Cases | Descriptions | ||
Uniform distribution | |||
116.7278 | 16.8680 | Exponential distribution | |
3.8152 | 2.8801 | Special |
|
2.7019 | 2.3530 | Special |
|
\right. $ |
Bernoulli distribution |
Citation: Susannah P. Guenther, Karen S. Gibb, Alea M. Rose, Mirjam Kaestli, Keith A. Christian. Differences in structure of northern Australian hypolithic communities according to location, rock type, and gross morphology[J]. AIMS Microbiology, 2018, 4(3): 469-481. doi: 10.3934/microbiol.2018.3.469
[1] | Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang . Periodic consensus in network systems with general distributed processing delays. Networks and Heterogeneous Media, 2021, 16(1): 139-153. doi: 10.3934/nhm.2021002 |
[2] | Wenlian Lu, Fatihcan M. Atay, Jürgen Jost . Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks and Heterogeneous Media, 2011, 6(2): 329-349. doi: 10.3934/nhm.2011.6.329 |
[3] | Yipeng Chen, Yicheng Liu, Xiao Wang . The critical delay of the consensus for a class of multi-agent system involving task strategies. Networks and Heterogeneous Media, 2023, 18(2): 513-531. doi: 10.3934/nhm.2023021 |
[4] | Riccardo Bonetto, Hildeberto Jardón Kojakhmetov . Nonlinear diffusion on networks: Perturbations and consensus dynamics. Networks and Heterogeneous Media, 2024, 19(3): 1344-1380. doi: 10.3934/nhm.2024058 |
[5] | Yunhua Liao, Mohamed Maama, M. A. Aziz-Alaoui . Consensus dynamics and coherence in hierarchical small-world networks. Networks and Heterogeneous Media, 2025, 20(2): 482-499. doi: 10.3934/nhm.2025022 |
[6] | Yilun Shang . Group pinning consensus under fixed and randomly switching topologies with acyclic partition. Networks and Heterogeneous Media, 2014, 9(3): 553-573. doi: 10.3934/nhm.2014.9.553 |
[7] | Don A. Jones, Hal L. Smith, Horst R. Thieme . Spread of viral infection of immobilized bacteria. Networks and Heterogeneous Media, 2013, 8(1): 327-342. doi: 10.3934/nhm.2013.8.327 |
[8] | Zhuchun Li, Xiaoping Xue, Seung-Yeal Ha . A revisit to the consensus for linearized Vicsek model under joint rooted leadership via a special matrix. Networks and Heterogeneous Media, 2014, 9(2): 335-351. doi: 10.3934/nhm.2014.9.335 |
[9] | GuanLin Li, Sebastien Motsch, Dylan Weber . Bounded confidence dynamics and graph control: Enforcing consensus. Networks and Heterogeneous Media, 2020, 15(3): 489-517. doi: 10.3934/nhm.2020028 |
[10] | Yuntian Zhang, Xiaoliang Chen, Zexia Huang, Xianyong Li, Yajun Du . Managing consensus based on community classification in opinion dynamics. Networks and Heterogeneous Media, 2023, 18(2): 813-841. doi: 10.3934/nhm.2023035 |
For a multi-node network system, consensus problems play a particular significance role in both theories and applications. Such problems are broadly investigated in fields of distributed computing [7], management science [1], flocking/swarming theory [16], distributed control [2] and sensor networks [11], and so on. Such systems also seem to have remarkable capability to regulate the flow of information from distinct and independent nodes to achieve a prescribed performance. As previous observations in both simulation and theory, the connectedness of the adjacency matrix and the processing delay play key roles to make the system achieve the emergent feature. The main motivation in current work is to analyze and explain the dynamical consensus patterns in a multi-node system, while the connectedness of the adjacency matrix is absent and the distributed processing delays are also involved in.
In this paper, we consider a
$ ˙xi=λN∑j=1aij(ˉxj(t)−ˉxi(t)),i=1,2,⋯,N, $
|
(1) |
where
In the previously published works, consensus problems have often been studied with discrete processing delays [5,6,11], time-varying processing delays [8,12] and
To understand the dynamical consensus patterns better, we assume the adjacency matrix
$ \tilde a_{ii} = 1-\frac{\sum_{j = 1}^Na_{ij}}{C}, \quad \tilde a_{ij} = \frac{a_{ij}}{ C}\ \mbox{ for }\ i\neq j. $ |
Let
$ ˙xi=˜λN∑j=1˜aij(ˉxj(t)−ˉxi(t)),i=1,2,⋯,N. $
|
(2) |
It is easy to find that the system (1) and system (2) have the same dynamical behaviors.
Let
$ 1 = \mu_1 > \mu_2 > \cdots > \mu_{m_0}. $ |
Naturally, if
To find the qualitative behaviors, we finish this section by considering the equation
$ ˙w=−˜λˉw(t)+˜λJ∗ˉw(t), $
|
(3) |
and its characteristic equation is
$ h0(z)=Det(zI+˜λ∫0−τφ(s)ezsds(I−J∗))=0. $
|
(4) |
Lemma 1.1. ([4], Corollary 6.1, P215) If
$ \| {S}_w(t)\|\leq K e^{c_0 t}. $ |
To specify a solution for the network system (1), we need to specify the initial conditions
$ xi(θ)=fi(θ),forθ∈[−τ,0],i=1,2,⋯,N, $
|
(5) |
where
Definition 2.1. Suppose
$ \lim\limits_{t\rightarrow\infty}\left({x}_i(t)-\phi_{pi}(t)\right) = {x_{i\infty}}, i = 1,2,\cdots, N. $ |
If
Let
$ k∗=τyim−∫0−τφ(s)sin(yims)ds, $
|
(6) |
where
$ ∫0−τφ(s)cos(ys)ds=0. $
|
(7) |
Set
$ c1:=max2≤i≤m0sup{Re(z):z+˜λ(1−μi)∫0−τφ(s)ezsds=0},c2:=max2≤i≤m0−1sup{Re(z):z+˜λ(1−μi)∫0−τφ(s)ezsds=0}, $
|
then we obtain the following results and the details of proof will be given in sequel.
Lemma 2.2. Let
Theorem 2.3. Let
(1) Assume
$ limt→∞X(t)=T0(In0000)T−10f(0):=X∞, $
|
and, for all
$ \|\mathbf{X}(t)-\mathbf{{X}}_{\infty} \|\leq {f_{max}}K_1 e^{-(|c_1|-\varepsilon) t}. $ |
Especially, when
(2) Assume
$ limt→∞(X(t)−Xp(t))=X∞. $
|
and, for all
$ \|\mathbf{X}(t)-\mathbf{X}_p(t)-\mathbf{{X}}_{\infty} \|\leq {f_{max}}K_2 e^{-(|c_2|-\varepsilon) t}, $ |
where
Remark 1. For the case of uniform distribution, the distributed function is
Cases | Descriptions | ||
Uniform distribution | |||
116.7278 | 16.8680 | Exponential distribution | |
3.8152 | 2.8801 | Special |
|
2.7019 | 2.3530 | Special |
|
\right. $ |
Bernoulli distribution |
Proof of Lemma 2.1 Assume
$ {x+˜λ(1−μi)∫0−τφ(s)exscos(ys)ds=0,y+˜λ(1−μi)∫0−τφ(s)exssin(ys)ds=0. $
|
(8) |
Next, we show that
$ 0 = \tau_0 > \tau_1 > \cdots > \tau_k\geq \tau_{k+1} = -\tau. $ |
Set
$ A_i = \int_{\tau_{i+1}}^{\tau_i}\varphi(s)|\cos(ys)|ds \mbox{ and } \tilde{A}_i = \int_{\tau_{i+1}}^{\tau_i}\varphi(s)e^{xs}|\cos(ys)|ds,i = 0,1,\cdots,k, $ |
then
$ \int_{-\tau}^{0}\varphi(s) \cos(ys) ds = \sum\limits_{i = 0}^{k}(-1)^{i}A_i \mbox{ and } \int_{-\tau}^{0}\varphi(s)e^{xs} \cos(ys) ds = \sum\limits_{i = 0}^{k}(-1)^{i}\tilde{A}_i. $ |
Noting that
By direct computation, for
$ \tilde{A}_0-\tilde{A}_1+\tilde{A}_2-\tilde{A}_3 > e^{x\tau_1}({A}_0-{A}_1)+e^{x\tau_3}({A}_2-{A}_3) > e^{x\tau_3}({A}_0-{A}_1+{A}_2-{A}_3) > 0. $ |
For generally, we have
$ ∫0−τφ(s)exscos(ys)ds=k∑i=0(−1)i˜Ai>exτkk∑i=0(−1)iAi=exτk∫0−τφ(s)cos(ys)ds>0. $
|
It contradicts with
On the other hand, combining
$ \tau y+\tilde{\lambda}\tau(1-\mu_{m_0})\int_{-\tau}^0\varphi(s)e^{xs}\sin(y s)ds = 0 $ |
and the fact
Noting that the set
$ c_1: = \max\limits_{1\leq i\leq m_0}\sup\{Re(z):z = -\tilde{\lambda}(1-\mu_i)\int_{-\tau}^0\varphi(s)e^{z s}ds\}\leq 0. $ |
Assume that
$ limn→∞xn=0 and zn=−˜λ(1−μi)∫0−τφ(s)eznsds for some i. $
|
(9) |
Thus
$ x_n = -\tilde{\lambda}(1-\mu_i)\int_{-\tau}^0\varphi(s)e^{x_ns}\cos(y_ns)ds $ |
and
$ y_n = -\tilde{\lambda}(1-\mu_i)\int_{-\tau}^0\varphi(s)e^{x_ns}\sin(y_ns)ds. $ |
Then, for
$ \int_{-\tau}^0\varphi(s)\cos(y_\infty s)ds = 0\ \mbox{ and } \ y_\infty = -\tilde{\lambda}(1-\mu_i)\int_{-\tau}^0\varphi(s)\sin(y_\infty s)ds. $ |
If
Proof of Theorem 2.1 Let
$ ˙X=−˜λ(I−˜A)ˉX(t), X(t)=f(t),t∈[−τ,0]. $
|
(10) |
Recalling
$ \mathbf{Y}(t) = {T}_0^{-1}\mathbf{X}(t) = ({y}_1(t), {y}_2(t),\cdots, {y}_{n_0}(t), \mathbf{y}^*(t))^T, $ |
then the equation of (10) yields
$ \dot{\mathbf{Y}} = -\tilde{\lambda} \left (000I−J∗ \right ) \bar{\mathbf{Y}}(t). $
|
That is,
$ h(z)=m0∏i=2(z+˜λ(1−μi)∫0−τφ(s)ezsds)pi=0, $
|
(11) |
where
Let
$ X(t+θ)=T0(In000S∗(t))T−10f(θ), for t∈[0,t1),θ∈[−τ,0]. $
|
(12) |
Let
$ Xa(θ)=T0(In0000)T−10f(θ) for θ∈[−τ,0]. $
|
(13) |
By using the equalities (12) and (13), we have
$ ‖X(t+θ)−Xa(θ)‖=‖T0(000S∗(t))T−10f(θ)‖. $
|
(14) |
CASE Ⅰ:
$ \|\mathbf{S}^*(t)\|\leq K_1e^{-ct} \ \mbox{ for all}\ c\in(0,-c_1). $ |
Thus
$ ‖X(t+θ)−Xa(θ)‖=‖T0(000S∗(t))T−10f(θ)‖≤fmaxK1e−(|c1|−ε)t. $
|
This implies that
$ supθ∈[−τ,0]‖X(t+θ)−Xa(θ)‖≤fmaxK1e−(|c1|−ε)t, for t∈[0,+∞). $
|
(15) |
It means that
$ \lim\limits_{t\rightarrow\infty}\mathbf{X}(t) = {T}_0 \left (In0000 \right ){T}_0^{-1}\mathbf{f}(0): = \mathbf{X}_\infty. $
|
Thus, we have
$ Xa(θ)=T0(In0000)T−10f(0)=X∞ $
|
and
$ ‖X(t)−X∞‖≤supθ∈[−τ,0]‖X(t+θ)−X∞‖≤fmaxK1e−(|c1|−ε)t. $
|
Thus, from Definition 2.1, the system (1) achieves a weak consensus.
Especially, when
$ \mathbf{{X}}_{\infty} = \frac{1}{N}\sum\limits_{i = 1}^Nv_i(0)\otimes \mathbf{1}_N, $ |
where
CASE Ⅱ:
$ \dot{y}(t) = -\tilde{\lambda}(1-\mu_{m_0})\int_{-\tau}^0\varphi(s)y(t+s)ds $ |
and its characteristic equation is given by
$ y(t) = \cos(y_{im}t)y(0)-\frac{\tilde{\lambda}(1-\mu_{m_0})}{y_{im}}\sin(y_{im}t)\int_{-\tau}^0\varphi(s)y(s)ds, \ t\in(0, \infty). $ |
Let
$ Xp(t)=cos(yimt)T0(000Ipm0)T−10f(0)−˜λ(1−μm0)yimsin(yimt)T0(000Ipm0)T−10∫0−τφ(s)f(s)ds $
|
(16) |
and rewrite the diagonal matrix
$ J = \left (In0000J∗p000μm0Ipm0 \right ). $
|
Similarly, let
$ ˙u∗=−˜λ(I−J∗p)ˉu∗(t). $
|
(17) |
Then the solution
$ X(t+θ)=X∞+Xp(t)+T0(0000S∗p(t)0000)T−10f(θ), $
|
(18) |
for
To find the asymptotic behaviors, we consider the characteristic equation corresponding to (17), reading as
$ Det(zI+˜λ∫0−τφ(s)ezsds(I−J∗p))=0. $
|
By direct computation, the above equation becomes
$ h1(z)=m0−1∏i=2(z+˜λ(1−μi)∫0−τφ(s)ezsds)pi=0. $
|
(19) |
Noting
Following Lemma 1.1, there is a constant
$ \|\mathbf{S}^*_p(t)\|\leq K_2e^{-ct} \ \mbox{for all}\ c\in(0,-c_2). $ |
Thus
$ ‖X(t+θ)−X∞−Xp(t)‖=‖T0(0000S∗p(t)0000)T−10f(θ)‖≤fmaxK2e−(|c2|−ε)t. $
|
This implies that
$ supθ∈[−τ,0]‖X(t+θ)−X∞−Xp(t)‖≤fmaxK2e−(|c2|−ε)t, for t∈[0,+∞) $
|
(20) |
Thus
$ \lim\limits_{t\rightarrow\infty}[\mathbf{X}(t)-\mathbf{X}_p(t)] = \mathbf{X}_\infty. $ |
Furthermore, when
$ \lim\limits_{t\rightarrow\infty}(x_i(t)-x_{ip}(t)) = \frac{1}{N}\sum\limits_{i = 1}^Nv_i(0). $ |
Thus it follows from Definition 2.1 that the system (1) achieves a periodic consensus when
7.0605 | 0.3183 | 2.7692 | 0.4617 | 0.9713 |
8.2346 | 6.9483 | 3.1710 | 9.5022 | 0.3445 |
where the numbers are randomly selected in interval (0, 10). |
In this section, we verify our main conclusions by a series of numerical simulations. We consider the system (1) with 10 nodes. The initial velocities are given as follows:
Case Ⅰ. Consider the adjacency
$ \det(\mu I-\tilde{A}) = (\mu-1)\left[\mu-\frac{(N-1)^2-1}{N(N-1)}\right]^{N-1}. $ |
Let
Cases | Results | ||
Uniform distribution (Fig. 1) | consensus | ||
periodic consensus | |||
Exponential distribution(Fig. 2) | consensus | ||
periodic consensus | |||
Special |
consensus | ||
periodic consensus | |||
Special |
consensus | ||
periodic consensus | |||
Bernoulli distribution(Fig. 5) | consensus | ||
periodic consensus |
Case Ⅱ. In order to understand the dynamical behaviours when the parameter
$ \tilde{a}_{ii} = 1-\frac{2}{3N},(i = 1,2,...,N) \quad \tilde{a}_{ii} = 1-\frac{2(2N-i)}{3N(N-1)},(i = N+1,N+2,...,2N). $ |
Direct calculation yields
$ \det(\mu I-\tilde{A}) = (\mu-1)^2\left[\mu-1+\frac{2(N-1)+2}{3N(N-1)}\right]^{N-1}\prod\limits_{i = N+1}^{2N}\left[\mu-1+\frac{2(2N-i)}{3N(N-1)}\right]. $ |
Take
Distribution cases | Group 1(blue) | Group 2(red) | ||
Uniform (Fig. 6) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Exponential (Fig. 7) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Gamma 1(Fig. 8) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Gamma 2(Fig. 9) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Bernoulli(Fig. 10) | consensus | periodic consensus | ||
periodic consensus | divergence |
We would like to thank the editors and the reviewers for their careful reading of the paper and their constructive comments.
[1] |
Cowan DA, Khan N, Pointing SB, et al. (2010) Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarct Sci 22: 714–720. doi: 10.1017/S0954102010000507
![]() |
[2] |
Ferrenberg S, Tucker CL, Reed SC (2017) Biological soil crusts: diminutive communities of potential global importance. Front Ecol Environ 5: 160–167. doi: 10.3389/fevo.2017.00160
![]() |
[3] |
Tomitani A, Knoll AH, Cavanaugh CM, et al. (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. P Natl Acad Sci USA 103: 5442–5447. doi: 10.1073/pnas.0600999103
![]() |
[4] |
Makhalanyane TP, Valverde A, Birkeland NK, et al. (2013) Evidence for successional development in Antarctic hypolithic bacterial communities. ISME J 7: 2080–2090. doi: 10.1038/ismej.2013.94
![]() |
[5] |
Khan N, Tuffin M, Stafford W, et al. (2011) Hypolithic microbial communities of quartz rocks from Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biol 34: 1657–1668. doi: 10.1007/s00300-011-1061-7
![]() |
[6] |
Tracy CR, Streten-Joyce C, Dalton R, et al. (2010) Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environ Microbiol 12: 592–607. doi: 10.1111/j.1462-2920.2009.02098.x
![]() |
[7] |
Warren-Rhodes KA, McKay CP, Boyle LN, et al. (2013) Physical ecology of hypolithic communities in the central Namib Desert: the role of fog, rain, rock habitat, and light. J Geophys Res-Biogeo 118: 1451–1460. doi: 10.1002/jgrg.20117
![]() |
[8] |
McKay CP (2016) Water sources for cyanobacteria below desert rocks in the Negev Desert determined by conductivity. Global Ecol Conserv 6: 145–151. doi: 10.1016/j.gecco.2016.02.010
![]() |
[9] |
Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10: 551–562. doi: 10.1038/nrmicro2831
![]() |
[10] |
Cowan DA, Pointing SB, Stevens MI, et al. (2011) Distribution and abiotic influences on hypolithic microbial communities in an Antarctic Dry Valley. Polar Biol 34: 307–311. doi: 10.1007/s00300-010-0872-2
![]() |
[11] |
Stomeo F, Valverde A, Pointing SB, et al. (2013) Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Extremophiles 17: 329–337. doi: 10.1007/s00792-013-0519-7
![]() |
[12] |
Valverde A, Makhalanyane TP, Seely M, et al. (2015) Cyanobacteria drive community composition and functionality in rock-soil interface communities. Mol Ecol 24: 812–821. doi: 10.1111/mec.13068
![]() |
[13] |
Chan Y, Lacap DC, Lau MC, et al. (2012) Hypolithic microbial communities: between a rock and a hard place. Environ Microbiol 14: 2272–2282. doi: 10.1111/j.1462-2920.2012.02821.x
