Citation: Jim M. Cushing. The evolutionarydynamics of a population model with a strong Allee effect[J]. Mathematical Biosciences and Engineering, 2015, 12(4): 643-660. doi: 10.3934/mbe.2015.12.643
[1] | Yuanyuan Huang, Yiping Hao, Min Wang, Wen Zhou, Zhijun Wu . Optimality and stability of symmetric evolutionary games with applications in genetic selection. Mathematical Biosciences and Engineering, 2015, 12(3): 503-523. doi: 10.3934/mbe.2015.12.503 |
[2] | Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857 |
[3] | Eduardo Liz, Alfonso Ruiz-Herrera . Delayed population models with Allee effects and exploitation. Mathematical Biosciences and Engineering, 2015, 12(1): 83-97. doi: 10.3934/mbe.2015.12.83 |
[4] | Sophia R.-J. Jang . Discrete host-parasitoid models with Allee effects and age structure in the host. Mathematical Biosciences and Engineering, 2010, 7(1): 67-81. doi: 10.3934/mbe.2010.7.67 |
[5] | Claudio Arancibia–Ibarra, José Flores . Modelling and analysis of a modified May-Holling-Tanner predator-prey model with Allee effect in the prey and an alternative food source for the predator. Mathematical Biosciences and Engineering, 2020, 17(6): 8052-8073. doi: 10.3934/mbe.2020408 |
[6] | Sílvia Cuadrado . Stability of equilibria of a predator-prey model of phenotype evolution. Mathematical Biosciences and Engineering, 2009, 6(4): 701-718. doi: 10.3934/mbe.2009.6.701 |
[7] | Moitri Sen, Malay Banerjee, Yasuhiro Takeuchi . Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model. Mathematical Biosciences and Engineering, 2018, 15(4): 883-904. doi: 10.3934/mbe.2018040 |
[8] | Chris Cosner, Nancy Rodríguez . On the Allee effect and directed movement on the whole space. Mathematical Biosciences and Engineering, 2023, 20(5): 8010-8030. doi: 10.3934/mbe.2023347 |
[9] | Chen Liang, Hai-Feng Huo, Hong Xiang . Modelling mosquito population suppression based on competition system with strong and weak Allee effect. Mathematical Biosciences and Engineering, 2024, 21(4): 5227-5249. doi: 10.3934/mbe.2024231 |
[10] | Rujing Zhao, Xiulan Lai . Evolutionary analysis of replicator dynamics about anti-cancer combination therapy. Mathematical Biosciences and Engineering, 2023, 20(1): 656-682. doi: 10.3934/mbe.2023030 |
[1] | Ecology Letters, 4 (2001), 166-175. |
[2] | University of Chicago Press, Chicago, 1931. |
[3] | 3rd edition, William Heineman Ltd, London and Toronto, 1941. |
[4] | W. B. Saunders Company, Philadelphia, 1949. |
[5] | Journal of Theoretical Biology, 218 (2002), 375-394. |
[6] | TREE, 14 (1999), 405-410. |
[7] | Oxford University Press, Oxford, Great Britain, 2008. |
[8] | Journal of Biological Dynamics, 8 (2014), 57-73. |
[9] | Journal of Biological Dynamics, 6 (2012), 941-958. |
[10] | Natural Resource Modeling, 3 (1989), 481-538. |
[11] | Princeton University Press, Princeton, New Jersey, 2008. |
[12] | Classics in Applied Mathematics 46, SIAM, Philadelphia, USA, 2005. |
[13] | Journal of Biological Dynamics , 4 (2010), 397-408. |
[14] | Pearson Education Limited, Prentice Hall, Essex, England, 1996. |
[15] | Theoretical Population Biology, 27 (1985), 27-50. |
[16] | Journal of Difference Equations and Applications, 10 (2004), 1251-1265. |
[17] | Evolution, 30 (1976), 314-334. |
[18] | Ecology, 63 (1982), 607-615. |
[19] | Theoretical Population Biology, 43 (1993), 141-158. |
[20] | Iowa State College Press, Ames, Iowa, USA, 1937. |
[21] | Princeton University Press, Princeton, New Jersey, USA, 2007. |
[22] | Journal of Theoretical Biology, 199 (1999), 407-414. |
[23] | Theoretical Population Biology, 64 (2003), 201-209. |
[24] | Cambridge University Press, New York, 2005. |
[25] | Ecological Modelling, 124 (1999), 183-192. |
1. | Yun Kang, Dynamics of a generalized Ricker–Beverton–Holt competition model subject to Allee effects, 2016, 22, 1023-6198, 687, 10.1080/10236198.2015.1135910 | |
2. | Wendi Wang, Population dispersal and Allee effect, 2016, 65, 0035-5038, 535, 10.1007/s11587-016-0273-0 | |
3. | Marisabel Rodriguez-Rodriguez, Yun Kang, Colony and evolutionary dynamics of a two-stage model with brood cannibalism and division of labor in social insects, 2016, 29, 08908575, 633, 10.1111/nrm.12119 | |
4. | N. T. Dieu, N. H. Du, H. D. Nguyen, G. Yin, Protection Zones for Survival of Species in Random Environment, 2016, 76, 0036-1399, 1382, 10.1137/15M1032004 | |
5. | Alex P. Farrell, How the concavity of reproduction/survival trade-offs impacts the evolution of life history strategies, 2020, 1751-3758, 1, 10.1080/17513758.2020.1853834 | |
6. | John M. Drake, Luděk Berec, Andrew M. Kramer, 2019, 9780444641304, 6, 10.1016/B978-0-12-409548-9.10587-1 | |
7. | Yun Kang, Marisabel Rodriguez-Rodriguez, Stephen Evilsizor, Ecological and evolutionary dynamics of two-stage models of social insects with egg cannibalism, 2015, 430, 0022247X, 324, 10.1016/j.jmaa.2015.04.079 | |
8. | Benjamin Wacker, Jan Christian Schlüter, A cubic nonlinear population growth model for single species: theory, an explicit–implicit solution algorithm and applications, 2021, 2021, 1687-1847, 10.1186/s13662-021-03399-5 | |
9. | Rong Liu, Guirong Liu, Dynamics of a stochastic population model with Allee effect and jumps, 2022, 17, 0973-5348, 1, 10.1051/mmnp/2022002 | |
10. | Karima Mokni, Mohamed Ch-Chaoui, 2023, Chapter 17, 978-3-031-25224-2, 363, 10.1007/978-3-031-25225-9_17 | |
11. | Karima Mokni, Mohamed Ch-Chaoui, Complex dynamics and bifurcation analysis for a Beverton–Holt population model with Allee effect, 2023, 16, 1793-5245, 10.1142/S1793524522501273 | |
12. | Saber Elaydi, Yun Kang, Rafael Luís, Global asymptotic stability of evolutionary periodic Ricker competition models, 2023, 1023-6198, 1, 10.1080/10236198.2023.2281552 | |
13. | KARIMA MOKNI, MOHAMED CH-CHAOUI, STRONG ALLEE EFFECT AND EVOLUTIONARY DYNAMICS IN A SINGLE-SPECIES RICKER POPULATION MODEL, 2023, 31, 0218-3390, 1341, 10.1142/S0218339023500456 | |
14. | Rafael Luís, Open Problems and Conjectures in the Evolutionary Periodic Ricker Competition Model, 2024, 13, 2075-1680, 246, 10.3390/axioms13040246 | |
15. | Rafael Luís, Brian Ryals, Invariant Sets, Global Dynamics, and the Neimark–Sacker Bifurcation in the Evolutionary Ricker Model, 2024, 16, 2073-8994, 1139, 10.3390/sym16091139 | |
16. | Emma D'Aniello, Saber Elaydi, Eddy Kwessi, Rafael Luís, Brian Ryals, Global asymptotic stability and bifurcation of an evolutionary Beverton-Holt model, 2025, 1023-6198, 1, 10.1080/10236198.2025.2510550 |