Citation: Yang Chen, Wencai Zhao. Dynamical analysis of a stochastic SIRS epidemic model with saturating contact rate[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5925-5943. doi: 10.3934/mbe.2020316
[1] | Yuting Ding, Gaoyang Liu, Yong An . Stability and bifurcation analysis of a tumor-immune system with two delays and diffusion. Mathematical Biosciences and Engineering, 2022, 19(2): 1154-1173. doi: 10.3934/mbe.2022053 |
[2] | Shunyi Li . Hopf bifurcation, stability switches and chaos in a prey-predator system with three stage structure and two time delays. Mathematical Biosciences and Engineering, 2019, 16(6): 6934-6961. doi: 10.3934/mbe.2019348 |
[3] | Jianjun Paul Tian . The replicability of oncolytic virus: Defining conditions in tumor virotherapy. Mathematical Biosciences and Engineering, 2011, 8(3): 841-860. doi: 10.3934/mbe.2011.8.841 |
[4] | Qingfeng Tang, Guohong Zhang . Stability and Hopf bifurcations in a competitive tumour-immune system with intrinsic recruitment delay and chemotherapy. Mathematical Biosciences and Engineering, 2021, 18(3): 1941-1965. doi: 10.3934/mbe.2021101 |
[5] | LanJiang Luo, Haihong Liu, Fang Yan . Dynamic behavior of P53-Mdm2-Wip1 gene regulatory network under the influence of time delay and noise. Mathematical Biosciences and Engineering, 2023, 20(2): 2321-2347. doi: 10.3934/mbe.2023109 |
[6] | Suqi Ma . Low viral persistence of an immunological model. Mathematical Biosciences and Engineering, 2012, 9(4): 809-817. doi: 10.3934/mbe.2012.9.809 |
[7] | Hongying Shu, Wanxiao Xu, Zenghui Hao . Global dynamics of an immunosuppressive infection model with stage structure. Mathematical Biosciences and Engineering, 2020, 17(3): 2082-2102. doi: 10.3934/mbe.2020111 |
[8] | Hsiu-Chuan Wei . Mathematical modeling of tumor growth: the MCF-7 breast cancer cell line. Mathematical Biosciences and Engineering, 2019, 16(6): 6512-6535. doi: 10.3934/mbe.2019325 |
[9] | Juenu Yang, Fang Yan, Haihong Liu . Dynamic behavior of the p53-Mdm2 core module under the action of drug Nutlin and dual delays. Mathematical Biosciences and Engineering, 2021, 18(4): 3448-3468. doi: 10.3934/mbe.2021173 |
[10] | Yilong Li, Shigui Ruan, Dongmei Xiao . The Within-Host dynamics of malaria infection with immune response. Mathematical Biosciences and Engineering, 2011, 8(4): 999-1018. doi: 10.3934/mbe.2011.8.999 |
[1] | S. Ullah, M. A. Khan, M. Farooq, T. Gul, Modeling and analysis of Tuberculosis (TB) in Khyber Pakhtunkhwa, Pakistan, Math. Comput. Simulation, 165 (2019), 181-199. |
[2] | G. Sun, J. Xie, S. Huang, Z. Jin, M. Li, L. Liu, Transmission dynamics of cholera: Mathematical modeling and control strategies, Commun. Nonlinear Sci. Numer. Simul., 45 (2017), 235-244. |
[3] | Y. Bai, X. Mu, Global asymptotic stability of a generalized SIRS epidemic model with transfer from infectious to susceptible, J. Appl. Anal. Comput., 8 (2018), 402-412. |
[4] | J. Lai, S. Gao, Y. Liu, X. Meng, Impulsive switching epidemic model with benign worm defense and quarantine strategy, Complexity, 540 (2020), 1-12. |
[5] | Q. Liu, D. Jiang, Threshold behavior in a stochastic SIR epidemic model with Logistic birth, Phys. A, 2020 (2020), 123488. |
[6] | D. Zhao, S. Yuan, Threshold dynamics of the stochastic epidemic model with jump-diffusion infection force, J. Appl. Anal. Comput., 9 (2019), 440-451. |
[7] | B. Zhang, Y. Cai, B. Wang, W. Wang, Dynamics and asymptotic profiles of steady states of an SIRS epidemic model in spatially heterogenous environment, Math. Biosci. Eng., 17 (2019), 893-909. |
[8] | Y. Tu, S. Gao, Y. Liu, D. Chen, Y. Xu, Transmission dynamics and optimal control of stagestructured HLB model, Math. Biosci. Eng., 16 (2019), 5180. |
[9] | H. W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci., 28 (1976), 335-356. |
[10] | J. Chen, An SIRS epidemic model, Appl. Math. J. Chinese Univ. Ser. B, 19 (2004), 101-108. |
[11] | T. Li, F. Zhang, H. Liu, Y. Chen, Threshold dynamics of an SIRS model with nonlinear incidence rate and transfer from infectious to susceptible, Appl. Math. Lett., 70 (2017), 52-57. |
[12] | Y. Wang, G. Liu, Dynamics analysis of a stochastic SIRS epidemic model with nonlinear incidence rate and transfer from infectious to susceptible, Math. Biosci. Eng., 16 (2019), 6047-6070. |
[13] | H. R. Thieme, C. Castillo-Chavez, On the role of variable infectivity in the dynamics of the human immunodeficiency virus epidemic, Mathematical and Statistical Approaches to AIDS Epidemiology, Springer, Berlin, 1989. |
[14] | J. Heesterbeek, J. A. Metz, The saturating contact rate in marriage and epidemic models, J. Math. Biol., 31 (1993), 529-539. |
[15] | H. Zhang, Y. Li, W. Xu, Global stability of an SEIS epidemic model with general saturation incidence, Appl. Math., 2013 (2013), 1-11. |
[16] | G. Lan, Y. Huang, C. Wei, S. Zhang, A stochastic SIS epidemic model with saturating contact rate, Phys. A, 529 (2019), 121504. |
[17] | Y. Cai, J. Jiao, Z. Gui, Y. Liu, W. Wang, Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329 (2018), 210-226. |
[18] | D. Kiouach, L. Boulaasair, Stationary distribution and dynamic behaviour of a stochastic SIVR epidemic model with imperfect vaccine, J. Appl. Math., 2018 (2018), 1-11. |
[19] | X. Zhang, H. Peng,, Stationary distribution of a stochastic cholera epidemic model with vaccination under regime switching, Appl. Math. Lett., 102 (2020), 106095. |
[20] | W. Wang, C. Ji, Y. Bi, S.Liu, Stability and asymptoticity of stochastic epidemic model with interim immune class and independent perturbations, Appl. Math. Lett., 104 (2020), 106245. |
[21] | R. Lu, F. Wei, Persistence and extinction for an age-structured stochastic SVIR epidemic model with generalized nonlinear incidence rate, Phys. A, 513 (2019), 572-587. |
[22] | T. Feng, Z. Qiu, X. Meng, Dynamics of a stochastic hepatitis-c virus system with host immunity, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 6367. |
[23] | A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876-902. |
[24] | W. Guo, Q. Zhang, X. Li, W. Wang, Dynamic behavior of a stochastic SIRS epidemic model with media coverage, Math. Methods Appl. Sci., 41 (2018), 5506-5525. |
[25] | Y. Zhang, K. Fan, S. Gao, Y. Liu, S. Chen., Ergodic stationary distribution of a stochastic SIRS epidemic model incorporating media coverage and saturated incidence rate, Phys. A, 514 (2019), 671-685. |
[26] | Y. Cai, Y. Kang, M. Banerjee, W. Wang, A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Differ. Equations, 259 (2015), 7463-7502. |
[27] | D. Jiang, Q. Liu, N. Shi, T. Hayat, A. Alsaedi, P. Xia, Dynamics of a stochastic HIV-1 infection model with logistic growth, Phys. A, 469 (2017), 706-717. |
[28] | T. Feng, Z. Qiu, Global analysis of a stochastic TB model with vaccination and treatment, Discrete Contin. Dyn. Syst. Ser. B, 24 (2018), 2923. |
[29] | S. Zhao, S. Yuan, H. Wang, Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation, J. Differ. Equations, 268 (2020), 5113-5139. |
[30] | X. Ji, S. Yuan, T. Zhang, H. Zhu, Stochastic modeling of algal bloom dynamics with delayed nutrient recycling, Math. Biosci. Eng., 16 (2019), 1-24. |
[31] | Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, B. Ahmad, A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate, Phys. A, 551 (2020), 124152. |
[32] | S. Cai, Y. Cai, X. Mao, A stochastic differential equation SIS epidemic model with two correlated Brownian motions, Nonlinear Dynam., 97 (2019), 2175-2187. |
[33] | Q. Liu, D. Jiang, N. Shi, T. Hayat, A. Alsaedi, The threshold of a stochastic SIS epidemic model with imperfect vaccination, Math. Comput. Simulation, 144 (2018), 78-90. |
[34] | R. Khasminskii, Stochastic Stability of Differential Equations, Springer, Heidelberg, 2011. |
[35] | D. Xu, Y. Huang, Z. Yang, Existence theorems for periodic Markov process and stochastic functional differential equations, Discrete Contin. Dyn. Syst., 24 (2009), 1005. |
1. | Yueping Dong, Rinko Miyazaki, Yasuhiro Takeuchi, Mathematical modeling on helper T cells in a tumor immune system, 2014, 19, 1553-524X, 55, 10.3934/dcdsb.2014.19.55 | |
2. | F.S. Borges, K.C. Iarosz, H.P. Ren, A.M. Batista, M.S. Baptista, R.L. Viana, S.R. Lopes, C. Grebogi, Model for tumour growth with treatment by continuous and pulsed chemotherapy, 2014, 116, 03032647, 43, 10.1016/j.biosystems.2013.12.001 | |
3. | Ping Bi, Shigui Ruan, Xinan Zhang, Periodic and chaotic oscillations in a tumor and immune system interaction model with three delays, 2014, 24, 1054-1500, 023101, 10.1063/1.4870363 | |
4. | Ping Bi, Heying Xiao, Bifurcations of Tumor-Immune Competition Systems with Delay, 2014, 2014, 1085-3375, 1, 10.1155/2014/723159 | |
5. | Liuyong Pang, Sanhong Liu, Xinan Zhang, Tianhai Tian, Mathematical modeling and dynamic analysis of anti-tumor immune response, 2020, 62, 1598-5865, 473, 10.1007/s12190-019-01292-9 | |
6. | Zijian Liu, Jing Chen, Jianhua Pang, Ping Bi, Shigui Ruan, Modeling and Analysis of a Nonlinear Age-Structured Model for Tumor Cell Populations with Quiescence, 2018, 28, 0938-8974, 1763, 10.1007/s00332-018-9463-0 | |
7. | Dipty Sharma, Paramjeet Singh, Discontinuous Galerkin method for a nonlinear age-structured tumor cell population model with proliferating and quiescent phases, 2021, 32, 0129-1831, 2150039, 10.1142/S012918312150039X | |
8. | Liuyong Pang, Shigui Ruan, Sanhong Liu, Zhong Zhao, Xinan Zhang, Transmission dynamics and optimal control of measles epidemics, 2015, 256, 00963003, 131, 10.1016/j.amc.2014.12.096 | |
9. | Yaqin Shu, Jicai Huang, Yueping Dong, Yasuhiro Takeuchi, Mathematical modeling and bifurcation analysis of pro- and anti-tumor macrophages, 2020, 88, 0307904X, 758, 10.1016/j.apm.2020.06.042 | |
10. | Léon Masurel, Carlo Bianca, Annie Lemarchand, Space-velocity thermostatted kinetic theory model of tumor growth, 2021, 18, 1551-0018, 5525, 10.3934/mbe.2021279 | |
11. | Kaushik Dehingia, Parthasakha Das, Ranjit Kumar Upadhyay, Arvind Kumar Misra, Fathalla A. Rihan, Kamyar Hosseini, Modelling and analysis of delayed tumour–immune system with hunting T-cells, 2023, 203, 03784754, 669, 10.1016/j.matcom.2022.07.009 | |
12. | Wei Li, Mengyang Li, Natasa Trisovic, Dynamical analysis of a kind of two-stage tumor-immune model under Gaussian white noises, 2023, 11, 2195-268X, 101, 10.1007/s40435-022-00959-9 | |
13. | Jingnan Wang, Hongbin Shi, Li Xu, Lu Zang, Hopf bifurcation and chaos of tumor-Lymphatic model with two time delays, 2022, 157, 09600779, 111922, 10.1016/j.chaos.2022.111922 | |
14. | Shujing Shi, Jicai Huang, Yang Kuang, Shigui Ruan, Stability and Hopf bifurcation of a tumor–immune system interaction model with an immune checkpoint inhibitor, 2023, 118, 10075704, 106996, 10.1016/j.cnsns.2022.106996 | |
15. | Kaushik Dehingia, Hemanta Kumar Sarmah, Yamen Alharbi, Kamyar Hosseini, Mathematical analysis of a cancer model with time-delay in tumor-immune interaction and stimulation processes, 2021, 2021, 1687-1847, 10.1186/s13662-021-03621-4 | |
16. | Gabriel Morgado, Annie Lemarchand, Carlo Bianca, From Cell–Cell Interaction to Stochastic and Deterministic Descriptions of a Cancer–Immune System Competition Model, 2023, 11, 2227-7390, 2188, 10.3390/math11092188 | |
17. | Zhonghu Luo, Zijian Liu, Yuanshun Tan, Jin Yang, Modeling and analysis of a multilayer solid tumour with cell physiological age and resource limitations, 2024, 18, 1751-3758, 10.1080/17513758.2023.2295492 | |
18. | Usman Pagalay, Sindi Ayuna Hustani, N.Z. Abd Hamid, W.-H. Chen, S. Side, W. Sanusi, M.A. Naufal, Dynamic Analysis of a Mathematical Model of the Anti-Tumor Immune Response, 2024, 58, 2271-2097, 01008, 10.1051/itmconf/20245801008 | |
19. | Kaushik Dehingia, Yamen Alharbi, Vikas Pandey, A mathematical tumor growth model for exploring saturated response of M2 macrophages, 2024, 5, 27724425, 100306, 10.1016/j.health.2024.100306 | |
20. | Carlo Bianca, A decade of thermostatted kinetic theory models for complex active matter living systems, 2024, 15710645, 10.1016/j.plrev.2024.06.015 | |
21. | Syeda Alishwa Zanib, Muzamil Abbas Shah, A piecewise nonlinear fractional-order analysis of tumor dynamics: estrogen effects and sensitivity, 2024, 2363-6203, 10.1007/s40808-024-02094-0 | |
22. | Ranjit Kumar Upadhyay, Amit Kumar Barman, Parthasakha Das, Binay Panda, On investigation of complexity in extracellular matrix-induced cancer dynamics under deterministic and stochastic framework, 2025, 0924-090X, 10.1007/s11071-024-10836-z | |
23. | Jianquan Li, Yuming Chen, Jiaojiao Guo, Huihui Wu, Xiaojian Xi, Dian Zhang, Dynamical Analysis of a Simple Tumor‐Immune Model With Two‐Stage Lymphocytes, 2025, 0170-4214, 10.1002/mma.10863 |