Loading [Contrib]/a11y/accessibility-menu.js

Fluctuation scaling in neural spike trains

  • Received: 01 March 2015 Accepted: 29 June 2018 Published: 01 January 2016
  • MSC : Primary: 92B20, 92C20; Secondary: 60K15.

  • Fluctuation scaling has been observed universally in a wide variety of phenomena. In time series that describe sequences of events, fluctuation scaling is expressed as power function relationships between the mean and variance of either inter-event intervals or counting statistics, depending on measurement variables. In this article, fluctuation scaling has been formulated for a series of events in which scaling laws in the inter-event intervals and counting statistics were related. We have considered the first-passage time of an Ornstein-Uhlenbeck process and used a conductance-based neuron model with excitatory and inhibitory synaptic inputs to demonstrate the emergence of fluctuation scaling with various exponents, depending on the input regimes and the ratio between excitation and inhibition. Furthermore, we have discussed the possible implication of these results in the context of neural coding.

    Citation: Shinsuke Koyama, Ryota Kobayashi. Fluctuation scaling in neural spike trains[J]. Mathematical Biosciences and Engineering, 2016, 13(3): 537-550. doi: 10.3934/mbe.2016006

    Related Papers:

    [1] Giuseppe D'Onofrio, Enrica Pirozzi . Successive spike times predicted by a stochastic neuronal model with a variable input signal. Mathematical Biosciences and Engineering, 2016, 13(3): 495-507. doi: 10.3934/mbe.2016003
    [2] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Mathematical Biosciences and Engineering, 2014, 11(2): 189-201. doi: 10.3934/mbe.2014.11.189
    [3] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model. Mathematical Biosciences and Engineering, 2014, 11(1): 1-10. doi: 10.3934/mbe.2014.11.1
    [4] Achilleas Koutsou, Jacob Kanev, Maria Economidou, Chris Christodoulou . Integrator or coincidence detector --- what shapes the relation of stimulus synchrony and the operational mode of a neuron?. Mathematical Biosciences and Engineering, 2016, 13(3): 521-535. doi: 10.3934/mbe.2016005
    [5] Alexej Tschumak, Frank Feldhoff, Frank Klefenz . The switching and learning behavior of an octopus cell implemented on FPGA. Mathematical Biosciences and Engineering, 2024, 21(4): 5762-5781. doi: 10.3934/mbe.2024254
    [6] Hideaki Kim, Shigeru Shinomoto . Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation. Mathematical Biosciences and Engineering, 2014, 11(1): 49-62. doi: 10.3934/mbe.2014.11.49
    [7] Virginia Giorno, Serena Spina . On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model. Mathematical Biosciences and Engineering, 2014, 11(2): 285-302. doi: 10.3934/mbe.2014.11.285
    [8] Liqiang Zhu, Ying-Cheng Lai, Frank C. Hoppensteadt, Jiping He . Characterization of Neural Interaction During Learning and Adaptation from Spike-Train Data. Mathematical Biosciences and Engineering, 2005, 2(1): 1-23. doi: 10.3934/mbe.2005.2.1
    [9] Antonio Di Crescenzo, Maria Longobardi, Barbara Martinucci . On a spike train probability model with interacting neural units. Mathematical Biosciences and Engineering, 2014, 11(2): 217-231. doi: 10.3934/mbe.2014.11.217
    [10] Sven Blankenburg, Benjamin Lindner . The effect of positive interspike interval correlations on neuronal information transmission. Mathematical Biosciences and Engineering, 2016, 13(3): 461-481. doi: 10.3934/mbe.2016001
  • Fluctuation scaling has been observed universally in a wide variety of phenomena. In time series that describe sequences of events, fluctuation scaling is expressed as power function relationships between the mean and variance of either inter-event intervals or counting statistics, depending on measurement variables. In this article, fluctuation scaling has been formulated for a series of events in which scaling laws in the inter-event intervals and counting statistics were related. We have considered the first-passage time of an Ornstein-Uhlenbeck process and used a conductance-based neuron model with excitatory and inhibitory synaptic inputs to demonstrate the emergence of fluctuation scaling with various exponents, depending on the input regimes and the ratio between excitation and inhibition. Furthermore, we have discussed the possible implication of these results in the context of neural coding.


    [1] Dover, New York, 1965.
    [2] Nature, 333 (1988), 514-519.
    [3] Neuron, 62 (2009), 310-311.
    [4] Springer, New York, 1981.
    [5] Biol. Cybern., 85 (2001), 247-255.
    [6] Biol. Cybern., 95 (2006), 1-19.
    [7] Nat. Neurosci., 13 (2010), 369-378.
    [8] Neuron, 69 (2011), 818-831.
    [9] Nat. Neurosci., 15 (2012), 1472-1474.
    [10] Chapman and Hall, London, 1962.
    [11] Chapman and Hall, London, 1966.
    [12] Springer Series in Statistics, Springer-Verlag, New York, 1988.
    [13] Phys. Rev. Lett., 92 (2004), 028701.
    [14] in Methods in Neuronal Modeling (eds. C. Koch and I. Segev), MIT Press, Cambridge, MA, 1998, 1-26.
    [15] Phys. Rev. E., 71 (2005), 011907, 9pp.
    [16] Adv. Phys., 57 (2008), 89-142.
    [17] Phys. Rev. E, 81 (2010), 066112.
    [18] Biol. Cybern., 73 (1995), 209-221.
    [19] J. Comput. Neurosci., 3 (1996), 275-299.
    [20] in Selected Tables in Mathematical Statistics, 3, American Mathematical Society, 1975, 233-327.
    [21] J. Natl. Cancer Inst., 79 (1987), 1113-1115.
    [22] BMC Evol. Biol., 4 (2004), p3.
    [23] Biol. Cybern., 56 (1987), 19-26.
    [24] Neural Comput., 18 (2006), 634-659.
    [25] Neural Comput., 18 (2006), 1896-1931.
    [26] J. Appl. Probab., 22 (1985), 360-369.
    [27] J. Amer. Statist. Assoc., 83 (1988), 9-27.
    [28] J. Appl. Probab., 25 (1988), 43-57.
    [29] Neural Comput., 17 (2005), 923-947.
    [30] Bull. Math. Biophys., 31 (1969), 341-357.
    [31] J. Neurosci., 18 (1998), 3870-3896.
    [32] Phys. Rev., 81 (1951), 617-623.
    [33] John Wiley & Sons, Inc., New York, 1975.
    [34] Nature, 189 (1961), 732-735.
    [35] Exp. Brain Res., 41 (1981), 414-419.
    [36] Vis. Neurosci., 9 (1992), 535-553.
    [37] Cambridge University Press, New York, 1988.
    [38] 2nd edition, North-Holland, Amsterdam, 1992.
    [39] J. Theor. Biol., 257 (2009), 90-99.
    [40] J. Theoret. Neurobiol., 1 (1982), 197-218.
  • This article has been cited by:

    1. Giuseppe D’Onofrio, Massimiliano Tamborrino, Petr Lansky, The Jacobi diffusion process as a neuronal model, 2018, 28, 1054-1500, 103119, 10.1063/1.5051494
    2. R.A.J. Taylor, 2019, 9780128109878, 533, 10.1016/B978-0-12-810987-8.00017-3
    3. Xinmeng Guo, Haitao Yu, Nathan X. Kodama, Jiang Wang, Roberto F. Galán, Fluctuation Scaling of Neuronal Firing and Bursting in Spontaneously Active Brain Circuits, 2020, 30, 0129-0657, 1950017, 10.1142/S0129065719500175
    4. Nathan X. Kodama, Tianyi Feng, James J. Ullett, Hillel J. Chiel, Siddharth S. Sivakumar, Roberto F. Galán, Anti-correlated cortical networks arise from spontaneous neuronal dynamics at slow timescales, 2018, 8, 2045-2322, 10.1038/s41598-017-18097-0
    5. Giuseppe D’Onofrio, Petr Lansky, Massimiliano Tamborrino, Inhibition enhances the coherence in the Jacobi neuronal model, 2019, 128, 09600779, 108, 10.1016/j.chaos.2019.07.040
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2813) PDF downloads(526) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog