersects {E_n} for all {n \ge {N_0}} \; \} ,

    \mathop {\lim }\limits_{n \to \infty } \sup {E_n} = \{x: any neighborhood of x intersects {E_n} for infinitely many n \; \} .

    According to [8], if { \cup _{n \ge 1}}{E_n} is precompact in M and \mathop {\underline {\lim } }\limits_{n \to \infty } {E_n} \ne \emptyset , then \mathop {\overline {\lim } }\limits_{n \to \infty } {E_n} is non-empty, closed and connected. Here, \{ {E_n}\} is a sequence of connected sets in a complete metric space M .

    Obviously, (0, 0) \in \overline {C_\varepsilon ^ + } , so (0, 0) \in \mathop {\underline {\lim } }\limits_{\varepsilon \to 0} C_\varepsilon ^ + . It follows from the results of the priori bounds that { \cup _{\varepsilon > 0}}C_\varepsilon ^ + is precompact in {C^2}({\bar \Omega }) . Then \mathop {\overline {\lim } }\limits_{\varepsilon \to 0} C_\varepsilon ^ + is non-empty, closed and connected. We note that (0, 0) \in \mathop {\overline {\lim } }\limits_{\varepsilon \to 0} C_\varepsilon ^ + , and also, from the definition, that \mathop {\overline {\lim } }\limits_{\varepsilon \to 0} C_\varepsilon ^ + consists of nonnegative solutions of the problem (1.1).

    Since \overline {C_\varepsilon ^ + } joining (0, 0) and \left({{\lambda _ + }({m_\varepsilon }), 0} \right) is subcritical at (0, 0) and supercritical at \left({{\lambda _ + }({m_\varepsilon }), 0} \right) , then \overline {C_\varepsilon ^ + } must join (0, {u_\varepsilon }) , {u_\varepsilon } is a positive solution of the equation

    \begin{equation} \left\{ \begin{array}{ll} - \Delta u = h(x){u^p} + \int_\Omega {{u^\beta }} ,\; \; &x \in \Omega, \\ \frac{{\partial u}}{{\partial n}} = 0,&x \in \partial \Omega . \end{array} \right. \end{equation} (4.1)

    By a priori estimate of positive solutions, we see that {u_\varepsilon } is bounded. By virtue of the regularity theory of the elliptic equation, it follows that \{ {u_\varepsilon }\} must have a convergent subsequence in {C^2}({\bar \Omega }) converging to u , where u is a solution of the Eq (4.1). Moreover, we have (0, u) \in \overline {\mathop {\lim }\limits_{\varepsilon \to 0} } C_\varepsilon ^ + .

    Next, we prove u \not \equiv 0 . Otherwise, we have {u_\varepsilon } \to 0 . Let {v_\varepsilon } = \frac{{{u_\varepsilon }}}{{\left\| {{u_\varepsilon }} \right\|}} , by the Eq (4.1), we see that

    \int_\Omega {{{\left| {\nabla {u_\varepsilon }} \right|}^2}} = \int_\Omega {h(x)u_\varepsilon ^{p + 1}} + \int_\Omega {{u_\varepsilon }} \int_\Omega {u_\varepsilon ^\beta } ,

    then

    \begin{equation} \begin{array}{ll} \int_\Omega {{{\left| {\nabla {v_\varepsilon }} \right|}^2}} = {\left\| {{u_\varepsilon }} \right\|^{p - 1}}\int_\Omega {h(x)v_\varepsilon ^{p + 1}} + {\left\| {{u_\varepsilon }} \right\|^{\beta - 1}}\int_\Omega {{v_\varepsilon }} \int_\Omega {v_\varepsilon ^\beta }. \end{array} \end{equation} (4.2)

    Thus, we have \int_\Omega {{{\left| {\nabla {v_\varepsilon }} \right|}^2}} \to 0 as \varepsilon \to 0 . Since {v_\varepsilon } is bounded, so we may assume that {v_\varepsilon } \rightharpoonup {v_0} in {W^{1, 2}}(\Omega) , {v_\varepsilon } \to {v_0} in {L^{p + 1}}(\Omega) and {L^\beta }(\Omega) , hence, we claim that {v_\varepsilon } \to {v_0} in {W^{1, 2}}(\Omega) . Otherwise, we have

    \int_\Omega {{{\left| {\nabla {v_0}} \right|}^2}} < \mathop {\underline {\lim } }\limits_{\varepsilon \to 0} \int_\Omega {{{\left| {\nabla {v_\varepsilon }} \right|}^2}} \le 0,

    a contradiction, so {v_0} is a positive constant c , then {v_\varepsilon } \to c in {L^{p + 1}}(\Omega) and {L^\beta }(\Omega) . Thus, when \varepsilon is sufficiently small, we have \int_\Omega {{v_\varepsilon }} \int_\Omega {v_\varepsilon ^\beta } < 0 for \beta > p , but this is impossible because of the equality in (4.2).

    Therefore, under the conditions of the Theorem 1.3, there exists a connected components C^ + of positive solutions set such that its closure \overline {{C^ + }} includes \mathop {\overline {\lim } }\limits_{\varepsilon \to 0} C_\varepsilon ^ + , which bifurcates from the origin and backs to the origin, namely, \overline {{C^ + }} is a closed loop.

    The authors would like to thank the referees for their valuable comments and suggestions. This paper is partially supported by NSFC, PR China 11871250.

    The authors declare no conflict of interest.



    [1] F. Corr\hat{\text{e}}a, A. Su\acute{\text{a}}rez, Combining local and nonlocal terms in a nonlinear elliptic problem, Math. Method. Appl. Sci., 35 (2012), 547–563. doi: 10.1002/mma.1592
    [2] M. Wang, Y. Wang, Properties of positive solutions for non-local reaction-diffusion problems, Math. Method. Appl. Sci., 19 (1996), 1141–1156. doi: 10.1002/(SICI)1099-1476(19960925)19:14<1141::AID-MMA811>3.0.CO;2-9
    [3] P. Quittner, P. Souplet, Superlinear parabolic problems, Blow-up, Global Existence and Steady States, Basel: Birkhäuser Verlag, 2007.
    [4] K. J. Brown, Local and global bifurcation results for a semilinear boundary value problem, J. Differ. Equations, 239 (2007), 296–310. doi: 10.1016/j.jde.2007.05.013
    [5] K. J. Brown, S. S. Lin, On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function, J. Math. Anal. Appl., 75 (1980), 112–120. doi: 10.1016/0022-247X(80)90309-1
    [6] M. Wang, Nonlinear elliptic equations (in Chinaese), Beijing: Science Press, 2010.
    [7] B. Gidas, J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Part. Diff. Eq., 6 (1981), 883–901. doi: 10.1080/03605308108820196
    [8] G. T. Whyburn, Topological analysis, B. Am. Math. Soc., 62 (1956), 119–121.
    [9] K. Umezu, Bifurcation approach to a logistic elliptic equation with a homogeneous incoming flux boundary condition, J. Differ. Equations, 252 (2012), 1146–1168. doi: 10.1016/j.jde.2011.08.043
    [10] K. Umezu, Global structure of supercritical bifurcation with turning points for the logistic elliptic equation with nonlinear boundary conditions, Nonlinear Anal-Theor, 89 (2013), 250–266. doi: 10.1016/j.na.2013.05.011
    [11] J. Bebernes, A. Bressan, Thermal behavior for a confined reactive gas, J. Differ. Equations, 44 (1982), 118–133. doi: 10.1016/0022-0396(82)90028-6
    [12] H. Bei, H. M. Yin, Semilinear parabolic equations with prescribed energy, Rendiconti Del Circolo Matematico Di Palermo, 44 (1995), 479–505. doi: 10.1007/BF02844682
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2650) PDF downloads(119) Cited by(0)

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog