Application of evolutionary games to modeling carcinogenesis

  • We review a quite large volume of literature concerning mathematical modelling of processes related to carcinogenesis and the growth of cancer cell populations based on the theory of evolutionary games. This review, although partly idiosyncratic, covers such major areas of cancer-related phenomena as production of cytotoxins, avoidance of apoptosis, production of growth factors, motility and invasion, and intra- and extracellular signaling. We discuss the results of other authors and append to them some additional results of our own simulations dealing with the possible dynamics and/or spatial distribution of the processes discussed.

    Citation: Andrzej Swierniak, Michal Krzeslak. Application of evolutionary games to modeling carcinogenesis[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 873-911. doi: 10.3934/mbe.2013.10.873

    Related Papers:

    [1] A. Swierniak, M. Krzeslak, D. Borys, M. Kimmel . The role of interventions in the cancer evolution–an evolutionary games approach. Mathematical Biosciences and Engineering, 2019, 16(1): 265-291. doi: 10.3934/mbe.2019014
    [2] Yuanyuan Huang, Yiping Hao, Min Wang, Wen Zhou, Zhijun Wu . Optimality and stability of symmetric evolutionary games with applications in genetic selection. Mathematical Biosciences and Engineering, 2015, 12(3): 503-523. doi: 10.3934/mbe.2015.12.503
    [3] Bo Lan, Lei Zhuang, Qin Zhou . An evolutionary game analysis of digital currency innovation and regulatory coordination. Mathematical Biosciences and Engineering, 2023, 20(5): 9018-9040. doi: 10.3934/mbe.2023396
    [4] Zheng Liu, Lingling Lang, Lingling Li, Yuanjun Zhao, Lihua Shi . Evolutionary game analysis on the recycling strategy of household medical device enterprises under government dynamic rewards and punishments. Mathematical Biosciences and Engineering, 2021, 18(5): 6434-6451. doi: 10.3934/mbe.2021320
    [5] Dario Madeo, Chiara Mocenni, Jean Carlo Moraes, Jorge P. Zubelli . The role of self-loops and link removal in evolutionary games on networks. Mathematical Biosciences and Engineering, 2019, 16(5): 5287-5306. doi: 10.3934/mbe.2019264
    [6] Xiaochun Chen, Jie Zhao, Yingying Ma, Bo Lv, Xuanjin Du . Tripartite evolutionary game study on coordination information security in prescription circulation. Mathematical Biosciences and Engineering, 2023, 20(12): 21120-21146. doi: 10.3934/mbe.2023934
    [7] John Cleveland . Basic stage structure measure valued evolutionary game model. Mathematical Biosciences and Engineering, 2015, 12(2): 291-310. doi: 10.3934/mbe.2015.12.291
    [8] Jim M. Cushing . The evolutionarydynamics of a population model with a strong Allee effect. Mathematical Biosciences and Engineering, 2015, 12(4): 643-660. doi: 10.3934/mbe.2015.12.643
    [9] Jian Cao, Tao Liu, Ziyang Han, Bin Tu . Sulfate ions diffusion in concrete under coupled effect of compression load and dry-wet circulation. Mathematical Biosciences and Engineering, 2023, 20(6): 9965-9991. doi: 10.3934/mbe.2023437
    [10] Huan Zhao, Xi Chen . Study on knowledge cooperation of interdisciplinary research team based on evolutionary game theory. Mathematical Biosciences and Engineering, 2023, 20(5): 8782-8799. doi: 10.3934/mbe.2023386
  • We review a quite large volume of literature concerning mathematical modelling of processes related to carcinogenesis and the growth of cancer cell populations based on the theory of evolutionary games. This review, although partly idiosyncratic, covers such major areas of cancer-related phenomena as production of cytotoxins, avoidance of apoptosis, production of growth factors, motility and invasion, and intra- and extracellular signaling. We discuss the results of other authors and append to them some additional results of our own simulations dealing with the possible dynamics and/or spatial distribution of the processes discussed.


    [1] Cancer Res., 69 (2009), 8797-8806.
    [2] Cancer, 113 (2008), 1412-1422.
    [3] PNAS, 103 (2006), 13474-13479.
    [4] European Journal of Cancer, 37 (2001), 2116-2120.
    [5] Journal of Theoretical Medicin, 5 (2003), 47-58.
    [6] in "Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition, and Therapy" (eds. N. Bellomo, M. Chaplain and E. Angelis), (2008), 1-16.
    [7] Mol. Pharmaceutics, 9 (2012), 917-921.
    [8] Eur. Phys. J. B., 63 (2008), 393-397.
    [9] Phys. Biol., 8 (2011), 015016.
    [10] Cell Proliferation, 41 (2008), 980-987.
    [11] British Journal of Cancer, 106 (2012), 174-181.
    [12] Advances in Applied Probability, 8 (1976), 616-621.
    [13] AIP Advances, 2 (2012), 011202.
    [14] Trends in Ecology and Evolution, 20 (2005), 545-552.
    [15] Integrative Post-Genomics, (2004), 33.
    [16] British Journal of Cancer, 20 (2005), 545-552.
    [17] Cancer Res., 63 (2003), 6212-6220.
    [18] Mol. Cancer Ther., 2 (2003), 919-927.
    [19] Dynamic Games and Applications, 1 (2011), 370-385.
    [20] Bull. Amer. Math. Soc., 40 (2003), 479-519.
    [21] Curr. Opin. Oncol. January, 17 (2005), 39-43.
    [22] Proc of the 18 Nat. Conf. On Applications of Mathematics in Biology and Medicine, (2012), CD ROM edition.
    [23] Archives of Control Science, 21 (2011), 135-150.
    [24] Journal of Theoretical Biology, 224 (2003), 325-337.
    [25] Jour. Theo. Biol., 238 (2006), 146-156.
    [26] Cambridge: Cambridge University Press, 1982.
    [27] J. Theor. Biol., 47 (1974), 209-221.
    [28] Nature, 246 (1973), 16-18.
    [29] British Journal of Cancer, 101 (2009), 2060-2061.
    [30] 2004. Available from: http://athome.harvard.edu/programs/evd/index.html
    [31] Nature, 18 (1992), 826-829.
    [32] Curr. Biol., 9 (1999), 503-505.
    [33] Biosystems, 26 (1991), 1-19.
    [34] Proc of the 16 Nat. Conf. On Applications of Mathematics in Biology and Medicine, (2010), 99-104.
    [35] Mathematical Biosciences, 40 (1978), 145-156.
    [36] European Journal of Cancer, 33 (1997), 1495-1500.
    [37] British Journal of Cancer, 75 (1997), 157-180.
    [38] University of Illinois Press, 1966.
  • This article has been cited by:

    1. Andrzej Świerniak, Michał Krześlak, Cancer heterogeneity and multilayer spatial evolutionary games, 2016, 11, 1745-6150, 10.1186/s13062-016-0156-z
    2. Michał Krześlak, Andrzej Świerniak, 2014, Chapter 30, 978-3-319-06592-2, 337, 10.1007/978-3-319-06593-9_30
    3. Andrzej Swierniak, Michal Krzeslak, Damian Borys, 2019, Games with resources and their use in modeling control processes in heterogeneous populations, 978-1-7281-0933-6, 530, 10.1109/MMAR.2019.8864644
    4. Michał Krześlak, Andrzej Świerniak, Sensitivity of Mixed Spatial Evolutionary Games - Hawk-Dove Study, 2015, 48, 24058963, 124, 10.1016/j.ifacol.2015.10.126
    5. Mridu Nanda, Richard Durrett, Spatial evolutionary games with weak selection, 2017, 114, 0027-8424, 6046, 10.1073/pnas.1620852114
    6. Andrzej Swierniak, Michal Krzeslak, 2016, Modeling biological effects of radiowaves using evolutionary game theory, 978-1-5090-2580-0, 1, 10.1109/RADIO.2016.7772026
    7. George I. Lambrou, 2016, chapter 15, 9781466688285, 315, 10.4018/978-1-4666-8828-5.ch015
    8. Andrzej Świerniak, Michał Krześlak, 2014, Chapter 49, 978-3-319-05475-9, 484, 10.1007/978-3-319-05476-6_49
    9. Andrzej Swierniak, Michal Krzeslak, Damian Borys, 2019, Chapter 26, 978-3-319-91210-3, 290, 10.1007/978-3-319-91211-0_26
    10. K.M. Ariful Kabir, Jun Tanimoto, The role of pairwise nonlinear evolutionary dynamics in the rock–paper–scissors game with noise, 2021, 394, 00963003, 125767, 10.1016/j.amc.2020.125767
    11. Rick Durrett, Spatial evolutionary games with small selection coefficients, 2014, 19, 1083-6489, 10.1214/EJP.v19-3621
    12. Michał Krześlak, Andrzej Świerniak, Multidimensional extended spatial evolutionary games, 2016, 69, 00104825, 315, 10.1016/j.compbiomed.2015.08.003
    13. Michal Krzeslak, Damian Borys, Andrzej Swierniak, 2016, Chapter 40, 978-3-662-49380-9, 420, 10.1007/978-3-662-49381-6_40
    14. Michal Krzeslak, Andrzej Swierniak, Four Phenotype Model of Interaction Between Tumour Cells, 2014, 47, 14746670, 11536, 10.3182/20140824-6-ZA-1003.02037
    15. Andrzej Świerniak, Michał Krześlak, Sebastian Student, Joanna Rzeszowska-Wolny, Development of a population of cancer cells: Observation and modeling by a Mixed Spatial Evolutionary Games approach, 2016, 405, 00225193, 94, 10.1016/j.jtbi.2016.05.027
    16. Damian Borys, Roman Jaksik, Michał Krześlak, Jarosław Śmieja, Andrzej Świerniak, 2015, Chapter 10, 978-3-319-15915-7, 225, 10.1007/978-3-319-15916-4_10
    17. Takuya Kato, Robert P Jenkins, Stefanie Derzsi, Melda Tozluoglu, Antonio Rullan, Steven Hooper, Raphaël AG Chaleil, Holly Joyce, Xiao Fu, Selvam Thavaraj, Paul A Bates, Erik Sahai, Interplay of adherens junctions and matrix proteolysis determines the invasive pattern and growth of squamous cell carcinoma, 2023, 12, 2050-084X, 10.7554/eLife.76520
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3126) PDF downloads(589) Cited by(17)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog