1.
|
Antonella Belfatto, Marco Riboldi, Delia Ciardo, Federica Cattani, Agnese Cecconi, Roberta Lazzari, Barbara Alicja Jereczek-Fossa, Roberto Orecchia, Guido Baroni, Pietro Cerveri,
Modeling the Interplay Between Tumor Volume Regression and Oxygenation in Uterine Cervical Cancer During Radiotherapy Treatment,
2016,
20,
2168-2194,
596,
10.1109/JBHI.2015.2398512
|
|
2.
|
Jean-Jacques Kengwoung-Keumo,
Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation,
2016,
13,
1551-0018,
787,
10.3934/mbe.2016018
|
|
3.
|
Urszula Foryś, Beata Zduniak,
Two-stage model of carcinogenic mutations with the influence of delays,
2014,
19,
1553-524X,
2501,
10.3934/dcdsb.2014.19.2501
|
|
4.
|
Marek Bodnar, Monika Joanna Piotrowska,
Stability analysis of the family of tumour angiogenesis models with distributed time delays,
2016,
31,
10075704,
124,
10.1016/j.cnsns.2015.08.002
|
|
5.
|
Antonella Belfatto, Marco Riboldi, Delia Ciardo, Federica Cattani, Agnese Cecconi, Roberta Lazzari, Barbara Alicja Jereczek-Fossa, Roberto Orecchia, Guido Baroni, Pietro Cerveri,
Kinetic Models for Predicting Cervical Cancer Response to Radiation Therapy on Individual Basis Using Tumor Regression MeasuredIn VivoWith Volumetric Imaging,
2016,
15,
1533-0346,
146,
10.1177/1533034615573796
|
|
6.
|
A. Belfatto, M. Riboldi, D. Ciardo, A. Cecconi, R. Lazzari, B. A. Jereczek-Fossa, R. Orecchia, G. Baroni, P. Cerveri,
Adaptive Mathematical Model of Tumor Response to Radiotherapy Based on CBCT Data,
2016,
20,
2168-2194,
802,
10.1109/JBHI.2015.2453437
|
|
7.
|
Urszula Foryś, Monika J. Piotrowska,
Analysis of the Hopf bifurcation for the family of angiogenesis models II: The case of two nonzero unequal delays,
2013,
220,
00963003,
277,
10.1016/j.amc.2013.05.077
|
|
8.
|
Ishtiaq Ali,
On the Numerical Solutions of One and Two-Stage Model of Carcinogenesis Mutations with Time Delay and Diffusion,
2013,
04,
2152-7385,
118,
10.4236/am.2013.410A2012
|
|
9.
|
Vsevolod G. Sorokin, Andrei V. Vyazmin,
Nonlinear Reaction–Diffusion Equations with Delay: Partial Survey, Exact Solutions, Test Problems, and Numerical Integration,
2022,
10,
2227-7390,
1886,
10.3390/math10111886
|
|
10.
|
Andrei D. Polyanin, Vsevolod G. Sorokin,
Reductions and Exact Solutions of Nonlinear Wave-Type PDEs with Proportional and More Complex Delays,
2023,
11,
2227-7390,
516,
10.3390/math11030516
|
|
11.
|
Larysa Dzyubak, Oleksandr Dzyubak, Jan Awrejcewicz,
Nonlinear multiscale diffusion cancer invasion model with memory of states,
2023,
168,
09600779,
113091,
10.1016/j.chaos.2022.113091
|
|
12.
|
Andrei D. Polyanin, Vsevolod G. Sorokin,
Exact Solutions of Reaction–Diffusion PDEs with Anisotropic Time Delay,
2023,
11,
2227-7390,
3111,
10.3390/math11143111
|
|
13.
|
А. Д. Полянин, В. Г. Сорокин,
РЕШЕНИЯ ЛИНЕЙНЫХ НАЧАЛЬНО-КРАЕВЫХ ЗАДАЧ РЕАКЦИОННО-ДИФФУЗИОННОГО ТИПА С ЗАПАЗДЫВАНИЕМ,
2023,
12,
2304-487X,
153,
10.26583/vestnik.2023.286
|
|
14.
|
Ali Sadiq Alabdrabalnabi, Ishtiaq Ali,
Stability analysis and simulations of tumor growth model based on system of reaction-diffusion equation in two-dimensions,
2024,
9,
2473-6988,
11560,
10.3934/math.2024567
|
|