Loading [Contrib]/a11y/accessibility-menu.js

The evolutionarydynamics of a population model with a strong Allee effect

  • Received: 01 May 2014 Accepted: 29 June 2018 Published: 01 April 2015
  • MSC : Primary: 92D25, 92D15; Secondary: 37N25.

  • An evolutionary game theoretic model for a population subject to predationand a strong Allee threshold of extinction is analyzed using, among othermethods, Poincaré-Bendixson theory. The model is a nonlinear, planeautonomous system whose state variables are population density and the meanof a phenotypic trait, which is subject to Darwinian evolution, thatdetermines the population's inherent (low density) growth rate (fitness). Atrade-off is assumed in that an increase in the inherent growth rate resultsin a proportional increase in the predator's attack rate. The main resultsare that orbits equilibrate (there are no cycles or cycle chains ofsaddles), that the extinction set (or Allee basin) shrinks when evolutionoccurs, and that the meant trait component of survival equilibria occur atmaxima of the inherent growth rate (as a function of the trait).

    Citation: Jim M. Cushing. The evolutionarydynamics of a population model with a strong Allee effect[J]. Mathematical Biosciences and Engineering, 2015, 12(4): 643-660. doi: 10.3934/mbe.2015.12.643

    Related Papers:

    [1] Yuanyuan Huang, Yiping Hao, Min Wang, Wen Zhou, Zhijun Wu . Optimality and stability of symmetric evolutionary games with applications in genetic selection. Mathematical Biosciences and Engineering, 2015, 12(3): 503-523. doi: 10.3934/mbe.2015.12.503
    [2] Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857
    [3] Eduardo Liz, Alfonso Ruiz-Herrera . Delayed population models with Allee effects and exploitation. Mathematical Biosciences and Engineering, 2015, 12(1): 83-97. doi: 10.3934/mbe.2015.12.83
    [4] Sophia R.-J. Jang . Discrete host-parasitoid models with Allee effects and age structure in the host. Mathematical Biosciences and Engineering, 2010, 7(1): 67-81. doi: 10.3934/mbe.2010.7.67
    [5] Claudio Arancibia–Ibarra, José Flores . Modelling and analysis of a modified May-Holling-Tanner predator-prey model with Allee effect in the prey and an alternative food source for the predator. Mathematical Biosciences and Engineering, 2020, 17(6): 8052-8073. doi: 10.3934/mbe.2020408
    [6] Sílvia Cuadrado . Stability of equilibria of a predator-prey model of phenotype evolution. Mathematical Biosciences and Engineering, 2009, 6(4): 701-718. doi: 10.3934/mbe.2009.6.701
    [7] Moitri Sen, Malay Banerjee, Yasuhiro Takeuchi . Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model. Mathematical Biosciences and Engineering, 2018, 15(4): 883-904. doi: 10.3934/mbe.2018040
    [8] Chris Cosner, Nancy Rodríguez . On the Allee effect and directed movement on the whole space. Mathematical Biosciences and Engineering, 2023, 20(5): 8010-8030. doi: 10.3934/mbe.2023347
    [9] Chen Liang, Hai-Feng Huo, Hong Xiang . Modelling mosquito population suppression based on competition system with strong and weak Allee effect. Mathematical Biosciences and Engineering, 2024, 21(4): 5227-5249. doi: 10.3934/mbe.2024231
    [10] Rujing Zhao, Xiulan Lai . Evolutionary analysis of replicator dynamics about anti-cancer combination therapy. Mathematical Biosciences and Engineering, 2023, 20(1): 656-682. doi: 10.3934/mbe.2023030
  • An evolutionary game theoretic model for a population subject to predationand a strong Allee threshold of extinction is analyzed using, among othermethods, Poincaré-Bendixson theory. The model is a nonlinear, planeautonomous system whose state variables are population density and the meanof a phenotypic trait, which is subject to Darwinian evolution, thatdetermines the population's inherent (low density) growth rate (fitness). Atrade-off is assumed in that an increase in the inherent growth rate resultsin a proportional increase in the predator's attack rate. The main resultsare that orbits equilibrate (there are no cycles or cycle chains ofsaddles), that the extinction set (or Allee basin) shrinks when evolutionoccurs, and that the meant trait component of survival equilibria occur atmaxima of the inherent growth rate (as a function of the trait).


    [1] Ecology Letters, 4 (2001), 166-175.
    [2] University of Chicago Press, Chicago, 1931.
    [3] 3rd edition, William Heineman Ltd, London and Toronto, 1941.
    [4] W. B. Saunders Company, Philadelphia, 1949.
    [5] Journal of Theoretical Biology, 218 (2002), 375-394.
    [6] TREE, 14 (1999), 405-410.
    [7] Oxford University Press, Oxford, Great Britain, 2008.
    [8] Journal of Biological Dynamics, 8 (2014), 57-73.
    [9] Journal of Biological Dynamics, 6 (2012), 941-958.
    [10] Natural Resource Modeling, 3 (1989), 481-538.
    [11] Princeton University Press, Princeton, New Jersey, 2008.
    [12] Classics in Applied Mathematics 46, SIAM, Philadelphia, USA, 2005.
    [13] Journal of Biological Dynamics , 4 (2010), 397-408.
    [14] Pearson Education Limited, Prentice Hall, Essex, England, 1996.
    [15] Theoretical Population Biology, 27 (1985), 27-50.
    [16] Journal of Difference Equations and Applications, 10 (2004), 1251-1265.
    [17] Evolution, 30 (1976), 314-334.
    [18] Ecology, 63 (1982), 607-615.
    [19] Theoretical Population Biology, 43 (1993), 141-158.
    [20] Iowa State College Press, Ames, Iowa, USA, 1937.
    [21] Princeton University Press, Princeton, New Jersey, USA, 2007.
    [22] Journal of Theoretical Biology, 199 (1999), 407-414.
    [23] Theoretical Population Biology, 64 (2003), 201-209.
    [24] Cambridge University Press, New York, 2005.
    [25] Ecological Modelling, 124 (1999), 183-192.
  • This article has been cited by:

    1. Yun Kang, Dynamics of a generalized Ricker–Beverton–Holt competition model subject to Allee effects, 2016, 22, 1023-6198, 687, 10.1080/10236198.2015.1135910
    2. Wendi Wang, Population dispersal and Allee effect, 2016, 65, 0035-5038, 535, 10.1007/s11587-016-0273-0
    3. Marisabel Rodriguez-Rodriguez, Yun Kang, Colony and evolutionary dynamics of a two-stage model with brood cannibalism and division of labor in social insects, 2016, 29, 08908575, 633, 10.1111/nrm.12119
    4. N. T. Dieu, N. H. Du, H. D. Nguyen, G. Yin, Protection Zones for Survival of Species in Random Environment, 2016, 76, 0036-1399, 1382, 10.1137/15M1032004
    5. Alex P. Farrell, How the concavity of reproduction/survival trade-offs impacts the evolution of life history strategies, 2020, 1751-3758, 1, 10.1080/17513758.2020.1853834
    6. John M. Drake, Luděk Berec, Andrew M. Kramer, 2019, 9780444641304, 6, 10.1016/B978-0-12-409548-9.10587-1
    7. Yun Kang, Marisabel Rodriguez-Rodriguez, Stephen Evilsizor, Ecological and evolutionary dynamics of two-stage models of social insects with egg cannibalism, 2015, 430, 0022247X, 324, 10.1016/j.jmaa.2015.04.079
    8. Benjamin Wacker, Jan Christian Schlüter, A cubic nonlinear population growth model for single species: theory, an explicit–implicit solution algorithm and applications, 2021, 2021, 1687-1847, 10.1186/s13662-021-03399-5
    9. Rong Liu, Guirong Liu, Dynamics of a stochastic population model with Allee effect and jumps, 2022, 17, 0973-5348, 1, 10.1051/mmnp/2022002
    10. Karima Mokni, Mohamed Ch-Chaoui, 2023, Chapter 17, 978-3-031-25224-2, 363, 10.1007/978-3-031-25225-9_17
    11. Karima Mokni, Mohamed Ch-Chaoui, Complex dynamics and bifurcation analysis for a Beverton–Holt population model with Allee effect, 2023, 16, 1793-5245, 10.1142/S1793524522501273
    12. Saber Elaydi, Yun Kang, Rafael Luís, Global asymptotic stability of evolutionary periodic Ricker competition models, 2023, 1023-6198, 1, 10.1080/10236198.2023.2281552
    13. KARIMA MOKNI, MOHAMED CH-CHAOUI, STRONG ALLEE EFFECT AND EVOLUTIONARY DYNAMICS IN A SINGLE-SPECIES RICKER POPULATION MODEL, 2023, 31, 0218-3390, 1341, 10.1142/S0218339023500456
    14. Rafael Luís, Open Problems and Conjectures in the Evolutionary Periodic Ricker Competition Model, 2024, 13, 2075-1680, 246, 10.3390/axioms13040246
    15. Rafael Luís, Brian Ryals, Invariant Sets, Global Dynamics, and the Neimark–Sacker Bifurcation in the Evolutionary Ricker Model, 2024, 16, 2073-8994, 1139, 10.3390/sym16091139
    16. Emma D'Aniello, Saber Elaydi, Eddy Kwessi, Rafael Luís, Brian Ryals, Global asymptotic stability and bifurcation of an evolutionary Beverton-Holt model, 2025, 1023-6198, 1, 10.1080/10236198.2025.2510550
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3126) PDF downloads(619) Cited by(16)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog