Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment

  • Received: 01 April 2007 Accepted: 29 June 2018 Published: 01 March 2008
  • MSC : Primary: 92-08, 92C15; Secondary: 65C05, 68U20.

  • The CompuCell3D modeling environment provides a convenient platform for biofilm simulations using the Glazier-Graner-Hogeweg (GGH) model, a cell-oriented framework designed to simulate growth and pattern formation due to biological cells' behaviors. We show how to develop such a simulation, based on the hybrid (continuum-discrete) model of Picioreanu, van Loosdrecht, and Heijnen (PLH), simulate the growth of a single-species bacterial biofilm, and study the roles of cell-cell and cell-field interactions in determining biofilm morphology. In our simulations, which generalize the PLH model by treating cells as spatially extended, deformable bodies, differential adhesion between cells, and their competition for a substrate (nutrient), suffice to produce a fingering instability that generates the finger shapes of biofilms. Our results agree with most features of the PLH model, although our inclu- sion of cell adhesion, which is difficult to implement using other modeling approaches, results in slightly different patterns. Our simulations thus pro- vide the groundwork for simulations of medically and industrially important multispecies biofilms.

    Citation: Nikodem J. Poplawski, Abbas Shirinifard, Maciej Swat, James A. Glazier. Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment[J]. Mathematical Biosciences and Engineering, 2008, 5(2): 355-388. doi: 10.3934/mbe.2008.5.355

    Related Papers:

    [1] Fadoua El Moustaid, Amina Eladdadi, Lafras Uys . Modeling bacterial attachment to surfaces as an early stage of biofilm development. Mathematical Biosciences and Engineering, 2013, 10(3): 821-842. doi: 10.3934/mbe.2013.10.821
    [2] Yousef Rohanizadegan, Stefanie Sonner, Hermann J. Eberl . Discrete attachment to a cellulolytic biofilm modeled by an Itô stochastic differential equation. Mathematical Biosciences and Engineering, 2020, 17(3): 2236-2271. doi: 10.3934/mbe.2020119
    [3] Donna J. Cedio-Fengya, John G. Stevens . Mathematical modeling of biowall reactors for in-situ groundwater treatment. Mathematical Biosciences and Engineering, 2006, 3(4): 615-634. doi: 10.3934/mbe.2006.3.615
    [4] Fazal Abbas, Rangarajan Sudarsan, Hermann J. Eberl . Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates. Mathematical Biosciences and Engineering, 2012, 9(2): 215-239. doi: 10.3934/mbe.2012.9.215
    [5] Fabiana Russo, Alberto Tenore, Maria Rosaria Mattei, Luigi Frunzo . Multiscale modelling of the start-up process of anammox-based granular reactors. Mathematical Biosciences and Engineering, 2022, 19(10): 10374-10406. doi: 10.3934/mbe.2022486
    [6] Marco Scianna, Luigi Preziosi, Katarina Wolf . A Cellular Potts model simulating cell migration on and in matrix environments. Mathematical Biosciences and Engineering, 2013, 10(1): 235-261. doi: 10.3934/mbe.2013.10.235
    [7] Vincenzo Luongo, Maria Rosaria Mattei, Luigi Frunzo, Berardino D'Acunto, Kunal Gupta, Shankararaman Chellam, Nick Cogan . A transient biological fouling model for constant flux microfiltration. Mathematical Biosciences and Engineering, 2023, 20(1): 1274-1296. doi: 10.3934/mbe.2023058
    [8] Choah Shin, Azhar Alhammali, Lisa Bigler, Naren Vohra, Malgorzata Peszynska . Coupled flow and biomass-nutrient growth at pore-scale with permeable biofilm, adaptive singularity and multiple species. Mathematical Biosciences and Engineering, 2021, 18(3): 2097-2149. doi: 10.3934/mbe.2021108
    [9] Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl . Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences and Engineering, 2017, 14(3): 625-653. doi: 10.3934/mbe.2017036
    [10] Mudassar Imran, Hal L. Smith . A model of optimal dosing of antibiotic treatment in biofilm. Mathematical Biosciences and Engineering, 2014, 11(3): 547-571. doi: 10.3934/mbe.2014.11.547
  • The CompuCell3D modeling environment provides a convenient platform for biofilm simulations using the Glazier-Graner-Hogeweg (GGH) model, a cell-oriented framework designed to simulate growth and pattern formation due to biological cells' behaviors. We show how to develop such a simulation, based on the hybrid (continuum-discrete) model of Picioreanu, van Loosdrecht, and Heijnen (PLH), simulate the growth of a single-species bacterial biofilm, and study the roles of cell-cell and cell-field interactions in determining biofilm morphology. In our simulations, which generalize the PLH model by treating cells as spatially extended, deformable bodies, differential adhesion between cells, and their competition for a substrate (nutrient), suffice to produce a fingering instability that generates the finger shapes of biofilms. Our results agree with most features of the PLH model, although our inclu- sion of cell adhesion, which is difficult to implement using other modeling approaches, results in slightly different patterns. Our simulations thus pro- vide the groundwork for simulations of medically and industrially important multispecies biofilms.


  • This article has been cited by:

    1. Ovidiu Pârvu, David Gilbert, Monika Heiner, Fei Liu, Nigel Saunders, Simon Shaw, Spatial-Temporal Modelling and Analysis of Bacterial Colonies with Phase Variable Genes, 2015, 25, 1049-3301, 1, 10.1145/2742546
    2. D. Rodriguez, B. Einarsson, A. Carpio, Biofilm growth on rugose surfaces, 2012, 86, 1539-3755, 10.1103/PhysRevE.86.061914
    3. Séverine Urdy, On the evolution of morphogenetic models: mechano-chemical interactions and an integrated view of cell differentiation, growth, pattern formation and morphogenesis, 2012, 87, 14647931, 786, 10.1111/j.1469-185X.2012.00221.x
    4. Xing Jin, Jeffrey S. Marshall, Robert Nerenberg, Mechanics of biofilms formed of bacteria with fimbriae appendages, 2020, 15, 1932-6203, e0243280, 10.1371/journal.pone.0243280
    5. Bruno Hay Mele, Francesco Giannino, Christian E. Vincenot, Stefano Mazzoleni, Fabrizio Cartení, Cell-Based Models in Plant Developmental Biology: Insights into Hybrid Approaches, 2015, 3, 2296-665X, 10.3389/fenvs.2015.00073
    6. Pablo Gonzalez-de-Aledo, Andrey Vladimirov, Marco Manca, Jerry Baugh, Ryo Asai, Marcus Kaiser, Roman Bauer, An optimization approach for agent-based computational models of biological development, 2018, 121, 09659978, 262, 10.1016/j.advengsoft.2018.03.010
    7. Susan D. Hester, Julio M. Belmonte, J. Scott Gens, Sherry G. Clendenon, James A. Glazier, Edmund J. Crampin, A Multi-cell, Multi-scale Model of Vertebrate Segmentation and Somite Formation, 2011, 7, 1553-7358, e1002155, 10.1371/journal.pcbi.1002155
    8. C. Giverso, M. Scianna, L. Preziosi, N. Lo Buono, A. Funaro, Individual Cell-Based Model for In-Vitro Mesothelial Invasion of Ovarian Cancer, 2010, 5, 0973-5348, 203, 10.1051/mmnp/20105109
    9. Marco Scianna, Luca Munaron, Multiscale model of tumor-derived capillary-like network formation, 2011, 6, 1556-181X, 597, 10.3934/nhm.2011.6.597
    10. Tomas Storck, Cristian Picioreanu, Bernardino Virdis, Damien J. Batstone, Variable Cell Morphology Approach for Individual-Based Modeling of Microbial Communities, 2014, 106, 00063495, 2037, 10.1016/j.bpj.2014.03.015
    11. Gaddiel Yonathan Ouaknin, Pinhas Zvi Bar-Yoseph, Stochastic Collective Movement of Cells and Fingering Morphology: No Maverick Cells, 2009, 97, 00063495, 1811, 10.1016/j.bpj.2009.05.064
    12. Maciej H. Swat, Susan D. Hester, Ariel I. Balter, Randy W. Heiland, Benjamin L. Zaitlen, James A. Glazier, 2009, Chapter 13, 978-1-934115-64-0, 361, 10.1007/978-1-59745-525-1_13
    13. Abbas Shirinifard, James Alexander Glazier, Maciej Swat, J. Scott Gens, Fereydoon Family, Yi Jiang, Hans E. Grossniklaus, Edmund J. Crampin, Adhesion Failures Determine the Pattern of Choroidal Neovascularization in the Eye: A Computer Simulation Study, 2012, 8, 1553-7358, e1002440, 10.1371/journal.pcbi.1002440
    14. M. Scianna, L. Preziosi, Multiscale Developments of the Cellular Potts Model, 2012, 10, 1540-3459, 342, 10.1137/100812951
    15. Z. Huang, E.S. McLamore, H.S. Chuang, W. Zhang, S. Wereley, J.L.C. Leon, M.K. Banks, Shear-induced detachment of biofilms from hollow fiber silicone membranes, 2013, 110, 00063592, 525, 10.1002/bit.24631
    16. R. Allena, M. Scianna, L. Preziosi, A Cellular Potts Model of single cell migration in presence of durotaxis, 2016, 275, 00255564, 57, 10.1016/j.mbs.2016.02.011
    17. Nikodem J. Popławski, Ubirajara Agero, J. Scott Gens, Maciej Swat, James A. Glazier, Alexander R. A. Anderson, Front Instabilities and Invasiveness of Simulated Avascular Tumors, 2009, 71, 0092-8240, 1189, 10.1007/s11538-009-9399-5
    18. Xuefeng Gao, Chwanrow K. Baban, Mark Tangney, Sabin Tabirca, 2011, Computer simulation of hypoxia regulates avascular tumor growth through p27 expression, 978-1-4244-9323-4, 15, 10.1109/ICCME.2011.5876697
    19. Abbas Shirinifard, J. Scott Gens, Benjamin L. Zaitlen, Nikodem J. Popławski, Maciej Swat, James A. Glazier, Neil A. Hotchin, 3D Multi-Cell Simulation of Tumor Growth and Angiogenesis, 2009, 4, 1932-6203, e7190, 10.1371/journal.pone.0007190
    20. Marco Scianna, A Multiscale Hybrid Model for Pro-angiogenic Calcium Signals in a Vascular Endothelial Cell, 2012, 74, 0092-8240, 1253, 10.1007/s11538-011-9695-8
    21. M.V. Sheraton, V.R. Melnikov, P.M.A. Sloot, Prediction and quantification of bacterial biofilm detachment using Glazier–Graner–Hogeweg method based model simulations, 2019, 482, 00225193, 109994, 10.1016/j.jtbi.2019.109994
    22. Makiko Nonomura, Ying Xu, Study on Multicellular Systems Using a Phase Field Model, 2012, 7, 1932-6203, e33501, 10.1371/journal.pone.0033501
    23. R. M. H. Merks, P. Koolwijk, Modeling Morphogenesisin silicoandin vitro: Towards Quantitative, Predictive, Cell-based Modeling, 2009, 4, 0973-5348, 149, 10.1051/mmnp/20094406
    24. Filippo Castiglione, Emiliano Mancini, Marco Pedicini, Abdul Salam Jarrah, 2019, 9780128114322, 874, 10.1016/B978-0-12-809633-8.20454-8
    25. M. V. Sheraton, J. K. H. Yam, C. H. Tan, H. S. Oh, E. Mancini, L. Yang, S. A. Rice, P. M. A. Sloot, Mesoscopic Energy Minimization Drives Pseudomonas aeruginosa Biofilm Morphologies and Consequent Stratification of Antibiotic Activity Based on Cell Metabolism , 2018, 62, 0066-4804, 10.1128/AAC.02544-17
    26. Marco Scianna, Luca Munaron, Luigi Preziosi, A multiscale hybrid approach for vasculogenesis and related potential blocking therapies, 2011, 106, 00796107, 450, 10.1016/j.pbiomolbio.2011.01.004
    27. Olaya Rendueles, Jean-Marc Ghigo, 2015, 9781683670919, 319, 10.1128/9781555817466.ch16
    28. M. V. Sheraton, Peter M. A. Sloot, 2018, Chapter 38, 978-3-319-93697-0, 496, 10.1007/978-3-319-93698-7_38
    29. J.A. Fozard, M. Lees, J.R. King, B.S. Logan, Inhibition of quorum sensing in a computational biofilm simulation, 2012, 109, 03032647, 105, 10.1016/j.biosystems.2012.02.002
    30. Maciej H. Swat, Gilberto L. Thomas, Julio M. Belmonte, Abbas Shirinifard, Dimitrij Hmeljak, James A. Glazier, 2012, 110, 9780123884039, 325, 10.1016/B978-0-12-388403-9.00013-8
    31. Nikodem J. Poplawski, Abbas Shirinifard, Ubirajara Agero, J. Scott Gens, Maciej Swat, James A. Glazier, Gustavo Stolovitzky, Front Instabilities and Invasiveness of Simulated 3D Avascular Tumors, 2010, 5, 1932-6203, e10641, 10.1371/journal.pone.0010641
    32. Vivi Andasari, Ryan T. Roper, Maciej H. Swat, Mark A. J. Chaplain, Soheil S. Dadras, Integrating Intracellular Dynamics Using CompuCell3D and Bionetsolver: Applications to Multiscale Modelling of Cancer Cell Growth and Invasion, 2012, 7, 1932-6203, e33726, 10.1371/journal.pone.0033726
    33. Julio M. Belmonte, Sherry G. Clendenon, Guilherme M. Oliveira, Maciej H. Swat, Evan V. Greene, Srividhya Jeyaraman, James A. Glazier, Robert L. Bacallao, Leah Edelstein-Keshet, Virtual-tissue computer simulations define the roles of cell adhesion and proliferation in the onset of kidney cystic disease, 2016, 27, 1059-1524, 3673, 10.1091/mbc.e16-01-0059
    34. D. R. Espeso, A. Carpio, B. Einarsson, Differential growth of wrinkled biofilms, 2015, 91, 1539-3755, 10.1103/PhysRevE.91.022710
    35. Olaya Rendueles, Jean-Marc Ghigo, Mahmoud Ghannoum, Matthew Parsek, Marvin Whiteley, Pranab Mukherjee, Mechanisms of Competition in Biofilm Communities, 2015, 3, 2165-0497, 10.1128/microbiolspec.MB-0009-2014
    36. Hoa Nguyen, Abraham Ybarra, Hakan Başağaoğlu, Orrin Shindell, Biofilm viscoelasticity and nutrient source location control biofilm growth rate, migration rate, and morphology in shear flow, 2021, 11, 2045-2322, 10.1038/s41598-021-95542-1
    37. Minggao Zheng, Qihua Liu, Yanyi Rao, UAV Based on Communication Network to Obtain Oil Pipeline Data and 3D Modeling, 2022, 2022, 1875-905X, 1, 10.1155/2022/6860631
    38. Jinfeng Zhang, Yongqiang Tian, Jianglai Wang, Jinxiu Ma, Lu Liu, Rehmat Islam, Yonghong Qi, Jiajia Li, Tong Shen, Inhibitory effect and possible mechanism of oregano and clove essential oils against Pectobacterium carotovorum subsp. carotovorum as onion soft rot in storage, 2023, 196, 09255214, 112164, 10.1016/j.postharvbio.2022.112164
    39. Andre Then, Jan Ewald, Natalie Söllner, Rebecca E. Cooper, Kirsten Küsel, Bashar Ibrahim, Stefan Schuster, Agent-based modelling of iron cycling bacteria provides a framework for testing alternative environmental conditions and modes of action, 2022, 9, 2054-5703, 10.1098/rsos.211553
    40. Christian T. Michael, Sayed Ahmad Almohri, Jennifer J. Linderman, Denise E. Kirschner, A framework for multi-scale intervention modeling: virtual cohorts, virtual clinical trials, and model-to-model comparisons, 2024, 3, 2674-0702, 10.3389/fsysb.2023.1283341
    41. Zhongyu Yan, Jingjie Yeo, Competing mechanisms in bacterial invasion of human colon mucus probed with agent-based modeling, 2024, 00063495, 10.1016/j.bpj.2024.05.028
    42. Filippo Castiglione, Emiliano Mancini, Marco Pedicini, Abdul S. Jarrah, 2024, 9780128096338, 10.1016/B978-0-323-95502-7.00029-4
    43. Tavishi Dutt, Jimpi Langthasa, Monica Umesh, Satyarthi Mishra, Siddharth Bothra, Kottpalli Vidhipriya, Annapurna Vadaparty, Prosenjit Sen, Ramray Bhat, Rheological transition driven by matrix makes cancer spheroids resilient under confinement, 2025, 8, 2575-1077, e202402601, 10.26508/lsa.202402601
    44. Yumeng Fu, Jiankun Wang, Xiaoling Wang, Simulation of head-tail biofilm streamer growth based on immersed boundary method, 2025, 0892-7014, 1, 10.1080/08927014.2025.2490748
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3460) PDF downloads(568) Cited by(44)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog