
Citation: Mouhamed Moustapha Fall, Veronica Felli, Alberto Ferrero, Alassane Niang. Asymptotic expansions and unique continuation at Dirichlet-Neumann boundary junctions for planar elliptic equations[J]. Mathematics in Engineering, 2019, 1(1): 84-117. doi: 10.3934/Mine.2018.1.84
[1] | Guodong Li, Ying Zhang, Yajuan Guan, Wenjie Li . Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse. Mathematical Biosciences and Engineering, 2023, 20(4): 7020-7041. doi: 10.3934/mbe.2023303 |
[2] | Debao Yan . Existence results of fractional differential equations with nonlocal double-integral boundary conditions. Mathematical Biosciences and Engineering, 2023, 20(3): 4437-4454. doi: 10.3934/mbe.2023206 |
[3] | Zahra Eidinejad, Reza Saadati . Hyers-Ulam-Rassias-Kummer stability of the fractional integro-differential equations. Mathematical Biosciences and Engineering, 2022, 19(7): 6536-6550. doi: 10.3934/mbe.2022308 |
[4] | Luís P. Castro, Anabela S. Silva . On the solution and Ulam-Hyers-Rassias stability of a Caputo fractional boundary value problem. Mathematical Biosciences and Engineering, 2022, 19(11): 10809-10825. doi: 10.3934/mbe.2022505 |
[5] | Huy Tuan Nguyen, Nguyen Van Tien, Chao Yang . On an initial boundary value problem for fractional pseudo-parabolic equation with conformable derivative. Mathematical Biosciences and Engineering, 2022, 19(11): 11232-11259. doi: 10.3934/mbe.2022524 |
[6] | Jutarat Kongson, Chatthai Thaiprayoon, Apichat Neamvonk, Jehad Alzabut, Weerawat Sudsutad . Investigation of fractal-fractional HIV infection by evaluating the drug therapy effect in the Atangana-Baleanu sense. Mathematical Biosciences and Engineering, 2022, 19(11): 10762-10808. doi: 10.3934/mbe.2022504 |
[7] | Xiaolin Fan, Tingting Xue, Yongsheng Jiang . Dirichlet problems of fractional p-Laplacian equation with impulsive effects. Mathematical Biosciences and Engineering, 2023, 20(3): 5094-5116. doi: 10.3934/mbe.2023236 |
[8] | Tingting Xue, Xiaolin Fan, Hong Cao, Lina Fu . A periodic boundary value problem of fractional differential equation involving p(t)-Laplacian operator. Mathematical Biosciences and Engineering, 2023, 20(3): 4421-4436. doi: 10.3934/mbe.2023205 |
[9] | Barbara Łupińska, Ewa Schmeidel . Analysis of some Katugampola fractional differential equations with fractional boundary conditions. Mathematical Biosciences and Engineering, 2021, 18(6): 7269-7279. doi: 10.3934/mbe.2021359 |
[10] | Alia M. Alzubaidi, Hakeem A. Othman, Saif Ullah, Nisar Ahmad, Mohammad Mahtab Alam . Analysis of Monkeypox viral infection with human to animal transmission via a fractional and Fractal-fractional operators with power law kernel. Mathematical Biosciences and Engineering, 2023, 20(4): 6666-6690. doi: 10.3934/mbe.2023287 |
In the last two decades, the topic in the study of fractional calculus theory has attracted significant attention from researchers. The strong interest stems not only from the important application of the theory, but also from the consideration of its mathematical nature. Indeed, many phenomena arising from scientific fields, including biology, physics, chemistry, financial economics, control theory, materials, medicine, and anomalous diffusion, are precisely described by fractional differential equations [1,2,3]. As an important topic for the theory of fractional differential equations, the existence results of fractional boundary value problems (BVPs) have been investigated comprehensively by scholars [4,5,6,7].
On the other hand, the theory of differential equations on graphs originated from Lumer's research work in the framework of ramification spaces in the 1980s [8]. Differential equations on graphs appear in various fields, including chemical engineering, biology, physics, and ecology [9,10,11,12]. For this reason, many scholars study mathematical models described by fractional BVPs on graphs.
In 2014 [10], Graef et al. investigated the existence of solutions for fractional BVPs on a star graph, which is composed of three nodes and two edges, that is G=V∪E with V={γ0,γ1,γ2} and E={→γ1γ0,→γ2γ0}, where γ0 represents the junction node, →γiγ0 is the edge connecting γi and γ0 with length li=|→γiγ0|,i=1,2. On each edge →γiγ0,i=1,2, the authors considered the fractional BVPs in a local coordinate system with γi as origin on x∈(0,li), given by
{−Dα0+ui=mi(x)fi(x,ui),0<x<li,i=1,2.u1(0)=u2(0)=0,u1(l1)=u2(l2),Dβ0+u1(l1)+Dβ0+u2(l2)=0, | (1.1) |
where Dα0+,Dβ0+ are Riemann-Liouville fractional derivative operators, 1<α≤2,0<β<α,mi∈C[0,li],i=1,2 with mi(x)≢0 on [0,li] and fi∈C([0,li]×R,R),i=1,2. By using Schauder fixed point theorem and Banach contraction mapping theorem, the existence and uniqueness of solutions of BVP (1.1) are obtained.
Later in 2019 [11], Mehandiratta et al. extended the results of Graef et al. on a general star graph (see Figure 1), which is a graph consisting of k+1 nodes and k edges, that is, the authors considered a graph G=V∪E,V={v0,v1,⋯,vk},E={ei=→viv0,i=1,2,⋯,k}, where v0 is the junction node, →viv0 represents the edge connecting vi and v0 with length li=|→viv0|,i=1,2,⋯,k. The author investigated the following fractional BVPs on the star graph G given by
{CDα0,xui(x)=fi(x,ui(x),CDβ0,xui(x)),0<x<li,i=1,2,⋯,k,ui(0)=0,i=1,2,⋯,k,ui(li)=uj(lj),i,j=1,2,⋯,k,i≠j,∑ki=1u′i(li)=0,i=1,2,⋯,k, | (1.2) |
where CDα0,x,CDβ0,x are Caputo fractional derivative, 1<α≤2,0<β≤α−1,fi,i=1,2,⋯,k are continuous functions on [0,li]×R×R. The existence and uniqueness results for BVP (1.2) are established using Schaefer's fixed point theorem and Banach contraction mapping theorem.
Based on the two studies mentioned above, the subject of fractional BVPs on graphs has received significant research attention, and various interesting results have been recently established [12,13,14,15,16,17,18,19]. For example, in [12], Zhang and Liu discussed BVPs of fractional differential equations on a star graph with n+1 nodes and n edges. The existence and uniqueness of solutions are established using Schaefer's fixed point theorem and Banach contraction mapping principle. Etemad and Rezapour in [13] studied the BVPs of fractional differential equations on ethane graph. The existence results of solutions were obtained using Schaefer's fixed point theorem and Krasnoselskii's fixed point theorem. In [14], Baleanu et al. investigated the existence of solutions for BVPs of fractional differential equations on the glucose graphs. In [15], Ali et al. studied the existence of solutions of BVPs for fractional differential equations on the cyclohexane graphs using the fixed point theory. In [16], Mehandiratta et al. considered a nonlinear fractional BVPs on a particular metric graph. They proved the existence and uniqueness of solutions using Krasnoselskii's fixed point theorem and Banach contraction principle.
It is well known that Langevin first formulated the Langevin equation in 1908. Langevin equation is an important tool for describing the evolution of physical phenomena in fluctuating environments [20]. However, people have realized that the traditional integer Langevin equation cannot accurately describe dynamic systems for complex phenomena. Therefore, one way to overcome this disadvantage is to use fractional derivative instead of integer derivative [21]. This gives rise to the fractional Langevin equation. Studies of BVPs on fractional Langevin equations have increased in recent years, and new research is constantly emerging [22,23,24,25]. For example, in [22], Fazli et al. studied the anti-periodic BVPs of fractional Langevin equation and obtained the existence and uniqueness solutions using the coupled fixed point theorem for mixed monotone mappings. In [23], Matar et al. established the existence, uniqueness and stability of solutions for the coupled Caputo-Hadamard fractional Langevin equation with the help of the fixed point theorem. In [24], Salem et al. considered the fractional Langevin equation with three-point boundary value conditions and obtained the existence of solutions by using Krasnoselskii's fixed point theorem and Leray-Schauder nonlinear alternative theorem.
From the literature review, no result is concerned with fractional Langevin equations on graphs. To fill this knowledge gap, this study aims to establish the existence and uniqueness results for fractional Langevin equations on a star graph subject to mixed boundary conditions. Precisely, we investigate the following problems:
{CDα0,x(D+λi)yi(x)=gi(x,yi(x),CDγ0,xyi(x)),0<x<ρi,i=1,2,⋯,k,yi(0)=0,i=1,2,⋯,k,yi(ρi)=yj(ρj),i,j=1,2,⋯,k,i≠j,k∑i=1y′i(ρi)=0,i=1,2,⋯,k, | (1.3) |
where 0<α<1,0<γ<α,λi∈R+,i=1,2,⋯,k,CDα0,x,CDγ0,x are Caputo fractional derivative, D is the ordinary derivative, gi∈C([0,ρi]×R2,R),i=1,2,⋯,k. The star graph has k+1 nodes and k edges, that is G=V∪E,V={v0,v1,⋯,vk},E={ei=→viv0,i=1,2,⋯,k}, where v0 is the junction node, ei=→viv0 represents the edge connecting vi and v0 with length ρi=|→viv0|,i=1,2,⋯,k. We consider a local coordinate system with vi as origin and x∈(0,ρi) as the coordinate. The existence and uniqueness of the solution of BVP (1.3) are discussed using Schaefer's fixed point theorem and Banach contraction mapping principle.
The rest of paper is organized as follows: In Section 2, we recall some basic definitions of fractional calculus and present an auxiliary lemma (Lemma 2.6), which transforms the problem (1.3) to BVP (2.1). In Section 3, we study the existence and uniqueness results of BVP (2.1) by using Schaefer's fixed point theorem and Banach contraction principle, respectively. Finally, two illustrative examples are discussed at the end of this paper.
In this section, we recall some definitions of fractional calculus and provide preliminary results which we will use in the rest of the paper.
Definition 2.1 [1]. The Riemann-Liouville fractional integral of order α>0 for a function f∈C(a,b) is defined by
Iαa+f(t)=1Γ(α)∫ta(t−s)α−1f(s)ds,a<t<b. |
Definition 2.2 [1]. The Caputo fractional derivative of order α>0 for a function f∈Cn(a,b) is presented by
CDαa,tf(t)=1Γ(n−α)∫ta(t−s)n−α−1f(n)(s)ds,a<t<b, |
where n=[α]+1.
Lemma 2.1 [1]. Let α>0. Suppose that u∈ACn[0,1]. Then
Iα0+CDα0,tu(t)=u(t)+c0+c1t+c2t2+⋯+cntn−1, |
where ci∈R,i=1,2,⋯,n,n=[α]+1.
Lemma 2.2 [26]. Let α>0,n∈N, and D=d/dx. Suppose that (Dnx)(t) and (CDα+na,tx)(t) are exist. Then
(CDαa,tDnx)(t)=(CDα+na,tx)(t). |
Lemma 2.3 [1]. If β>0,γ>β−1,t>0, then
CDβ0,ttγ=Γ(γ+1)Γ(γ+1−β)tγ−β. |
Theorem 2.4 [27]. (Scheafer's fixed point theorem) Let X be a Banach space. Assume that T:X→X is a completely continuous operator and the set Ω={x∈X,x=μTx,μ∈(0,1)} is bounded. Then T has a fixed point in X.
Lemma 2.5 [11]. Suppose that y is a function defined on [0,ρ] such that CDα0,xy exists on [0,ρ] with α>0 and let x∈[0,ρ],t=x/ρ∈[0,1],y(t)=y(ρt). Then
CDα0,xy(x)=ρ−α(CDα0,ty(t)). |
Lemma 2.6 Suppose that y be a function defined on [0,ρ] such that CDα0,xy exists on [0,ρ] with α∈(n−1,n) and let x∈[0,ρ],t=x/ρ∈[0,1],y(t)=y(ρt). Then
CDα0,x(D+λ)y(x)=ρ−α−1CDα0,t(D+λρ)y(t). |
Proof. By using the Definition 2.2 and Lemma 2.2, we can obtain
CDα0,x(D+λ)y(x)=CDα+10,xy(x)+λCDα0,xy(x)=1Γ(n−α)∫x0(x−s)n−α−1y(n+1)(s)ds+λΓ(n−α)∫x0(x−s)n−α−1y(n)(s)ds=1Γ(n−α)∫ρt0(ρt−s)n−α−1y(n+1)(s)ds+λΓ(n−α)∫ρt0(ρt−s)n−α−1y(n)(s)ds(x=ρt)=ρn−αΓ(n−α)∫t0(t−ˆs)n−α−1y(n+1)(ρˆs)dˆs+λρn−αΓ(n−α)∫t0(t−ˆs)n−α−1y(n)(ρˆs)dˆs(ˆs=s/ρ)=ρ−α−1Γ(n−α)∫t0(t−ˆs)n−α−1y(n+1)(ˆs)dˆs+λρ−αΓ(n−α)∫t0(t−ˆs)n−α−1y(n)(ˆs)dˆs(y(n)(t)=ρny(n)(ρt))=ρ−α−1CDα+10,ty(t)+λρ−αCDα0,ty(t)=ρ−α−1CDα0,t(D+λρ)y(t), |
This completes the proof of Lemma 2.6.
By a direct calculation with help of Lemmas 2.5 and 2.6, BVP (1.3) can be transformed into a BVP defined on [0, 1] given by
{CDα0,t(D+λiρi)yi(t)=ρα+1igi(t,yi(t),ρ−γiCDγ0,tyi(t)),t∈(0,1),yi(0)=0,i=1,2,⋯,k,yi(1)=yj(1),i,j=1,2,⋯,k,i≠j,k∑i=1ρ−1iy′i(1)=0,i=1,2,⋯,k, | (2.1) |
where yi(t)=yi(ρit),gi(t,u,v)=gi(ρit,u,v),i=1,2,⋯,k.
In this section, we investigate the existence and uniqueness results of problem (2.1). To this end, we consider the space Y={y:y∈C[0,1],CDγ0,ty∈C[0,1]}, endowed with the norm
||y||Y=||y||+||CDγ0,ty||, |
where ||y||=maxt∈[0,1]|y(t)|,||CDγ0,ty||=maxt∈[0,1]|CDγ0,ty(t)|. Then (Y,||⋅||Y) is a Banach space, and the product space (Yk,||⋅||Yk) equipped with the norm
||(y1,y2,⋯,yk)||Yk=∑ki=1||yi||Y,(y1,y2,⋯,yk)∈Yk |
is also a Banach space, where Yk=k⏞Y×Y×⋯×Y.
Lemma 3.1 Let hi∈C[0,1],i=1,2,⋯,k. Then the BVP of fractional Langevin equations
{CDα0,t(D+λiρi)yi(t)=hi(t),t∈(0,1),α∈(0,1),i=1,2,⋯,k,yi(0)=0,i=1,2,⋯,k,yi(1)=yj(1),i,j=1,2,⋯,k,i≠j,k∑i=1ρ−1iy′i(1)=0,i=1,2,⋯,k, | (3.1) |
is equivalent to the integral equations
yi(t)=−λiρi∫t0yi(s)ds+Iα+10+hi(t)+tk∑j=1ℓj(λjρjyj(1)−Iα0+hj(t)|t=1)+tk∑j=1,j≠iℓj(−λjρj∫10yj(s)ds+λiρi∫10yi(s)ds+Iα+10+hj(t)|t=1−Iα+10+hi(t)|t=1), |
where ℓj:=ρ−1j∑kj=1ρ−1j,i,j=1,2,⋯,k.
Proof. Applying the operator Iα0+ on both sides of Eq (3.1) and combining with the Lemma 2.1, we obtain
(D+λiρi)yi(t)=Iα0+hi(t)+ci1, |
where ci1∈R,i=1,2,⋯,k. The above equation can be rewritten as
y′i(t)=−λiρiyi(t)+Iα0+hi(t)+ci1. | (3.2) |
Integrating both sides of Eq (3.2) from 0 to t, we get
yi(t)=−λiρi∫t0yi(s)ds+Iα+10+hi(t)+ci1t+yi(0). |
By conditions yi(0)=0,i=1,2,⋯,k, we conclude
yi(t)=−λiρi∫t0yi(s)ds+Iα+10+hi(t)+ci1t. | (3.3) |
Applying the conditions k∑i=1ρ−1iy′i(1)=0 and yi(1)=yj(1),i,j=1,2,⋯,k,i≠j in Eqs (3.2) and (3.3), respectively, we find
k∑i=1ρ−1i(−λiρiyi(1)+Iα0+hi(t)|t=1+ci1)=0, |
and
−λiρi∫10yi(s)ds+Iα+10+hi(t)|t=1+ci1=−λjρj∫10yj(s)ds+Iα+10+hj(t)|t=1+cj1,i,j=1,2,⋯,k,i≠j. |
Combining the above two equations, we get
k∑j=1ρ−1j(−λjρjyj(1)+Iα0+hj(t)|t=1)+ρ−1ici1=−k∑j=1,j≠iρ−1jci1+k∑j=1,j≠iρ−1j(−λjρj∫10yj(s)ds+Iα+10+hj(t)|t=1+λiρi∫10yi(s)ds−Iα+10+hi(t)|t=1). |
This yields
k∑j=1ρ−1jci1=−k∑j=1ρ−1j(−λjρjyj(1)+Iα0+hj(t)|t=1)+k∑j=1,j≠iρ−1j(−λjρj∫10yj(s)ds+λiρi∫10yi(s)ds+Iα+10+hj(t)|t=1−Iα+10+hi(t)|t=1), |
from which we deduce that
ci1=k∑j=1,j≠iℓj(−λjρj∫10yj(s)ds+λiρi∫10yi(s)ds+Iα+10+hj(t)|t=1−Iα+10+hi(t)|t=1)−k∑j=1ℓj(−λjρjyj(1)+Iα0+hj(t)|t=1),i=1,2,⋯,k. |
Substituting ci1(i=1,2,⋯,k) into the Eq (3.3), we get the desired result. The converse of the lemma is calculated directly. The proof is completed.
In view of Lemma 3.1, we define the operator T:Yk→Yk by
T(y1,y2,⋯,yk)(t):=(T1(y1,y2,⋯,yk)(t),T2(y1,y2,⋯,yk)(t),⋯,Tk(y1,y2,⋯,yk)(t)), |
for t∈[0,1] and yi∈Y,i=1,2,⋯,k, where
Ti(y1,y2,⋯,yk)(t)=−λiρi∫t0yi(s)ds+ρα+1iΓ(α+1)∫t0(t−s)αgi(s,yi(s),ρ−γiCDγ0,syi(s))ds+tk∑j=1ℓj(λjρjyj(1)−ρα+1jΓ(α)∫10(1−s)α−1gj(s,yj(s),ρ−γjCDγ0,syj(s))ds)+tk∑j=1,j≠iℓj(−λjρj∫10yj(s)ds+ρα+1jΓ(α+1)∫10(1−s)αgj(s,yj(s),ρ−γjCDγ0,syj(s))ds)+tk∑j=1,j≠iℓj(−ρα+1iΓ(α+1)∫10(1−s)αgi(s,yi(s),ρ−γiCDγ0,syi(s))ds+λiρi∫10yi(s)ds). | (3.4) |
In the following part, for convenience of presentation, we denote the notations:
M1=1Γ(α+2)+1Γ(α+1)+1Γ(2−γ)Γ(α+1)+1Γ(2−γ)Γ(α+2),M2=2Γ(α+2)+1Γ(α+1)+1Γ(α−γ+2)+1Γ(2−γ)Γ(α+1)+1Γ(2−γ)Γ(α+2). |
Theorem 3.1 Assume that
(H1) The functions gi:[0,1]×R2→R,(i=1,2,⋯,k) are continuous and there exist functions ai(t)∈C([0,1],[0,+∞)), i=1,2,⋯,k, such that
|gi(t,u,v)−gi(t,u1,v1)|≤ai(t)(|u−u1|+|v−v1|), |
for all t∈[0,1] and (u,v),(u1,v1)∈R2. Then the BVP (2.1) has a unique solution on [0, 1], provided that
k∑i=1Pi(k∑i=1Ai)+k∑i=1Qi<1, |
where
Pi=M1k∑j=1,j≠i(ρα+1j+ρα−γ+1j)+M2(ρα+1i+ρα−γ+1i),Qi=3λiρi+3λiρiΓ(2−γ)+k∑j=1,j≠i(2λjρj+2λjρjΓ(2−γ)),Ai=maxt∈[0,1]|ai(t)|. |
Proof. Applying the Banach contraction mapping principle, we have to prove that T is a contractive mapping. To prove this, we let y=(y1,y2,⋯,yk),ˉy=(ˉy1,ˉy2,⋯,ˉyk)∈Yk,t∈[0,1]. By Eq (3.4), we have
|Tiy(t)−Tiˉy(t)|≤ρα+1iΓ(α+1)∫t0(t−s)α|gi(s,yi(s),ρ−γiCDγ0,syi(s))−gi(s,ˉyi(s),ρ−γiCDγ0,sˉyi(s))|ds+λiρi∫t0|yi(s)−ˉyi(s)|ds+tk∑j=1ℓj(λjρj|yj(1)−ˉyj(1)|)+tk∑j=1ℓjρα+1jΓ(α)∫10(1−s)α−1|gj(s,yj(s),ρ−γjCDγ0,syj(s))ds−gj(s,ˉyj(s),ρ−γjCDγ0,sˉyj(s))|ds+tk∑j=1,j≠iℓj(λjρj∫10|yj(s)−ˉyj(s)|ds)+tk∑j=1,j≠iλiρiℓj∫10|yi(s)−ˉyi(s)|ds+tk∑j=1,j≠iℓjρα+1jΓ(α+1)∫10(1−s)α|gj(s,yj(s),ρ−γjCDγ0,syj(s))−gj(s,ˉyj(s),ρ−γjCDγ0,sˉyj(s))|ds+tk∑j=1,j≠iℓjρα+1iΓ(α+1)∫10(1−s)α|gi(s,yi(s),ρ−γiCDγ0,syi(s))−gi(s,ˉyi(s),ρ−γiCDγ0,sˉyi(s))|ds. |
By using the assumption (H1) and t∈[0,1],ℓj∈(0,1),j=1,2,⋯,k, we deduce
|Tiy(t)−Tiˉy(t)|≤2ρα+1iΓ(α+2)Ai||yi−ˉyi||+2ρα−γ+1iΓ(α+2)Ai||CDγ0,tyi−CDγ0,tˉyi||+2λiρi||yi−ˉyi||+k∑j=1λjρj||yj−ˉyj||+k∑j=1,j≠iλjρj||yj−ˉyj||+k∑j=1ρα+1jAjΓ(α+1)||yj−ˉyj||+k∑j=1ρα−γ+1jAjΓ(α+1)||CDγ0,tyj−CDγ0,tˉyj||+k∑j=1,j≠iρα+1jAjΓ(α+2)||yj−ˉyj||+k∑j=1,j≠iρα−γ+1jAjΓ(α+2)||CDγ0,tyj−CDγ0,tˉyj||≤2AiΓ(α+2)(ρα+1i+ρα−γ+1i)(||yi−ˉyi||+||CDγ0,tyi−CDγ0,tˉyi||)+3λiρi||yi−ˉyi||+k∑j=1,j≠i2λjρj||yj−ˉyj||+k∑j=1AjΓ(α+1)(ρα+1j+ρα−γ+1j)(||yj−ˉyj||+||CDγ0,tyj−CDγ0,tˉyj||)+k∑j=1,j≠iAjΓ(α+2)(ρα+1j+ρα−γ+1j)(||yj−ˉyj||+||CDγ0,tyj−CDγ0,tˉyj||). |
Then for any y,ˉy∈Yk, we obtain
||Tiy−Tiˉy||≤(2Γ(α+2)+1Γ(α+1))(ρα+1i+ρα−γ+1i)Ai||yi−ˉyi||Y+3λiρi||yi−ˉyi||Y+k∑j=1,j≠i(1Γ(α+2)+1Γ(α+1))(ρα+1j+ρα−γ+1j)Aj||yj−ˉyj||Y+k∑j=1,j≠i2λjρj||yj−ˉyj||Y. | (3.5) |
On the other hand, by using Lemma 2.3, we have
|CDγ0,tTiy(t)−CDγ0,tTiˉy(t)|≤ρα+1iΓ(α−γ+1)∫t0(t−s)α−γ|gi(s,yi(s),ρ−γiCDγ0,syi(s))−gi(s,ˉyi(s),ρ−γiCDγ0,sˉyi(s))|ds+λiρiΓ(1−γ)∫t0(t−s)−γ|yi(s)−ˉyi(s)|ds+t1−γΓ(2−γ)k∑j=1ℓjλjρj|yj(1)−ˉyj(1)|+t1−γΓ(2−γ)Γ(α)k∑j=1ℓjρα+1j∫10(1−s)α−1|gj(s,yj(s),ρ−γjCDγ0,syj(s))ds−gj(s,ˉyj(s),ρ−γjCDγ0,sˉyj(s))|ds |
+t1−γΓ(2−γ)k∑j=1,j≠iℓjλjρj∫10|yj(s)−ˉyj(s)|ds+t1−γΓ(2−γ)k∑j=1,j≠iλiρiℓj∫10|yi(s)−ˉyi(s)|ds+t1−γΓ(2−γ)Γ(α+1)k∑j=1,j≠iℓjρα+1j∫10(1−s)α|gj(s,yj(s),ρ−γjCDγ0,syj(s))−gj(s,ˉyj(s),ρ−γjCDγ0,sˉyj(s))|ds+t1−γΓ(2−γ)Γ(α+1)k∑j=1,j≠iρα+1iℓj∫10(1−s)α|gi(s,yi(s),ρ−γiCDγ0,syi(s))−gi(s,ˉyi(s),ρ−γiCDγ0,sˉyi(s))|ds. |
In a similar manner, we deduce
|CDγ0,tTiy(t)−CDγ0,tTiˉy(t)|≤ρα+1iAiΓ(α−γ+2)||yi−ˉyi||+ρα−γ+1iAiΓ(α−γ+2)||CDγ0,tyi−CDγ0,tˉyi||+2λiρiΓ(2−γ)||yi−ˉyi||+1Γ(2−γ)k∑j=1λjρj||yj−ˉyj||+1Γ(2−γ)Γ(α+1)k∑j=1ρα+1jAj||yj−ˉyj||+1Γ(2−γ)Γ(α+1)k∑j=1ρα−γ+1jAj||CDγ0,tyj−CDγ0,tˉyj||+1Γ(2−γ)k∑j=1,j≠iλjρj||yj−ˉyj||+1Γ(2−γ)Γ(α+2)k∑j=1,j≠iρα+1jAj||yj−ˉyj||+1Γ(2−γ)Γ(α+2)k∑j=1,j≠iρα−γ+1jAj||CDγ0,tyj−CDγ0,tˉyj||+ρα+1iAiΓ(2−γ)Γ(α+2)||yi−ˉyi||+ρα−γ+1iAiΓ(2−γ)Γ(α+2)||CDγ0,tyi−CDγ0,tˉyi||≤1Γ(α−γ+2)(ρα+1i+ρα−γ+1i)Ai(||yi−ˉyi||+||CDγ0,tyi−CDγ0,tˉyi||)+3λiρiΓ(2−γ)||yi−ˉyi||+2Γ(2−γ)k∑j=1,j≠iλjρj||yj−ˉyj||+1Γ(2−γ)Γ(α+1)k∑j=1(ρα+1j+ρα−γ+1j)Aj(||yj−ˉyj||+||CDγ0,tyj−CDγ0,tˉyj||)+1Γ(2−γ)Γ(α+2)k∑j=1,j≠i(ρα+1j+ρα−γ+1j)Aj(||yj−ˉyj||+||CDγ0,tyj−CDγ0,tˉyj||)+1Γ(2−γ)Γ(α+2)(ρα+1i+ρα−γ+1i)Ai(||yi−ˉyi||+||CDγ0,tyi−CDγ0,tˉyi||). |
This implies that, for any y,ˉy∈Yk,
||CDγ0,tTiy(t)−CDγ0,tTiˉy(t)||≤(1Γ(α−γ+2)+1Γ(2−γ)Γ(α+1)+1Γ(2−γ)Γ(α+2))(ρα+1i+ρα−γ+1i)Ai||yi−ˉyi||Y |
+(1Γ(2−γ)Γ(α+1)+1Γ(2−γ)Γ(α+2))k∑j=1,j≠i(ρα+1j+ρα−γ+1j)Aj||yj−ˉyj||Y+3λiρiΓ(2−γ)||yi−ˉyi||Y+k∑j=1,j≠i2λjρjΓ(2−γ)||yj−ˉyj||Y. | (3.6) |
By a direct calculation with help of (3.5) and (3.6), we get
||Tiy−Tiˉy||+||CDγ0,tTiy−CDγ0,tTiˉy||≤M2(ρα+1i+ρα−γ+1i)Ai||yi−ˉyi||Y+(3λiρi+3λiρiΓ(2−γ))||yi−ˉyi||Y+M1k∑j=1,j≠i(ρα+1j+ρα−γ+1j)Aj||yj−ˉyj||Y+k∑j=1,j≠i(2λjρj+2λjρjΓ(2−γ))||yj−ˉyj||Y. |
From this it follows that
||Tiy−Tiˉy||Y≤(M2(ρα+1i+ρα−γ+1i)+M1k∑j=1,j≠i(ρα+1j+ρα−γ+1j))(k∑i=1Ai)k∑j=1||yj−ˉyj||Y+(3λiρi+3λiρiΓ(2−γ)+k∑j=1,j≠i(2λjρj+2λjρjΓ(2−γ)))k∑j=1||yj−ˉyj||Y=(Pi(k∑i=1Ai)+Qi)k∑j=1||yj−ˉyj||Y. |
As a consequence, we obtain
||Ty−Tˉy||Yk=k∑i=1||Tiy−Tiˉy||Y≤(k∑i=1Pi(k∑i=1Ai)+k∑i=1Qi)||y−ˉy||Yk. |
It follows from the condition k∑i=1Pi(k∑i=1Ai)+k∑i=1Qi<1 that T is a contractive mapping. Hence, T has a unique fixed point on Yk, that is, BVP (2.1) has a unique solution. Therefore, we obtain the conclusion of the theorem.
Theorem 3.2 Assume that
(H2) The functions gi:[0,1]×R2→R,(i=1,2,⋯,k) are continuous and there exist functions pi(t),qi(t),ri(t)∈C([0,1],[0,+∞)),(i=1,2,⋯,k) such that
|gi(t,u,v)|≤pi(t)+qi(t)|u(t)|+ri(t)|v(t)|, |
for all t∈[0,1],u,v∈R. Then the BVP (2.1) admits at least one solution in Y provided that
k∑i=1θi<1, |
where
θi=Δi(q∗i+ρ−γir∗i)+ϖi+k∑j=1,j≠i(˜Δj(q∗j+ρ−γjr∗j)+˜ϖj), |
and
p∗i=maxt∈[0,1]|pi(t)|,q∗i=maxt∈[0,1]|qi(t)|,r∗i=maxt∈[0,1]|ri(t)|,Δi=M2ρα+1i,ϖi=3λiρi+3λiρiΓ(2−γ),˜ϖj=2λjρj+2λjρjΓ(2−γ),˜Δj=M1ρα+1j. |
Proof. We divide the proof into two steps.
Step 1. We need to verify that the operator T is a completely continuous. In fact, since the functions gi(i=1,2,⋯,k) are continuous, we can easily prove that the operators Ti(i=1,2,⋯k) are continuous, and thus T is continuous. Next, we have to show that T is compact. To see this, we define the bounded subset Λ={yi∈Y,||yi||Y≤εi} on Y, then for any y=(y1,y2,⋯,yk)∈Λ, by (H2), we find that
|Tiy(t)|≤λiρi∫t0|yi(s)|ds+ρα+1iΓ(α+1)∫t0(t−s)α|gi(s,yi(s),ρ−γiCDγ0,syi(s))|ds+k∑j=1ℓj(λjρj|yj(1)|+ρα+1jΓ(α)∫10(1−s)α−1|gj(s,yj(s),ρ−γjCDγ0,syj(s))|ds)+k∑j=1,j≠iℓj(λjρj∫10|yj(s)|ds+ρα+1jΓ(α+1)∫10(1−s)α|gj(s,yj(s),ρ−γjCDγ0,syj(s))|ds)+k∑j=1,j≠iℓj(ρα+1iΓ(α+1)∫10(1−s)α|gi(s,yi(s),ρ−γiCDγ0,syi(s))|ds+λiρi∫10|yi(s)|ds)≤λiρi||yi||+ρα+1iΓ(α+2)(p∗i+q∗i||yi||+ρ−γir∗i||CDγ0,tyi||)+k∑j=1λjρj||yj||+k∑j=1ρα+1jΓ(α+1)(p∗j+q∗j||yj||+ρ−γjr∗j||CDγ0,tyj||)+k∑j=1,j≠iλjρj||yj||+k∑j=1,j≠iρα+1jΓ(α+2)(p∗j+q∗j||yj||+ρ−γjr∗j||CDγ0,tyj||)+ρα+1iΓ(α+2)(p∗i+q∗i||yi||+ρ−γir∗i||CDγ0,tyi||)+λiρi||yi||≤λiρi||yi||Y+ρα+1iΓ(α+2)(p∗i+(q∗i+ρ−γir∗i)||yi||Y)+k∑j=1λjρj||yj||Y+k∑j=1ρα+1jΓ(α+1)(p∗j+(q∗j+ρ−γjr∗j)||yj||Y)+k∑j=1,j≠iλjρj||yj||Y+k∑j=1,j≠iρα+1jΓ(α+2)(p∗j+(q∗j+ρ−γjr∗j)||yj||Y) |
+ρα+1iΓ(α+2)(p∗i+(q∗i+ρ−γir∗i)||yi||Y)+λiρi||yi||Y. |
From which we can deduce that
||Tiy||≤3λiρi||yi||Y+(2Γ(α+2)+1Γ(α+1))ρα+1i(p∗i+(q∗i+ρ−γir∗i)||yi||Y)+k∑j=1,j≠i2λjρj||yj||Y+k∑j=1,j≠i(1Γ(α+1)+1Γ(α+2))ρα+1j(p∗j+(q∗j+ρ−γjr∗j)||yj||Y)≤(3λiρi+(2Γ(α+2)+1Γ(α+1))ρα+1i(q∗i+ρ−γir∗i))||yi||Y+k∑j=1,j≠i(2λjρj+(1Γ(α+1)+1Γ(α+2))ρα+1j(q∗j+ρ−γjr∗j))||yj||Y+(2Γ(α+2)+1Γ(α+1))ρα+1ip∗i+k∑j=1,j≠i(1Γ(α+1)+1Γ(α+2))ρα+1jp∗j. | (3.7) |
On the other hand, by Lemma 2.3 and (H2), we also can get the estimate
|CDγ0,tTiy(t)|≤λiρiΓ(1−γ)∫t0(t−s)−γ|yi(s)|ds+ρα+1iΓ(α+1−γ)∫t0(t−s)α−γ|gi(s,yi(s),ρ−γiCDγ0,syi(s))|ds+t1−γΓ(2−γ)k∑j=1ℓj(λjρj|yj(1)|+ρα+1jΓ(α)∫10(1−s)α−1|gj(s,yj(s),ρ−γjCDγ0,syj(s))|ds)+t1−γΓ(2−γ)k∑j=1,j≠iℓj(λjρj∫10|yj(s)|ds+ρα+1jΓ(α+1)∫10(1−s)α|gj(s,yj(s),ρ−γjCDγ0,syj(s))|ds)+t1−γΓ(2−γ)k∑j=1,j≠iℓj(ρα+1iΓ(α+1)∫10(1−s)α|gi(s,yi(s),ρ−γiCDγ0,syi(s))|ds+λiρi∫10|yi(s)|ds)≤λiρiΓ(2−γ)||yi||+ρα+1iΓ(α−γ+2)(p∗i+q∗i||yi||+ρ−γir∗i||CDγ0,tyi||)+1Γ(2−γ)k∑j=1λjρj||yj||+1Γ(2−γ)Γ(α+1)k∑j=1ρα+1j(p∗j+q∗j||yj||+ρ−γjr∗j||CDγ0,tyj||)+1Γ(2−γ)k∑j=1,j≠iλjρj||yj||+1Γ(2−γ)Γ(α+2)k∑j=1,j≠iρα+1j(p∗j+q∗j||yj||+ρ−γjr∗j||CDγ0,tyj||)+ρα+1iΓ(2−γ)Γ(α+2)(p∗i+q∗i||yi||+ρ−γir∗i||CDγ0,tyi||)+λiρiΓ(2−γ)||yi||. |
In a similar manner, we deduce
||CDγ0,tTiy||≤(1Γ(α−γ+2)+1Γ(2−γ)Γ(α+1)+1Γ(2−γ)Γ(α+2))ρα+1i(q∗i+ρ−γir∗i)||yi||Y |
+k∑j=1,j≠i(2λjρjΓ(2−γ)+(1Γ(2−γ)Γ(α+1)+1Γ(2−γ)Γ(α+2))ρα+1j(q∗j+ρ−γjr∗j))||yj||Y+k∑j=1,j≠i(1Γ(2−γ)Γ(α+1)+1Γ(2−γ)Γ(α+2))ρα+1jp∗j+3λiρiΓ(2−γ)||yi||Y+(1Γ(α−γ+2)+1Γ(2−γ)Γ(α+1)+1Γ(2−γ)Γ(α+2))ρα+1ip∗i. | (3.8) |
From (3.7) and (3.8), we get that
||Tiy||+||CDγ0,tTiy||≤M2ρα+1i(q∗i+ρ−γir∗i)||yi||Y+(3λiρi+3λiρiΓ(2−γ))||yi||Y+k∑j=1,j≠i(2λjρj+2λjρjΓ(2−γ))||yj||Y+k∑j=1,j≠iM1ρα+1j(q∗j+ρ−γjr∗j)||yj||Y+M2ρα+1ip∗i+k∑j=1,j≠iM1ρα+1jp∗j=Δi(q∗i+ρ−γir∗i)||yi||Y+ϖi||yi||Y+k∑j=1,j≠i˜Δj(q∗j+ρ−γjr∗j)||yj||Y+k∑j=1,j≠i˜ϖj||yj||Y+Δip∗i+k∑j=1,j≠i˜Δjp∗j≤(Δi(q∗i+ρ−γir∗i)+ϖi)||yi||Y+k∑j=1,j≠i(˜Δj(q∗j+ρ−γjr∗j)+˜ϖj)||yj||Y+Δip∗i+k∑j=1,j≠i˜Δjp∗j≤[(Δi(q∗i+ρ−γir∗i)+ϖi)+k∑j=1,j≠i(˜Δj(q∗j+ρ−γjr∗j)+˜ϖj)]k∑j=1||yj||Y+Ni=θik∑j=1εj+Ni, |
where
Ni=Δip∗i+k∑j=1,j≠i˜Δjp∗j,i=1,2,⋯k. | (3.9) |
Form this it follows that
||Ty||Yk=k∑i=1||Tiy||Y≤k∑i=1θi(k∑j=1εj)+k∑i=1Ni. |
Hence, the operator T is uniformly bounded on Λ.
Now, We will show that the operator T is equicontinuous on Λ. Indeed, for y=(y1,y2,⋯,yk)∈Λ,t1,t2∈[0,1],t1<t2, we have
|Tiy(t2)−Tiy(t1)|≤ρα+1iΓ(α+1)(∫t10((t2−s)α−(t1−s)α)ds+∫t2t1(t2−s)αds)(p∗i+q∗i||yi||+ρ−γir∗i||CDγ0,tyi||) |
+(t2−t1)k∑j=1(λjρj||yj||+ρα+1jΓ(α+1)(p∗j+q∗j||yj||+ρ−γjr∗j||CDγ0,tyj||))+(t2−t1)k∑j=1,j≠i(λjρj||yj||+ρα+1jΓ(α+2)(p∗j+q∗j||yj||+ρ−γjr∗j||CDγ0,tyj||))+(t2−t1)(ρα+1iΓ(α+2)(p∗i+q∗i||yi||+ρ−γir∗i||CDγ0,tyi||)+λiρi||yi||)+λiρi||yi||(t2−t1)≤λiρiεi(t2−t1)+ρα+1i(p∗i+(q∗i+r∗iρ−γi)εi)Γ(α+2)(tα+12−tα+11)+(t2−t1)k∑j=1(λjρjεj+ρα+1j(p∗j+(q∗j+r∗jρ−γj)εj)Γ(α+1))+(t2−t1)k∑j=1,j≠i(λjρjεj+ρα+1j(p∗j+(q∗j+r∗jρ−γj)εj)Γ(α+2))+(t2−t1)(ρα+1i(p∗i+(q∗i+r∗iρ−γi)εi)Γ(α+2)+λiρiεi), | (3.10) |
and
|CDγ0,tTiy(t2)−CDγ0,tTiy(t1)|≤λiρiΓ(1−γ)||yi||(∫t10((t1−s)−γ−(t2−s)−γ)ds+∫t2t1(t2−s)−γds)+ρα+1i(p∗i+q∗i||yi||+ρ−γir∗i||CDγ0,tyi||)Γ(α−γ+1)(∫t10((t2−s)α−γ−(t1−s)α−γ)ds+∫t2t1(t2−s)α−γds)+(t1−γ2−t1−γ1)Γ(2−γ)k∑j=1λjρj||yj||+(t1−γ2−t1−γ1)Γ(2−γ)Γ(α+1)k∑j=1ρα+1j(p∗j+q∗j||yj||+ρ−γjr∗j||CDγ0,tyj||)+(t1−γ2−t1−γ1)Γ(2−γ)k∑j=1,j≠iλjρj||yj||+(t1−γ2−t1−γ1)Γ(2−γ)Γ(α+2)k∑j=1,j≠iρα+1j(p∗j+q∗j||yj||+ρ−γjr∗j||CDγ0,tyj||)+(t1−γ2−t1−γ1)ρα+1iΓ(2−γ)Γ(α+2)(p∗i+q∗i||yi||+ρ−γir∗i||CDγ0,tyi||)+(t1−γ2−t1−γ1)λiρi||yi||Γ(2−γ)≤λiρiεiΓ(2−γ)(t1−γ1−t1−γ2+2(t2−t1)1−γ)+ρα+1i(p∗i+(q∗i+ρ−γir∗i)εi)Γ(α−γ+2)(tα−γ+12−tα−γ+11)+(t1−γ2−t1−γ1)Γ(2−γ)k∑j=1λjρjεj+(t1−γ2−t1−γ1)Γ(2−γ)Γ(α+1)k∑j=1ρα+1j(p∗j+(q∗j+ρ−γjr∗j)εj)+(t1−γ2−t1−γ1)Γ(2−γ)k∑j=1,j≠iλjρjεj+(t1−γ2−t1−γ1)Γ(2−γ)Γ(α+2)k∑j=1,j≠iρα+1j(p∗j+(q∗j+ρ−γjr∗j)εj)+(t1−γ2−t1−γ1)ρα+1iΓ(2−γ)Γ(α+2)(p∗i+(q∗i+ρ−γir∗i)εi)+(t1−γ2−t1−γ1)λiρiεiΓ(2−γ). | (3.11) |
Form (3.10) and (3.11), we get
||Tiy(t2)−Tiy(t1)||Y≤(3λiρiεi+(ρα+1iΓ(α+1)+ρα+1iΓ(α+2))(p∗i+(q∗i+ρ−βir∗i)εi))(t2−t1)+ρα+1iΓ(α+2)(p∗i+(q∗i+ρ−γir∗i)εi)(tα+12−tα+11)+2λiρiεiΓ(2−γ)(t1−γ2−t1−γ1)+((ρα+1iΓ(2−γ)Γ(α+2)+ρα+1iΓ(2−γ)Γ(α+1))(p∗i+(q∗i+ρ−γir∗i)εi))(t1−γ2−t1−γ1)+λiρiεiΓ(2−γ)(t1−γ1−t1−γ2+2(t2−t1)1−γ)+ρα+1iΓ(α−γ+2)(p∗i+(q∗i+ρ−γir∗i)εi)(tα−γ+12−tα−γ+11)+k∑j=1,j≠i(2λjρjεjΓ(2−γ)+(ρα+1jΓ(2−γ)Γ(α+1)+ρα+1jΓ(2−γ)Γ(α+2))(p∗j+(q∗j+ρ−γjr∗j)εj))(t1−γ2−t1−γ1)+k∑j=1,j≠i(2λjρjεj+(ρα+1jΓ(α+2)+ρα+1jΓ(α+1))(p∗j+(q∗j+ρ−γjr∗j)εj))(t2−t1), |
which implies ||Tiy(t2)−Tiy(t1)||Y→0 as t2→t1, and so ||Ty(t2)−Ty(t1)||Yk→0 as t2→t1. Therefore, the operator T is equicontinuous on Λ. According to Arzelá-Ascoli theorem that T is completely continuous.
Step 2. By applying Scheafer's fixed point theorem, we now prove that T has fixed point in Y. To this aim, we define Ω={(y1,y2,⋯,yk)∈Yk:(y1,y2,⋯,yk)=μT(y1,y2,⋯,yk),μ∈(0,1)} and show that Ω is bounded. In fact, for (y1,y2,⋯,yk)∈Ω, then (y1,y2,⋯,yk)=μT(y1,y2,⋯,yk), that is, for t∈[0,1], we have yi(t)=μTi(y1,y2,⋯,yk),i=1,2,⋯,k. Similarly in the proof of (3.7), by assumption (H2), we deduce
|yi(t)|≤μ[(3λiρi+(2Γ(α+2)+1Γ(α+1))ρα+1i(q∗i+ρ−γir∗i))||yi||Y+k∑j=1,j≠i(2λjρj+(1Γ(α+1)+1Γ(α+2))ρα+1j(q∗j+ρ−γjr∗j))||yj||Y+(2Γ(α+2)+1Γ(α+1))ρα+1ip∗i+k∑j=1,j≠i(1Γ(α+1)+1Γ(α+2))ρα+1jp∗j], |
from which we obtain
||yi||≤(3λiρi+(2Γ(α+2)+1Γ(α+1))ρα+1i(q∗i+ρ−γir∗i))||yi||Y+k∑j=1,j≠i(2λjρj+(1Γ(α+1)+1Γ(α+2))ρα+1j(q∗j+ρ−γjr∗j))||yj||Y+(2Γ(α+2)+1Γ(α+1))ρα+1ip∗i+k∑j=1,j≠i(1Γ(α+1)+1Γ(α+2))ρα+1jp∗j. | (3.12) |
In a similar manner of deduce (3.8), by assumption (H2), we also can obtain the estimate
|CDγ0,tyi(t)|≤μ[(1Γ(α−γ+2)+1Γ(2−γ)Γ(α+1)+1Γ(2−γ)Γ(α+2))ρα+1i(q∗i+ρ−γir∗i)||yi||Y+k∑j=1,j≠i(2λjρjΓ(2−γ)+(1Γ(2−γ)Γ(α+1)+1Γ(2−γ)Γ(α+2))ρα+1j(q∗j+ρ−γjr∗j))||yj||Y+k∑j=1,j≠i(1Γ(2−γ)Γ(α+1)+1Γ(2−γ)Γ(α+2))ρα+1jp∗j+3λiρiΓ(2−γ)||yi||Y+(1Γ(α−γ+2)+1Γ(2−γ)Γ(α+1)+1Γ(2−γ)Γ(α+2))ρα+1ip∗i]. |
Then for t∈[0,1], we get
||CDγ0,tyi||≤(1Γ(α−γ+2)+1Γ(2−γ)Γ(α+1)+1Γ(2−γ)Γ(α+2))ρα+1i(q∗i+ρ−γir∗i)||yi||Y+k∑j=1,j≠i(2λjρjΓ(2−γ)+(1Γ(2−γ)Γ(α+1)+1Γ(2−γ)Γ(α+2))ρα+1j(q∗j+ρ−γjr∗j))||yj||Y+k∑j=1,j≠i(1Γ(2−γ)Γ(α+1)+1Γ(2−γ)Γ(α+2))ρα+1jp∗j+3λiρiΓ(2−γ)||yi||Y+(1Γ(α−γ+2)+1Γ(2−γ)Γ(α+1)+1Γ(2−γ)Γ(α+2))ρα+1ip∗i. |
Combining this with (3.12) gives
||yi||+||CDγ0,tyi||≤M2ρα+1i(q∗i+ρ−γir∗i)||yi||Y+(3λiρi+3λiρiΓ(2−γ))||yi||Y+k∑j=1,j≠i(2λjρj+2λjρjΓ(2−γ))||yj||Y+k∑j=1,j≠iM1ρα+1j(q∗j+ρ−γjr∗j)||yj||Y+M2ρα+1ip∗i+k∑j=1,j≠iM1ρα+1jp∗j≤θik∑j=1||yj||Y+Ni, |
where Ni is defined as in (3.9), from which we deduce that
||y||Yk=k∑i=1||yi||Y≤k∑i=1θi||y||Yk+k∑i=1Ni. |
It follows from k∑i=1θi<1 that Ω is bounded. By Theorem 2.4, the operator T has at least one fixed point, that is, the BVP (2.1) has at least one solution.
Example 4.1 Consider the BVP (1.3) with k=3,α=12,γ=13,λ1=λ2=λ3=ρ1=110,ρ2=120,ρ3=130, and
{g1(x,u,v)=cosx+1(x+2)2(sinu+v),(x,u,v)∈[0,ρ1]×R×R,g2(x,u,v)=1√x+12(x2+4)2(|u|+|v|),(x,u,v)∈[0,ρ2]×R×R,g3(x,u,v)=1+x2+13(x+3)3(u1+u+v),(x,u,v)∈[0,ρ3]×R×R. |
In view of Lemma 2.6, we get the equivalent system
{CD1/20,t(D+1100)y1(t)=(110)3/2[cost+1(t+2)2(siny1(t)+(110)−1/3CD1/30,ty1(t))],CD1/20,t(D+1200)y2(t)=(120)3/2[1√t+12(t2+4)2(|y2(t)|+(120)−1/3|CD1/30,ty2(t)|)],CD1/20,t(D+1300)y3(t)=(130)3/2[1+t2+13(t+3)3(y3(t)1+y3(t)+(130)−1/3CD1/30,ty3(t))],y1(0)=y2(0)=y3(0)=0,y1(1)=y2(1)=y3(1),(1/10)−1y′1(1)+(1/20)−1y′2(1)+(1/30)−1y′3(1)=0. | (4.1) |
From (4.1), for t∈[0,1],u,v,u1,v1∈R, we can conclude that
|g1(t,u,v)−g1(t,u1,v1)|≤1(t+2)2(|u−u1|+|v−v1|),|g2(t,u,v)−g2(t,u1,v1)|≤12(t2+4)2(|u−u1|+|v−v1|),|g3(t,u,v)−g3(t,u1,v1)|≤13(t+3)3(|u−u1|+|v−v1|). |
So, we get
a1(t)=1(t+2)2,a2(t)=12(t2+4)2,a3(t)=13(t+3)3. |
By simple calculation, we obtain
A1=maxt∈[0,1]|a1(t)|=14,A2=maxt∈[0,1]|a2(t)|=132,A3=maxt∈[0,1]|a3(t)|=181. |
P1≐0.8256,P2≐0.7281,P3≐0.7183,Q1≐0.0983,Q2≐0.0878,Q3≐0.0843. |
Then
(3∑i=1Pi)(3∑i=1Ai)+3∑i=1Qi≐0.9374<1. |
From Theorem 3.1 that the BVP (4.1) has a unique solution.
Example 4.2 Consider the BVP (1.3) with k=3,α=12,γ=13,λ1=λ2=λ3=120,ρ2=15,ρ1=ρ3=110, and
{g1(x,u,v)=x10+12(x+3)3u+153√10(x+2)2v,(x,u,v)∈[0,ρ1]×R×R,g2(x,u,v)=sinx+13(x+2)2u+x203√5v,(x,u,v)∈[0,ρ2]×R×R,g3(x,u,v)=2x+1(x+5)2u+1123√10(x+2)v,(x,u,v)∈[0,ρ3]×R×R. |
Then by Lemma 2.6, we obtain the equivalent system
{CD1/20,t(D+1200)y1(t)=(110)3/2[t10+siny1(t)2(t+3)3+CD1/1330,ty1(t)53√10(t+2)2],CD1/20,t(D+1100)y2(t)=(15)3/2[sint+y2(t)3(t+2)2+t203√5CD1/1330,ty2(t)],CD1/20,t(D+1200)y3(t)=(110)3/2[2t+y3(t)(t+5)2+D1/1330,ty3(t)123√10(t+2)],y1(0)=y2(0)=y3(0),y1(1)=y2(1)=y3(1),(1/10)−1y′1(1)+(1/5)−1y′2(1)+(1/10)−1y′3(1)=0. | (4.2) |
Then
q1(t)=12(t+3)3,r1(t)=15(t+2)2,q2(t)=13(t+2)2,r2(t)=t20,q3(t)=1(t+5)2,r3(t)=112(t+2). |
For t∈[0,1], we have q∗1=154,q∗2=112,q∗3=125,r∗1=r∗2=120,r∗3=124. By calculation, we get
Δ1≐0.1783,˜Δ1≐0.1253,ϖ1≐0.0316,˜ϖ1≐0.0211,Δ2≐0.4043,˜Δ2≐0.3544,ϖ2≐0.0632,˜ϖ2≐0.0421,Δ3≐0.1783,˜Δ3≐0.1253,ϖ3≐0.0316,˜ϖ3≐0.0211, |
So,
θ1=Δ1(q∗1+ρ−γ1r∗1)+ϖ1+(˜Δ2(q∗2+ρ−γ2r∗2)+˜ϖ2)+(˜Δ3(q∗3+ρ−γ3r∗3)+˜ϖ3)≐0.1934,θ2=Δ2(q∗2+ρ−γ2r∗2)+ϖ2+(˜Δ1(q∗1+ρ−γ1r∗1)+˜ϖ1)+(˜Δ3(q∗3+ρ−γ3r∗3)+˜ϖ3)≐0.2057,θ3=Δ3(q∗3+ρ−γ3r∗3)+ϖ3+(˜Δ1(q∗1+ρ−γ1r∗1)+˜ϖ1)+(˜Δ2(q∗2+ρ−γ2r∗2)+˜ϖ2)≐0.1935. |
Thus,
θ1+θ2+θ3≐0.5926<1. |
According to Theorem 3.2, the BVP (4.2) has at least one solution.
This paper considers the fractional Langevin equations on a star graph of the form (1.3). By using Lemma 2.6, the problem (1.3) is transformed into an equivalent system of fractional Langevin equations supplemented with mixed boundary conditions defined on [0,1], that is, problem (2.1). Making use of the fixed point theorems (Schauder's fixed point theorem, Banach's contraction mapping principle), sufficient criteria for the existence and uniqueness results are derived. Finally, we present two examples to illustrate the validity of the obtained results. As a possible extension of this paper, we will study the higher-order fractional Langevin-type equations on star graphs in the future, such as
CDα0,x(D2+λi)yi(x)=gi(x,yi(x),CDβ0,xyi(x)),0<x<li,i=1,2,⋯,k, |
supplemented with the boundary conditions
{y′i(0)=yi(0)=0,i=1,2,⋯,k,y′i(li)=y′j(lj),i,j=1,2,⋯,k,i≠j,∑ki=1y″i(li)=0,i=1,2,⋯,k, |
and
{y′i(0)=yi(1)=0,i=1,2,⋯,k,y″i(li)=y″j(lj),i,j=1,2,⋯,k,i≠j,∑ki=1y″i(li)=0,i=1,2,⋯,k, |
where 0<α<1,0<β<α,λi∈R+,i=1,2,⋯,k,CDα0,x,CDβ0,x are Caputo fractional derivative, D2 is the ordinary second-order derivative, gi∈C([0,li]×R2,R),i=1,2,⋯,k. The star graph has k+1 nodes and k edges, that is G=V∪E,V={v0,v1,⋯,vk},E={ei=→viv0,i=1,2,⋯,k}, where v0 is the junction node, ei=→viv0 represents the edge connecting vi and v0 with length li=|→viv0|,i=1,2,⋯,k.
The authors wish to express their sincere appreciation to the editor and the anonymous referees for their valuable comments and suggestions. This research is supported by the National Natural Science Foundation of China (11601007) and the Key Program of University Natural Science Research Fund of Anhui Province (KJ2020A0291).
The authors declare that they have no competing interests.
[1] |
Adolfsson V, Escauriaza L (1997) C1,α domains and unique continuation at the boundary. Comm Pure Appl Math 50: 935–969. doi: 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H
![]() |
[2] | Adolfsson V, Escauriaza L, Kenig C (1995) Convex domains and unique continuation at the boundary. Rev Mat Iberoam 11: 513–525. |
[3] |
Brändle C, Colorado E, de Pablo A, et al. (2013) A concave-convex elliptic problem involving the fractional Laplacian. Proceedings of the Royal Society of Edinburgh Section A: Mathematics 143: 39–71. doi: 10.1017/S0308210511000175
![]() |
[4] |
Caffarelli L, Silvestre L (2007) An extension problem related to the fractional Laplacian. Commun Part Diff Eq 32: 1245–1260. doi: 10.1080/03605300600987306
![]() |
[5] | Carleman T (1939) Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépendantes. Ark Mat Astr Fys 26: 9. |
[6] |
Dal Maso G, Orlando G, Toader R (2015) Laplace equation in a domain with a rectilinear crack: higher order derivatives of the energy with respect to the crack length. NoDEA Nonlinear Diff 22: 449–476. doi: 10.1007/s00030-014-0291-0
![]() |
[7] |
Doktor P, Zensek A (2006) The density of infinitely differentiable functions in Sobolev spaces with mixed boundary conditions. Appl Math 51: 517–547. doi: 10.1007/s10492-006-0019-5
![]() |
[8] |
Fall MM, Felli V (2014) Unique continuation property and local asymptotics of solutions to fractional elliptic equations. Commun Part Diff Eq 39: 354–397. doi: 10.1080/03605302.2013.825918
![]() |
[9] |
Felli V, Ferrero A (2013) Almgren-type monotonicity methods for the classification of behaviour at corners of solutions to semilinear elliptic equations. Proceedings of the Royal Society of Edinburgh Section A: Mathematics 143: 957–1019. doi: 10.1017/S0308210511001314
![]() |
[10] |
Felli V, Ferrero A (2014) On semilinear elliptic equations with borderline Hardy potentials. J Anal Math 123: 303–340. doi: 10.1007/s11854-014-0022-9
![]() |
[11] | Felli V, Ferrero A, Terracini S (2011) Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential. J Eur Math Soc 13: 119–174. |
[12] |
Felli V, Ferrero A, Terracini S (2012) On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials. Discrete Contin Dyn-A 32: 3895–3956. doi: 10.3934/dcds.2012.32.3895
![]() |
[13] |
Felli V, Ferrero A, Terracini S (2012) A note on local asymptotics of solutions to singular elliptic equations via monotonicity methods. Milan J Math 80: 203–226. doi: 10.1007/s00032-012-0174-y
![]() |
[14] |
Garofalo N, Lin FH (1986) Monotonicity properties of variational integrals, Ap weights and unique continuation. Indiana U Math J 35: 245–268. doi: 10.1512/iumj.1986.35.35015
![]() |
[15] | Hartman P (1964) Ordinary Differential Equations, Wiley, New York. |
[16] |
Kassmann M, Madych WR (2007) Difference quotients and elliptic mixed boundary value problems of second order. Indiana U Math J 56: 1047–1082. doi: 10.1512/iumj.2007.56.2836
![]() |
[17] | Krantz SG (2006) Geometric function theory. Explorations in complex analysis, Cornerstones, Birkhäuser Boston, Inc., Boston, MA. |
[18] |
Kukavica I (1998) Quantitative uniqueness for second-order elliptic operators. Duke Math J 91: 225–240. doi: 10.1215/S0012-7094-98-09111-6
![]() |
[19] |
Kukavica I, Nyström K (1998) Unique continuation on the boundary for Dini domains. Proc Amer Math Soc 126: 441–446. doi: 10.1090/S0002-9939-98-04065-9
![]() |
[20] |
Lazzaroni G, Toader R (2011) Energy release rate and stress intensity factor in antiplane elasticity. J Math Pures Appl 95: 565–584. doi: 10.1016/j.matpur.2011.01.001
![]() |
[21] |
Ros-Oton X, Serra J (2014) The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J Math Pures Appl 101: 275–302. doi: 10.1016/j.matpur.2013.06.003
![]() |
[22] |
Ros-Oton X, Serra J (2016) Regularity theory for general stable operators. J Differ Equations 260: 8675–8715. doi: 10.1016/j.jde.2016.02.033
![]() |
[23] |
Ros-Oton X, Serra J (2016) Boundary regularity for fully nonlinear integro-differential equations. Duke Math J 165: 2079–2154. doi: 10.1215/00127094-3476700
![]() |
[24] |
Serra J (2015) Regularity for fully nonlinear nonlocal parabolic equations with rough kernels. Calc Var Partial Dif 54: 615–629. doi: 10.1007/s00526-014-0798-6
![]() |
[25] |
Savaré G (1997) Regularity and perturbation results for mixed second order elliptic problems. Commun Part Diff Eq 22: 869–899. doi: 10.1080/03605309708821287
![]() |
[26] |
Tao X, Zhang S (2005) Boundary unique continuation theorems under zero Neumann boundary conditions. B Aust Math Soc 72: 67–85. doi: 10.1017/S0004972700034882
![]() |
[27] |
Tao X, Zhang S (2008) Weighted doubling properties and unique continuation theorems for the degenerate Schrödinger equations with singular potentials. J Math Anal Appl 339: 70–84. doi: 10.1016/j.jmaa.2007.06.042
![]() |
[28] | Wolff TH (1992) A property of measures in RN and an application to unique continuation. Geom Funct Anal. |
1. | Guotao Wang, Hualei Yuan, Existence, uniqueness, and Ulam stability of solutions of fractional conformable Langevin system on the ethane graph, 2024, 47, 0170-4214, 7350, 10.1002/mma.9975 | |
2. | Gang Chen, Jinbo Ni, Xinyu Fu, Existence, and Ulam's types stability of higher-order fractional Langevin equations on a star graph, 2024, 9, 2473-6988, 11877, 10.3934/math.2024581 |