Citation: Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś. Gompertz model with delays and treatment: Mathematical analysis[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 551-563. doi: 10.3934/mbe.2013.10.551
[1] | Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006 |
[2] | Shunyi Li . Hopf bifurcation, stability switches and chaos in a prey-predator system with three stage structure and two time delays. Mathematical Biosciences and Engineering, 2019, 16(6): 6934-6961. doi: 10.3934/mbe.2019348 |
[3] | Huan Kong, Guohong Zhang, Kaifa Wang . Stability and Hopf bifurcation in a virus model with self-proliferation and delayed activation of immune cells. Mathematical Biosciences and Engineering, 2020, 17(5): 4384-4405. doi: 10.3934/mbe.2020242 |
[4] | Yuan Ma, Yunxian Dai . Stability and Hopf bifurcation analysis of a fractional-order ring-hub structure neural network with delays under parameters delay feedback control. Mathematical Biosciences and Engineering, 2023, 20(11): 20093-20115. doi: 10.3934/mbe.2023890 |
[5] | Bruno Buonomo, Marianna Cerasuolo . The effect of time delay in plant--pathogen interactions with host demography. Mathematical Biosciences and Engineering, 2015, 12(3): 473-490. doi: 10.3934/mbe.2015.12.473 |
[6] | Hongfan Lu, Yuting Ding, Silin Gong, Shishi Wang . Mathematical modeling and dynamic analysis of SIQR model with delay for pandemic COVID-19. Mathematical Biosciences and Engineering, 2021, 18(4): 3197-3214. doi: 10.3934/mbe.2021159 |
[7] | Shishi Wang, Yuting Ding, Hongfan Lu, Silin Gong . Stability and bifurcation analysis of $ SIQR $ for the COVID-19 epidemic model with time delay. Mathematical Biosciences and Engineering, 2021, 18(5): 5505-5524. doi: 10.3934/mbe.2021278 |
[8] | Sarita Bugalia, Jai Prakash Tripathi, Hao Wang . Mathematical modeling of intervention and low medical resource availability with delays: Applications to COVID-19 outbreaks in Spain and Italy. Mathematical Biosciences and Engineering, 2021, 18(5): 5865-5920. doi: 10.3934/mbe.2021295 |
[9] | J. Leonel Rocha, Sandra M. Aleixo . An extension of Gompertzian growth dynamics: Weibull and Fréchet models. Mathematical Biosciences and Engineering, 2013, 10(2): 379-398. doi: 10.3934/mbe.2013.10.379 |
[10] | Xiaomeng Ma, Zhanbing Bai, Sujing Sun . Stability and bifurcation control for a fractional-order chemostat model with time delays and incommensurate orders. Mathematical Biosciences and Engineering, 2023, 20(1): 437-455. doi: 10.3934/mbe.2023020 |
[1] | Appl. Math. Lett., 13 (2000), 91-95. |
[2] | J. Biol. Sys., 15 (2007), 1-19. |
[3] | Springer-Verlag, New York, 1995. |
[4] | Math. Biosci., 191 (2004), 159-184. |
[5] | Math. Med. Biol., 26 (2009), 63-95. |
[6] | Math. Biosci., 222 (2009), 13-26. |
[7] | Accepted for Math. Pop. Studies. |
[8] | Philos. Trans. R. Soc. London, 115 (1825), 513-585. |
[9] | Cancer Res., 59 (1999), 4770-4775. |
[10] | Springer, New York, 1993. |
[11] | Ann. N. Y. Acad. Sci., 50 (1948), 221-246. |
[12] | SIAM J. Control Optim., 46 (2007), 1052-1079. |
[13] | J. Theor. Biol., 252 (2008), 295-312. |
[14] | Springer, Berlin-Heidelberg, 2007. |
[15] | (submitted). |
[16] | J. Math. Anal. Appl., 382 (2011), 180-203. |
[17] | Math. and Comp. Modelling, 54 (2011), 2183-2198. |
[18] | Math. Biosci. Eng., 8 (2011), 591-603. |
[19] | in "Mathematical Population Dynamics" (eds. O. Arino, D. Axelrod and M. Kimmel), Wuertz, Winnipeg, Canada, (1995), 335-348. |
1. | Gang Huang, Anping Liu, Urszula Foryś, Global Stability Analysis of Some Nonlinear Delay Differential Equations in Population Dynamics, 2016, 26, 0938-8974, 27, 10.1007/s00332-015-9267-4 | |
2. | Dongdong Yang, Ping Gao, Chao Tian, Yang Sheng, Gompertz tracking of the growth trajectories of the human-liver-cancer xenograft-tumors in nude mice, 2020, 191, 01692607, 105412, 10.1016/j.cmpb.2020.105412 | |
3. | Qian YANG, Numerical Oscillation Analysis for Gompertz Equation with One Delay, 2020, 2645-8845, 1, 10.33401/fujma.623500 | |
4. | Antonella Belfatto, Marco Riboldi, Delia Ciardo, Federica Cattani, Agnese Cecconi, Roberta Lazzari, Barbara Alicja Jereczek-Fossa, Roberto Orecchia, Guido Baroni, Pietro Cerveri, Modeling the Interplay Between Tumor Volume Regression and Oxygenation in Uterine Cervical Cancer During Radiotherapy Treatment, 2016, 20, 2168-2194, 596, 10.1109/JBHI.2015.2398512 | |
5. | Michael C. Mackey, Marta Tyran-Kamińska, Hans-Otto Walther, Response of an oscillatory differential delay equation to a single stimulus, 2017, 74, 0303-6812, 1139, 10.1007/s00285-016-1051-z | |
6. | James A. Koziol, Theresa J. Falls, Jan E. Schnitzer, Different ODE models of tumor growth can deliver similar results, 2020, 20, 1471-2407, 10.1186/s12885-020-6703-0 | |
7. | Urszula Foryś, Monika J. Piotrowska, Analysis of the Hopf bifurcation for the family of angiogenesis models II: The case of two nonzero unequal delays, 2013, 220, 00963003, 277, 10.1016/j.amc.2013.05.077 | |
8. | Achilleas Achilleos, Charalambos Loizides, Marios Hadjiandreou, Triantafyllos Stylianopoulos, Georgios D. Mitsis, Multiprocess Dynamic Modeling of Tumor Evolution with Bayesian Tumor-Specific Predictions, 2014, 42, 0090-6964, 1095, 10.1007/s10439-014-0975-y | |
9. | Monika Joanna Piotrowska, An immune system–tumour interactions model with discrete time delay: Model analysis and validation, 2016, 34, 10075704, 185, 10.1016/j.cnsns.2015.10.022 | |
10. | A. Belfatto, M. Garbey, M. Riboldi, D. Ciardo, A. Cecconi, R. Lazzari, B.A. Jereczek, R. Orecchia, G. Baroni, P. Cerveri, 2014, Modeling cervix cancer growth and response to radiation therapy: A validation study using patient volumetric tumor data, 978-1-4799-2131-7, 476, 10.1109/BHI.2014.6864406 | |
11. | David J. Warne, Kerryn A. Crossman, Wang Jin, Kerrie Mengersen, Kate Osborne, Matthew J. Simpson, Angus A. Thompson, Paul Wu, Juan‐C. Ortiz, Identification of two‐phase recovery for interpretation of coral reef monitoring data, 2022, 59, 0021-8901, 153, 10.1111/1365-2664.14039 | |
12. | Fernando Alcántara-López, Carlos Fuentes, Carlos Chávez, Jesús López-Estrada, Fernando Brambila-Paz, Fractional Growth Model with Delay for Recurrent Outbreaks Applied to COVID-19 Data, 2022, 10, 2227-7390, 825, 10.3390/math10050825 | |
13. | E. Pelinovsky, M. Kokoulina, A. Epifanova, A. Kurkin, O. Kurkina, M. Tang, E. Macau, M. Kirillin, Gompertz model in COVID-19 spreading simulation, 2022, 154, 09600779, 111699, 10.1016/j.chaos.2021.111699 | |
14. | Martin Anokye, Xiangfeng Yang, A Logistic Growth Model with Discrete‐Time Delay and a Restriction on Harvesting, 2024, 2024, 2314-4629, 10.1155/2024/6263903 |