Citation: Shinsuke Koyama, Ryota Kobayashi. Fluctuation scaling in neural spike trains[J]. Mathematical Biosciences and Engineering, 2016, 13(3): 537-550. doi: 10.3934/mbe.2016006
[1] | Giuseppe D'Onofrio, Enrica Pirozzi . Successive spike times predicted by a stochastic neuronal model with a variable input signal. Mathematical Biosciences and Engineering, 2016, 13(3): 495-507. doi: 10.3934/mbe.2016003 |
[2] | Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Mathematical Biosciences and Engineering, 2014, 11(2): 189-201. doi: 10.3934/mbe.2014.11.189 |
[3] | Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model. Mathematical Biosciences and Engineering, 2014, 11(1): 1-10. doi: 10.3934/mbe.2014.11.1 |
[4] | Achilleas Koutsou, Jacob Kanev, Maria Economidou, Chris Christodoulou . Integrator or coincidence detector --- what shapes the relation of stimulus synchrony and the operational mode of a neuron?. Mathematical Biosciences and Engineering, 2016, 13(3): 521-535. doi: 10.3934/mbe.2016005 |
[5] | Alexej Tschumak, Frank Feldhoff, Frank Klefenz . The switching and learning behavior of an octopus cell implemented on FPGA. Mathematical Biosciences and Engineering, 2024, 21(4): 5762-5781. doi: 10.3934/mbe.2024254 |
[6] | Hideaki Kim, Shigeru Shinomoto . Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation. Mathematical Biosciences and Engineering, 2014, 11(1): 49-62. doi: 10.3934/mbe.2014.11.49 |
[7] | Virginia Giorno, Serena Spina . On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model. Mathematical Biosciences and Engineering, 2014, 11(2): 285-302. doi: 10.3934/mbe.2014.11.285 |
[8] | Liqiang Zhu, Ying-Cheng Lai, Frank C. Hoppensteadt, Jiping He . Characterization of Neural Interaction During Learning and Adaptation from Spike-Train Data. Mathematical Biosciences and Engineering, 2005, 2(1): 1-23. doi: 10.3934/mbe.2005.2.1 |
[9] | Antonio Di Crescenzo, Maria Longobardi, Barbara Martinucci . On a spike train probability model with interacting neural units. Mathematical Biosciences and Engineering, 2014, 11(2): 217-231. doi: 10.3934/mbe.2014.11.217 |
[10] | Sven Blankenburg, Benjamin Lindner . The effect of positive interspike interval correlations on neuronal information transmission. Mathematical Biosciences and Engineering, 2016, 13(3): 461-481. doi: 10.3934/mbe.2016001 |
[1] | Dover, New York, 1965. |
[2] | Nature, 333 (1988), 514-519. |
[3] | Neuron, 62 (2009), 310-311. |
[4] | Springer, New York, 1981. |
[5] | Biol. Cybern., 85 (2001), 247-255. |
[6] | Biol. Cybern., 95 (2006), 1-19. |
[7] | Nat. Neurosci., 13 (2010), 369-378. |
[8] | Neuron, 69 (2011), 818-831. |
[9] | Nat. Neurosci., 15 (2012), 1472-1474. |
[10] | Chapman and Hall, London, 1962. |
[11] | Chapman and Hall, London, 1966. |
[12] | Springer Series in Statistics, Springer-Verlag, New York, 1988. |
[13] | Phys. Rev. Lett., 92 (2004), 028701. |
[14] | in Methods in Neuronal Modeling (eds. C. Koch and I. Segev), MIT Press, Cambridge, MA, 1998, 1-26. |
[15] | Phys. Rev. E., 71 (2005), 011907, 9pp. |
[16] | Adv. Phys., 57 (2008), 89-142. |
[17] | Phys. Rev. E, 81 (2010), 066112. |
[18] | Biol. Cybern., 73 (1995), 209-221. |
[19] | J. Comput. Neurosci., 3 (1996), 275-299. |
[20] | in Selected Tables in Mathematical Statistics, 3, American Mathematical Society, 1975, 233-327. |
[21] | J. Natl. Cancer Inst., 79 (1987), 1113-1115. |
[22] | BMC Evol. Biol., 4 (2004), p3. |
[23] | Biol. Cybern., 56 (1987), 19-26. |
[24] | Neural Comput., 18 (2006), 634-659. |
[25] | Neural Comput., 18 (2006), 1896-1931. |
[26] | J. Appl. Probab., 22 (1985), 360-369. |
[27] | J. Amer. Statist. Assoc., 83 (1988), 9-27. |
[28] | J. Appl. Probab., 25 (1988), 43-57. |
[29] | Neural Comput., 17 (2005), 923-947. |
[30] | Bull. Math. Biophys., 31 (1969), 341-357. |
[31] | J. Neurosci., 18 (1998), 3870-3896. |
[32] | Phys. Rev., 81 (1951), 617-623. |
[33] | John Wiley & Sons, Inc., New York, 1975. |
[34] | Nature, 189 (1961), 732-735. |
[35] | Exp. Brain Res., 41 (1981), 414-419. |
[36] | Vis. Neurosci., 9 (1992), 535-553. |
[37] | Cambridge University Press, New York, 1988. |
[38] | 2nd edition, North-Holland, Amsterdam, 1992. |
[39] | J. Theor. Biol., 257 (2009), 90-99. |
[40] | J. Theoret. Neurobiol., 1 (1982), 197-218. |
1. | Giuseppe D’Onofrio, Massimiliano Tamborrino, Petr Lansky, The Jacobi diffusion process as a neuronal model, 2018, 28, 1054-1500, 103119, 10.1063/1.5051494 | |
2. | R.A.J. Taylor, 2019, 9780128109878, 533, 10.1016/B978-0-12-810987-8.00017-3 | |
3. | Xinmeng Guo, Haitao Yu, Nathan X. Kodama, Jiang Wang, Roberto F. Galán, Fluctuation Scaling of Neuronal Firing and Bursting in Spontaneously Active Brain Circuits, 2020, 30, 0129-0657, 1950017, 10.1142/S0129065719500175 | |
4. | Nathan X. Kodama, Tianyi Feng, James J. Ullett, Hillel J. Chiel, Siddharth S. Sivakumar, Roberto F. Galán, Anti-correlated cortical networks arise from spontaneous neuronal dynamics at slow timescales, 2018, 8, 2045-2322, 10.1038/s41598-017-18097-0 | |
5. | Giuseppe D’Onofrio, Petr Lansky, Massimiliano Tamborrino, Inhibition enhances the coherence in the Jacobi neuronal model, 2019, 128, 09600779, 108, 10.1016/j.chaos.2019.07.040 |