Citation: Manish Kumar Bansal, Devendra Kumar. On the integral operators pertaining to a family of incomplete I-functions[J]. AIMS Mathematics, 2020, 5(2): 1247-1259. doi: 10.3934/math.2020085
[1] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[2] | H. H. G. Hashem, A. M. A. El-Sayed, Maha A. Alenizi . Weak and pseudo-solutions of an arbitrary (fractional) orders differential equation in nonreflexive Banach space. AIMS Mathematics, 2021, 6(1): 52-65. doi: 10.3934/math.2021004 |
[3] | Hao Fu, Yu Peng, Tingsong Du . Some inequalities for multiplicative tempered fractional integrals involving the $ \lambda $-incomplete gamma functions. AIMS Mathematics, 2021, 6(7): 7456-7478. doi: 10.3934/math.2021436 |
[4] | M. K. Bansal, D. Kumar, J. Singh, A. Tassaddiq, K. S. Nisar . Some new results for the Srivastava-Luo-Raina $\mathbb{M}$-transform pertaining to the incomplete H-functions. AIMS Mathematics, 2020, 5(1): 717-722. doi: 10.3934/math.2020048 |
[5] | Khaled Mehrez, Abdulaziz Alenazi . Bounds for certain function related to the incomplete Fox-Wright function. AIMS Mathematics, 2024, 9(7): 19070-19088. doi: 10.3934/math.2024929 |
[6] | Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067 |
[7] | Saqib Hussain, Shahid Khan, Muhammad Asad Zaighum, Maslina Darus . Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator. AIMS Mathematics, 2017, 2(4): 622-634. doi: 10.3934/Math.2017.4.622 |
[8] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322 |
[9] | Ahmed Bakhet, Mohra Zayed . Incomplete exponential type of $ R $-matrix functions and their properties. AIMS Mathematics, 2023, 8(11): 26081-26095. doi: 10.3934/math.20231329 |
[10] | Gyeongha Hwang, Sunghwan Moon . Inversion formulas for quarter-spherical Radon transforms. AIMS Mathematics, 2023, 8(12): 31258-31267. doi: 10.3934/math.20231600 |
The classical definition of Gamma function Γ(ℑ) is defined as follows:
Γ(ℑ)={∫∞0e−uuℑ−1du(ℜ(ℑ)>0)Γ(ℑ+K)(ℑ)K(ℑ∈C∖Z−0;K∈N0), | (1.1) |
where (ℑ)K denotes the Pochhammer symbol defined (for ℑ,K∈C) by
(ℑ)K:=Γ(ℑ+K)Γ(ℑ)={1(K=0;ℑ∈C∖{0})ℑ(ℑ+1)⋯(ℑ+s−1)(K=s∈N;ℑ∈C), | (1.2) |
provided that the Gamma quotient exists.
The well known incomplete Gamma functions (IGFs) γ(ℑ,x) and Γ(ℑ,x) are defined as follows
γ(ℑ,x)=∫x0uℑ−1e−udu(ℜ(ℑ)>0;x≥0), | (1.3) |
and
Γ(ℑ,x)=∫∞xuℑ−1e−udu(x≥0;ℜ(ℑ)>0whenx=0), | (1.4) |
respectively, holds the subsequent result:
γ(ℑ,x)+Γ(ℑ,x)=Γ(ℑ),(ℜ(ℑ)>0). | (1.5) |
The gamma function Γ(ℑ) and IGFs γ(ℑ,x) and Γ(ℑ,x), which is defined in (1.1), (1.3) and (1.4), respectively, are play main role in the field of science and engineering (see, for example, [2,3,4,5]; see also the recent papers [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]). Incomplete special functions thus obtained consisting of probability theory has many potential applications which are also presented. We obtained the solution of non-homogeneous heat conduction equation in terms of Incomplete I−function.
We now introduce the incomplete I−functions (Γ)Im,npi,qi,r(z) and (γ)Im,npi,qi,r(z) containing the IGFs γ(ℑ,x) and Γ(ℑ,x) as follows:
(Γ)Im,npℓ,qℓ,r(z)=(Γ)Im,npℓ,qℓ,r[z|(a1,A1,x),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ]=12πi∫LK(ξ,x)z−ξdξ | (1.6) |
where
K(ξ,x)=Γ(1−a1−A1ξ,x)m∏j=1Γ(gj+Gjξ)n∏j=2Γ(1−aj−Ajξ)r∑ℓ=1[qℓ∏j=m+1Γ(1−gjℓ−Gjℓξ)pℓ∏j=n+1Γ(ajℓ+Ajℓξ)]. | (1.7) |
and
(γ)Im,npℓ,qℓ,r(z)=(γ)Im,npℓ,qℓ,r[z|(a1,A1,x),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ]=12πi∫LL(ξ,x)z−ξdξ | (1.8) |
where
L(ξ,x)=γ(1−a1−A1ξ,x)m∏j=1Γ(gj+Gjξ)n∏j=2Γ(1−aj−Ajξ)r∑ℓ=1[qℓ∏j=m+1Γ(1−gjℓ−Gjℓξ)pℓ∏j=n+1Γ(ajℓ+Ajℓξ)]. | (1.9) |
The incomplete I−functions (Γ)Im,npℓ,qℓ,r(z) and (γ)Im,npℓ,qℓ,r(z) in (1.6) and (1.8) exist for x≥0 under the following set of conditions stated.
The Mellin Barnes contour integral L is extend from γ−i∞ to γ+i∞, γ∈R, and poles of the gamma functions Γ(1−aj−Ajξ), j=¯1,n do not exactly match with the poles of the gamma functions Γ(gj+Gjξ), j=¯1,m. The parameters m,n,pℓ,qℓ are non negative integers satisfying 0≤n≤pℓ, 0≤m≤qℓ for i=¯1,r. The parameters Aj,Gj,Ajℓ,Gjℓ are positive numbers and aj,gj,ajℓ,gjℓ are complex. All poles of K(ξ,x) and L(ξ,x) are supposed to be simple, and the empty product is treated as unity.
Hi>0,|arg(z)|<π2Hii=¯1,r | (1.10) |
Hi≥0,|arg(z)|<π2HiandR(ζi)+1<0 | (1.11) |
where
Hi=n∑j=1Aj+m∑j=1Gj−pi∑j=n+1Aji−qi∑j=m+1Gji, | (1.12) |
ζi=m∑j=1gj−n∑j=1aj+qi∑j=m+1Aji−pi∑j=n+1Gji+12(pi−qi)i=¯1,r | (1.13) |
We are require the following results in the section 4:
(a) The orthogonal property of the Jacobi Polynomials [22,p.806,Eq (7.391.1)]
∫1−1(1−u)α(1−u)βP(α,β)w(u)P(α,β)k(u)du=hwδwk,(R(α)>−1,R(β)>−1) | (1.14) |
where
hw=2α+β+1Γ(α+w+1)Γ(β+w+1)w!(α+β+1+2w)Γ(α+β+1+w),(w=k). |
and δwk is a Kronecker delta.
(b) The definite integral
∫1−1(1−u)ρ(1+u)βP(α,β)w(u)(Γ)Im,npℓ,qℓ,r[z(1−u2)σ|(a1,A1,x),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ]du=2ρ+β+1Γ(β+w+1)w!(Γ)Im+1,n+1pℓ+2,qℓ+2,r[z|(a1,A1,x),(−ρ,σ),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ,(α−ρ,σ)(α−ρ+w,σ),(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ,(−1−β−ρ−w,σ)] | (1.15) |
above definite integral is valid under the following set of conditions:
(ⅰ) R(ρ+σgjGj)>−1, j=1,⋯,m.
(ⅱ) R(ρ)>−1, R(β)>−1.
(ⅲ) Eqs (1.10) to (1.13) are exist.
In this part, we present some basic properties and derivative formula for the incomplete I−functions:
Theorem 2.1. The following reduction formulas holds for the incomplete I−function:
(Γ)Im,npℓ,qℓ,r[z|(a1,A1,x),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ−1,(a2,A2)]=(Γ)Im,n−1pℓ−1,qℓ−1,r[z|(a1,A1,x),(aj,Aj)3,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ−1], | (2.1) |
and
(Γ)Im,npℓ,qℓ,r[z|(a1,A1,x),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ−1,(a2,A2)]=σ(Γ)Im,npℓ,qℓ,r[zσ|(a1,σA1,x),(aj,σAj)2,n,(ajℓ,σAjℓ)n+1,pℓ(gj,σGj)1,m,(gjℓ,σGjℓ)m+1,qℓ]. | (2.2) |
provided that each member in (2.1) and (2.2) exists with σ>0.
Theorem 2.2. The following derivative formula holds for the incomplete I−function:
(ddz)κ{zλ−1(Γ)Im,npℓ,qℓ,r[czμ|(a1,A1,x),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ]}=zλ−κ−1(Γ)Im,n+1pℓ+1,qℓ+1,r[czμ|(a1,A1,x),(1−λ,μ),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(1−λ+κ,μ),(gjℓ,Gjℓ)m+1,qℓ] | (2.3) |
provided that each member in (2.3) exists.
Proof. By differentiating the left hand side of (2.3) κ times with respect to z, we get
(ddz)κ{zλ−1(Γ)Im,npℓ,qℓ,r[czμ|(a1,A1,x),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ]}=12πi∫LK(ξ,x)c−ξ(ddz)κ(zλ−μξ−1)dξ=zλ−κ−12πi∫LK(ξ,x)c−ξΓ(λ−μξ)Γ(λ−κ−μξ)z−μξdξ |
with the help of (1.6) and (1.7), we obtain the desired result after a little simplification.
In this section, we find the several well known integral transform like as Mellin, Laplace, Hankel and Euler Beta Transform, of the our introduce function in (1.6).
The well known Mellin transform of a function f(z) is defined by [23,p.340,Eq (8.2.5)]
M{f(z);p}=∫∞0zp−1f(z)dz,(R(p)>0) | (3.1) |
provided that the improper integral exists.
Theorem 3.1. If
Hi>0,μ>0,|arg(z)|<π2Hi,R(ζi)+1<0i=¯1,r−μmin1≦j≦mR(gjGj)<R(p)<μmin1≦j≦nR(1−ajAj),c>0andx≧0 |
Then the Mellin transform of incomplete I−function defined as follows:
M{(Γ)Im,npℓ,qℓ,r[czμ|(a1,A1,x),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ];p}=c−pμK(pμ,x) | (3.2) |
provided that each member of the assertions (3.2) exists and K(ξ,x) is given in (1.7).
Proof. The Mellin transform of (1.6) is based upon the Mellin Inversion Theorem as well as the Mellin-Barnes type contour integral in (1.7) which defines the incomplete I−function (Γ)Im,npℓ,qℓ,r(z).
The Classical Laplace transform of a function f(z) is defined by [23,p.134,Eq (3.2.5)]
L{f(z);p}=∫∞0e−pzf(z)dz,(R(p)>0) | (3.3) |
provided that the improper integral exists.
Theorem 3.2. If
Hi>0,μ>0,|arg(z)|<π2Hi,R(ζi)+1<0i=¯1,r−μmin1≦j≦mR(gjGj)<R(λ),R(p)>0,c>0andx≧0 |
Then the Laplace transform of incomplete I−function defined as follows:
L{zλ−1(Γ)Im,npℓ,qℓ,r[czμ|(a1,A1,x),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ];p}=p−λ(Γ)Im,n+1pℓ+1,qℓ,r[cp−μ|(a1,A1,x),(1−λ,μ),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ] | (3.4) |
provided that each member in (3.4) exist.
Proof. To prove the left hand side of (3.4), by taking the Laplace transform given in (3.3) of (1.6), we get
L{zλ−1(Γ)Im,npℓ,qℓ,r[czμ|(a1,A1,x),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ];p}=L{zλ−1∫LK(ξ,x)(czμ)−ξ;p} |
where K(ξ,x) is given in (1.7).
Further, on interchanging the order of integral and contour integral (which is admissible under the conditions presented), it yields
L{zλ−1∫LK(ξ,x)(czμ)−ξ;p}=∫LK(ξ,x)c−ξL{zλ−μξ−1;p}dξ=∫LK(ξ,x)c−ξΓ(λ−μξ)pλ−μξdξ |
Finally, with help of (1.6) and (1.7), we get the right hand side of (3.4) after a little simplification.
The Hankel transform of a function f(z) is defined by [23,p.317,Eq (7.2.8)]
Hα{f(z);p}=∫∞0zJα(pz)f(z)dz,(R(p)>0) | (3.5) |
provided that the integral in (3.5) exists, Jα is the Bessel function of order α. Now, we establish an integral which involving the Bessel function Jα(z) and our introduce incomplete I−function, which can easily be reduces to Hankel transform of function (Γ)Im,npℓ,qℓ,r(z).
Theorem 3.3. If
Hi>0,μ>0,|arg(z)|<π2Hi,R(ζi)+1<0i=¯1,r−1<R(λ+α)+μmin1≦j≦mR(gjGj)<R(λ+α)+μmin1≦j≦nR(1−ajAj),c>0,R(p)>0andx≧0 |
Then the Hankel type transform of incomplete I−function defined as follows:
∫∞0zλ−1Jα(pz)(Γ)Im,npℓ,qℓ,r[czμ|(a1,A1,x),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ]dz=2λ−1pλ(Γ)Im,n+1pℓ+2,qℓ,r[c(2p)μ|(a1,A1,x),(1−λ−α2,μ2),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ,(1+α−λ2,μ2)] | (3.6) |
provided that both sides member in (3.6) exist.
Proof. To prove the assertion (3.6), incomplete I−function, which is define in (1.6) and (1.7), express in terms of Mellin-Barnes type contour integral, we get (say Ω)
Ω=12πi∫∞0zλ−1Jα(pz)∫LK(ξ,x)(czμ)−ξdξdz |
where K(ξ,x) is given in (1.7).
Further, interchanging the order of integrals, which can be valid under the given conditions, to find
Ω=12πi∫LK(ξ,x)c−ξ{∫∞0zλ−μξ−1Jα(pz)dξ}dz |
Next, using the known formula [24,Vol. Ⅱ,p.49,Eq 7.3.3(19)], we get
Ω=2λ−1p−λ2πi∫LK(ξ,x)c−ξ2−μξp−μξΓ(λ+α−μξ2)Γ(1+α−λ+μξ2)dξ |
Finally, with help of (1.6) and (1.7), we get the desired result after interpreting the last identites.
The Euler's Beta transform of a function f(z) is defined by [25]
B{f(z):α,β}=∫10zα−1(1−z)β−1f(z)dz,(R(α)>0,R(β)>0) | (3.7) |
Now, we give the following Euler's Beta transform of the incomplete I−function.
Theorem 3.4. If
Hi>0,μ>0,|arg(z)|<π2Hi,R(ζi)+1<0i=¯1,rR(α)+μmin1≦j≦mR(gjGj)>0,R(β)>0,c>0. |
Then the following Beta transform holds for x≧0:
B{(Γ)Im,npℓ,qℓ,r[czμ|(a1,A1,x),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ]:α,β}=Γ(β)(Γ)Im,n+1pℓ+1,qℓ+1,r[c|(a1,A1,x),(1−α,μ),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ,(1−α−β,μ)] | (3.8) |
Proof. First, we write the Mellin-Barnes contour integral of the incomplete I−function in (1.6) and (1.7), interchange the order of integrals and then apply the well known definition of Beta function. We get the right hand side of (3.8).
Remark 1. It may be remarked that the above integral transforms of the incomplete I−function reduces incomplete H−function, Fox's H−function and many other special function.
The incomplete I-functions (Γ)Im,npℓ,qℓ,r(z) and (γ)Im,npℓ,qℓ,r(z) defined in (1.6) and (1.8) reduce to the several familiar special function (for example: Fox's H-function, Incomplete H-function, I-function, etc.) as follows:
If we set x=0, then (1.6) and (1.8) reduces to the I−function introduced by Saxena [1]:
(Γ)Im,npℓ,qℓ,r[z|(a1,A1,0),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ]=Im,npℓ,qℓ,r[z|(aj,Aj)1,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ]. | (4.1) |
Again setting r=1 in (1.6) and (1.8), then it's reduces to the Incomplete H−functions introduced by Srivastva [26](see also, [27]):
(Γ)Im,npℓ,qℓ,1[z|(a1,A1,x),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ]=Γm,np,q[z|(a1,A1,x),(aj,Aj)2,p(gj,Gj)1,q], | (4.2) |
and
(γ)Im,npℓ,qℓ,1[z|(a1,A1,x),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ]=γm,np,q[z|(a1,A1,x),(aj,Aj)2,p(gj,Gj)1,q]. | (4.3) |
A complete description of Incomplete H−functions can be found in the article [26].
Further, we take x=0 and r=1 in (1.6), the Incomplete I−function reduces to the familiar Fox's H−function which were defined and represented in the following manner (see, for example, [28,p. 10]):
(Γ)Im,npℓ,qℓ,1[z|(a1,A1,0),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ]=Hm,np,q[z|(a1,A1),⋯,(ap,Ap)(g1,G1),⋯,(gq,Gq)]:=12πi∫LΘ(s)zsds, | (4.4) |
where i=√−1, z∈C∖{0}, C being the set of complex numbers,
Θ(s)=m∏j=1Γ(gj−Gjs)n∏j=1Γ(1−aj+Ajs)q∏j=m+1Γ(1−gj+Gjs)p∏j=n+1Γ(aj−Ajs), |
and
1≦m≦qand0≦n≦p(m,q∈N={1,2,3,⋯};n,p∈N0=N∪{0}), |
an empty product being treated to be unity. A complete details can be found in the text book (see, for details, [28,29]).
Several applications of extended Gauss hypergeometric function, incomplete gamma function, fox's H-function, etc. in communication theory, statistical distribution theory, groundwater pumping modeling, quantum physics, Velocity distribution in an ideal gas and solution of fractional advection dispersion equation in terms of Fox's H-function.It is believed that the incomplete I-Functions (Γ)Im,npℓ,qℓ,r(z) and (γ)Im,npℓ,qℓ,r(z), which we have studied here, have the potential for applications in the extended forms of similar and other situations. For example, in probability theory, the incomplete I-functions finds uses in the analytic investigation of the survival and cumulative probability density functions along the lines given by Chaudhry and Qadir [30] who made use of the incomplete exponential functions presented by
e((u,v);ρ)=∞∑s=0γ(ρ+s,u)Γ(ρ+s)vss!=1γ1[(ρ,u);ρ;v] | (4.5) |
E((u,v);ρ)=∞∑s=0γ(ρ+s,u)Γ(ρ+s)vss!=1Γ1[(ρ,u);ρ;v] | (4.6) |
In fact, the incomplete I-function representations of the above-defined incomplete exponential e((u,v);ρ) and E((u,v);ρ) functions are given by
e((u,v);ρ)=(γ)I1,11,2,1[−v|(1−ρ,u,1)(0,1),(1−ρ,1)] | (4.7) |
E((u,v);ρ)=(Γ)I1,11,2,1[−v|(1−ρ,u,1)(0,1),(1−ρ,1)] | (4.8) |
We are driving a solution y(u,t) for temperature distribution in a insulated non-homogeneous bar with thermal conductivity varies as (1−u2) and having ends at u=±1. The function y(u,t) satisfies the following partial differential equation of heat conduction [31,p.197,Eq (8)]:
∂y∂t=λ∂∂u[(1−u2)∂y∂u] | (4.9) |
where λ is a constant which is treated as thermal coefficient.
At u=±1, both ends of a bar are insulated due to the conductivity zero there, is a boundary conditions and the initial condition:
y(u,0)=f(u),−1<u<1 | (4.10) |
Now, we consider
f(u)=(1−u)ρ⋅(Γ)Im,npℓ,qℓ,r[z(1−u2)σ|(a1,A1,x),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ] | (4.11) |
Let the solution of (4.9) can be represented in the following form
y(u,t)=∞∑k=0Rke−λk(k+1)tP(α,β)k(u) | (4.12) |
putting t=0 in (4.12) and using (4.11), we have obtain that
f(u)=(1−u)ρ⋅(Γ)Im,npℓ,qℓ,r[z(1−u2)σ|(a1,A1,x),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ]=∞∑k=0RkP(α,β)k(u) | (4.13) |
where P(α,β)k(u) is a Jacobi Polynomial (see, for details, [32,p. 59,Eq (4.1.3)] and [33,p.35,Eq (34)]). Equation (4.13) is valid because f(u) is continuous in u∈[−1,1] and has a piecewise continuous derivative there, then with α>−1, β>−1, the Jacobi series (4.13) converges uniformaly to f(u) in u∈[−1+∈,1+∈], 0<∈<1.
Now, Eq (4.13) multiply by (1−u)α(1+u)βP(α,β)w(u) and integrate -1 to 1, we get
Aw=h−1w∫1−1(1−u)ρ+α(1+u)βP(α,β)w(u)(Γ)Im,npℓ,qℓ,r[z(1−u2)σ|(a1,A1,x),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ]du | (4.14) |
where hw is calculate with the help of (1.14), we get
hw=2α+β+1Γ(α+w+1)Γ(β+w+1)w!(α+β+1+2w)Γ(α+β+1+w) |
Now with the help of result (1.15), we obtain
Aw=2ρ(2w+α+β+1)Γ(w+α+β+1)Γ(w+α+1)(Γ)Im+1,n+1pℓ+2,qℓ+2,r[z|A∗B∗] |
where
A∗=(a1,A1,x),(−ρ−α,σ),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ,(−ρ,σ)B∗=(−ρ+w,σ),(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ,(−1−β−ρ−α−w,σ) |
Next, substituting the value of Rk in (4.12), we arrive at the desired solution
y(u,t)=2ρ∞∑k=0f(k)e−λk(k+1)t(Γ)Im+1,n+1pℓ+2,qℓ+2,r[z|(a1,A1,x),(−ρ−α,σ),(aj,Aj)2,n,(ajℓ,Ajℓ)n+1,pℓ,(−ρ,σ)(−ρ+k,σ),(gj,Gj)1,m,(gjℓ,Gjℓ)m+1,qℓ,(−1−β−ρ−α−k,σ)] | (4.15) |
where
f(k)=2ρΓ(2k+α+β+1)Γ(k+α+β+1)Γ(k+α+1) |
Remark 2. If incomplete I−function reduces into H−function in (4.11) then, we get the result obtained by Chaurasia [34].
In this work, we introduce a new incomplete I−functions which. The incomplete I−function is an extension of the I−function given by Saxena [1] which is a extension of a familiar Fox's H−function. Next, we find the several interesting classical integral transforms of incomplete I−function and also find the some basic properties of incomplete I−function. Further, numerous special cases are obtained from our main results among which some are explicitly indicated. Finally, we find the solution of non-homogeneous heat conduction equation in terms of Incomplete I−function.
The authors would like to express their deep-felt thanks for the reviewers' valuable comments to improve this paper as it stands. The present investigation was supported, in part, by the TEQIP-Ⅲ under CRS Grant 1-5730065311.
The authors declare no conflict of interest.
[1] | V. P. Saxena, Formal solution of certain new pair of dual integral equations involving H-functions, Proc. Nat. Acad. Sci. India Sect. A, 52 (1982), 366-375. |
[2] | M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas; Graphs; and Mathematical Tables, Applied Mathematics Series, 55, National Bureau of Standards, Washington, D.C., 1964; Reprinted by Dover Publications,New York, 1965. |
[3] | L. C. Andrews, Special Functions for Engineers and Applied Mathematicians, Macmillan Company, New York, 1985. |
[4] | W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Third Enlarged Edition, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Ber ucksichtingung der Anwendungsgebiete, Bd. 52, Springer-Verlag, Berlin, Heidelberg and New York, 1966. |
[5] | H. M. Srivastava, B. R. K. Kashyap, Special Functions in Queuing Theory and Related Stochastic Processes, Academic Press, New York and London, 1982. |
[6] | M. K. Bansal, D. Kumar, R. Jain, Interrelationships between Marichev-Saigo-Maeda fractional integral operators, the Laplace transform and the ˉH-Function, Int. J. Appl. Comput. Math, 5 (2019), Art. 103. |
[7] |
M. K. Bansal, N. Jolly, R. Jain, et al., An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results, J. Anal., 27 (2019), 727-740. doi: 10.1007/s41478-018-0119-0
![]() |
[8] | M. K. Bansal, D. Kumar, R. Jain, A study of Marichev-Saigo-Maeda fractional integral operators associated with S-Generalized Gauss Hypergeometric Function, KYUNGPOOK Math. J., 59 (2019), 433-443. |
[9] | H. C. Kang, C. P. An, Differentiation formulas of some hypergeometric functions with respect to all parameters, Appl. Math. Comput., 258 (2015), 454-464. |
[10] | S. D. Lin, H. M. Srivastava, J. C. Yao, Some classes of generating relations associated with a family of the generalized Gauss type hypergeometric functions, Appl. Math. Inform. Sci., 9 (2015), 1731-1738. |
[11] |
S. D. Lin, H. M. Srivastava, M. M.Wong, Some applications of Srivastava's theorem involving a certain family of generalized and extended hypergeometric polynomials, Filomat, 29 (2015), 1811-1819. doi: 10.2298/FIL1508811L
![]() |
[12] | H. M. Srivastava, P. Agarwal, S. Jain, Generating functions for the generalized Gauss hypergeometric functions, Appl. Math. Comput., 247 (2014), 348-352. |
[13] | H. M. Srivastava, A. C. etinkaya, I. O. Kıymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput., 226 (2014), 484-491. |
[14] | R. Srivastava, Some classes of generating functions associated with a certain family of extended and generalized hypergeometric functions, Appl. Math. Comput., 243 (2014), 132-137. |
[15] | R. Srivastava, N. E. Cho, Some extended Pochhammer symbols and their applications involving generalized hypergeometric polynomials, Appl. Math. Comput., 234 (2014), 277-285. |
[16] |
R. Srivastava, Some properties of a family of incomplete hypergeometric functions, Russian J. Math. Phys., 20 (2013), 121-128. doi: 10.1134/S1061920813010111
![]() |
[17] | R. Srivastava, N. E. Cho, Generating functions for a certain class of incomplete hypergeometric polynomials, Appl. Math. Comput., 219 (2012), 3219-3225. |
[18] |
H. M. Srivastava, M. A. Chaudhry, R. P. Agarwal, The incomplete Pochhammer symbols and their applications to hypergeometric and related functions, Integral Transforms Spec. Funct., 23 (2012), 659-683. doi: 10.1080/10652469.2011.623350
![]() |
[19] |
H. M. Srivastava, M. K. Bansal, P. Harjule, A study of fractional integral operators involving a certain generalized multi-index Mittag-Leffler function, Math. Meth. Appl. Sci., 41 (2018), 6108-6121. doi: 10.1002/mma.5122
![]() |
[20] | M. K. Bansal, D. Kumar, I. Khan, et al., Certain unified integrals associated with product of M-series and incomplete H-functions, Mathematics, 7 (2019), 1191. |
[21] | J. Singh, D. Kumar, M. K. Bansal, Solution of nonlinear differential equation and special functions, Math. Meth. Appl. Sci.,(2019), DOI: https://doi.org/10.1002/mma.5918. |
[22] | I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products: Seventh Edition, Academic Press, California, 2007. |
[23] | L. Debnath, D. Bhatta, Integral Transforms and Their Applications, Third edition, Chapman and Hall (CRC Press), Taylor and Francis Group, London and New York, 2014. |
[24] | A. Erdélyi, W. Magnus, F. Oberhettinger, et al., Higher Transcendental Functions (Vols. I and II), McGraw-Hill Book Company, New York, Toronto and London, 1954. |
[25] | I. N. Sneddon, The Use of Integral Transforms, Tata McGrawHill, New Delhi, India, 1979. |
[26] |
H. M. Srivastava, R. K. Saxena, R. K. Parmar, Some families of the incomplete H-Functions and the incomplete ˉH-Functions and associated integral transforms and operators of fractional calculus with applications, Russ. J. Math. Phys., 25(2018), 116-138. doi: 10.1134/S1061920818010119
![]() |
[27] | M. K. Bansal, J. Choi, A note on pathway fractional integral formulas associated with the incomplete H-Functions, Int. J. Appl. Comput. Math, 5 (2019), Art. 133. |
[28] | H. M. Srivastava, K. C. Gupta, S. P. Goyal, The H-Functions of one and two variables with applications, South Asian Publishers, New Delhi and Madras, 1982. |
[29] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006. |
[30] | M. A. Chaudhry, A. Qadir, Incomplete exponential and hypergeometric functions with applications to non-central χ2-Distribution, Comm. Statist. Theory Methods, 34 (2002), 525-535. |
[31] | R. V. Churchill, Fourier Series and Boundary Values Problems, McGraw-Hill Book Co. New York, 1942. |
[32] | G. Szegö, Orthogonal Polynomials, Fourth edition, Amererican Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, Providence, Rhode Island, 1975. |
[33] | H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984. |
[34] |
V. B. L. Chaurasia, The H-function and temperature in a non homogenous bar, Proc. Indian Acad Sci., 85 (1977), 99-103. doi: 10.1007/BF03046816
![]() |
1. | Yudhveer Singh, Vinod Gill, Jagdev Singh, Devendra Kumar, Ilyas Khan, Computable generalization of fractional kinetic equation with special functions, 2021, 33, 10183647, 101221, 10.1016/j.jksus.2020.10.018 | |
2. | Manish Kumar Bansal, Devendra Kumar, Priyanka Harjule, Jagdev Singh, Fractional Kinetic Equations Associated with Incomplete I-Functions, 2020, 4, 2504-3110, 19, 10.3390/fractalfract4020019 | |
3. | Manish Kumar Bansal, Shiv Lal, Devendra Kumar, Sunil Kumar, Jagdev Singh, Fractional differential equation pertaining to an integral operator involving incomplete H ‐function in the kernel , 2020, 0170-4214, 10.1002/mma.6670 | |
4. | Manish Kumar Bansal, Devendra Kumar, Jagdev Singh, Kottakkaran Sooppy Nisar, On the Solutions of a Class of Integral Equations Pertaining to Incomplete H-Function and Incomplete H-Function, 2020, 8, 2227-7390, 819, 10.3390/math8050819 | |
5. | Ayman Shehata, On basic Horn hypergeometric functions $\mathbf{H}_{3}$ and $\mathbf{H}_{4}$, 2020, 2020, 1687-1847, 10.1186/s13662-020-03056-3 | |
6. | Meenakshi Singhal, Ekta Mittal, On a $$\psi $$-Generalized Fractional Derivative Operator of Riemann–Liouville with Some Applications, 2020, 6, 2349-5103, 10.1007/s40819-020-00892-5 | |
7. | Manish Kumar Bansal, Devendra Kumar, K. S. Nisar, Jagdev Singh, Certain fractional calculus and integral transform results of incomplete ℵ‐functions with applications, 2020, 43, 0170-4214, 5602, 10.1002/mma.6299 | |
8. | Sapna Tyagi, Monika Jain, Jagdev Singh, Large Deflection of a Circular Plate with Incomplete Aleph Functions Under Non-uniform Load, 2022, 8, 2349-5103, 10.1007/s40819-022-01450-x | |
9. | Chahnyong Jung, Ghulam Farid, Hafsa Yasmeen, Kamsing Nonlaopon, More on the Unified Mittag–Leffler Function, 2022, 14, 2073-8994, 523, 10.3390/sym14030523 | |
10. | Dinesh Kumar, Frédéric Ayant, Poonam Nirwan, D.L. Suthar, Hari M. Srivastava, Boros integral involving the generalized multi-index Mittag-Leffler function and incomplete I-functions, 2022, 9, 2768-4830, 10.1080/27684830.2022.2086761 | |
11. | Rahul Sharma, Jagdev Singh, Devendra Kumar, Yudhveer Singh, Certain Unified Integrals Associated with Product of the General Class of Polynomials and Incomplete I-Functions, 2022, 8, 2349-5103, 10.1007/s40819-021-01181-5 | |
12. | Hamadou Halidou, Alphonse Houwe, Souleymanou Abbagari, Mustafa Inc, Serge Y. Doka, Thomas Bouetou Bouetou, Optical and W-shaped bright solitons of the conformable derivative nonlinear differential equation, 2021, 20, 1569-8025, 1739, 10.1007/s10825-021-01758-9 | |
13. | Manish Kumar Bansal, Devendra Kumar, Junesang Choi, 2023, Chapter 7, 978-981-19-0178-2, 141, 10.1007/978-981-19-0179-9_7 | |
14. | Sanjay Bhatter, , 2023, Chapter 31, 978-3-031-29958-2, 488, 10.1007/978-3-031-29959-9_31 | |
15. | Himani Agarwal, Manvendra Narayan Mishra, Ravi Shanker Dubey, On fractional Caputo operator for the generalized glucose supply model via incomplete Aleph function, 2024, 2661-3352, 10.1142/S2661335224500035 | |
16. | Sachin Kumar, Manvendra Narayan Mishra, Ravi Shanker Dubey, Rahul Sharma, Investigation of some finite integrals incorporating incomplete Aleph functions, 2024, 2661-3352, 10.1142/S2661335224500072 | |
17. | Sanjay Bhatter, Sunil Dutt Purohit, , 2024, Chapter 20, 978-3-031-56303-4, 306, 10.1007/978-3-031-56304-1_20 | |
18. | Dinesh Kumar, Frédéric Ayant, D. L. Suthar, Poonam Nirwan, Mina Kumari, Boros integral involving the class of polynomials and incomplete $$\aleph $$-functions, 2024, 0370-0046, 10.1007/s43538-024-00295-w | |
19. | Manisha Meena, Mridula Purohit, Analytic solutions of fractional kinetic equations involving incomplete ℵ-function, 2024, 2661-3352, 10.1142/S2661335224500163 | |
20. | Sanjay Bhatter, Sunil Dutt Purohit, Kottakkaran Sooppy Nisar, Shankar Rao Munjam, Some fractional calculus findings associated with the product of incomplete ℵ-function and Srivastava polynomials, 2024, 2, 2956-7068, 97, 10.2478/ijmce-2024-0008 | |
21. | Yudhveer Singh, Rahul Sharma, Ravindra Maanju, 2023, 2768, 0094-243X, 020038, 10.1063/5.0149300 | |
22. | 2025, Chapter 13, 978-981-97-6793-9, 215, 10.1007/978-981-97-6794-6_13 | |
23. | Payal Singhal, Sunil Dutt Purohit, Mahesh Bohra, 2025, Chapter 14, 978-981-97-6793-9, 231, 10.1007/978-981-97-6794-6_14 | |
24. | Jagdev Singh, Arun Sahu, 2025, Chapter 17, 978-3-031-90916-0, 257, 10.1007/978-3-031-90917-7_17 |