![]() |
[14] |
Bates ST, Cropsey GW, Caporaso JG, et al. (2011) Bacterial communities associated with the lichen symbiosis. Appl Environ Microb 77: 1309–1314. doi: 10.1128/AEM.02257-10
![]() |
[15] |
Loudon AH, Woodhams DC, Parfrey LW, et al. (2014) Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J 8: 830–840. doi: 10.1038/ismej.2013.200
![]() |
[16] |
Apprill A, Robbins J, Eren AM, et al. (2014) Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals? PLoS One 9: e90785. doi: 10.1371/journal.pone.0090785
![]() |
[17] | Bureau of Meteorology, Australian Government. Available from: http://www.bom.gov.au. |
[18] | Qiagen, PowerBiofilm DNA Isolation Kit Sample. MO BIO Laboratories, 2017. Available from: www.mobio.com. |
[19] |
Park SY, Jang SH, Oh SO, et al. (2014) An easy, rapid, and cost-effective method for DNA extraction from various lichen taxa and specimens suitable for analysis of fungal and algal strains. Mycobiology 42: 311–316. doi: 10.5941/MYCO.2014.42.4.311
![]() |
[20] | Miller SR, Augustine S, Le Olson T, et al. (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. P Nat Acad Sci USA 102: 850–855. |
[21] |
Baker JA, Entsch B, McKay DB (2003) The cyanobiont in an Azolla fern is neither Anabaena nor Nostoc. FEMS Microbiol Lett 229: 43–47. doi: 10.1016/S0378-1097(03)00784-5
![]() |
[22] |
Hadziavdic K, Lekang K, Lanzen A, et al. (2014) Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS One 9: e87624. doi: 10.1371/journal.pone.0087624
![]() |
[23] |
Caporaso JG, Kuczynski J, Stombaugh J, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335–336. doi: 10.1038/nmeth.f.303
![]() |
[24] | Christian K, Kaestli M, Gibb K (2017) Spatial patterns of hypolithic cyanobacterial diversity in Northern Australia. Ecol Evol 2017: 1–11. |
[25] |
Lacap-Bugler DC, Lee KK, Archer S, et al. (2017) Global diversity of desert hypolithic cyanobacteria. Front Microbiol 8: 867. doi: 10.3389/fmicb.2017.00867
![]() |
[26] |
Smith HD, Baqué M, Duncan AG, et al. (2014) Comparative analysis of cyanobacteria inhabiting rocks with different light transmittance in the Mojave Desert: a Mars terrestrial analogue. Int J Astrobiol 13: 271–277. doi: 10.1017/S1473550414000056
![]() |
[27] | Komárek J (2007) Phenotype diversity of the cyanobacterial genus Leptolyngbya in the maritime Antarctic. Pol Polar Res 28: 211–231. |
[28] |
Gokul JK, Valverde A, Tuffin M, et al. (2013) Micro-eukaryotic diversity in hypolithons from Miers Valley, Antarctica. Biology 2: 331–340. doi: 10.3390/biology2010331
![]() |
[29] |
Gadd GM (2017) New horizons in geomycology. Environ Microbiol Rep 9: 4–7. doi: 10.1111/1758-2229.12480
![]() |
[30] |
Boer W, Folman LB, Summerbell RC, et al. (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29: 795–811. doi: 10.1016/j.femsre.2004.11.005
![]() |
[31] | Belnap J (2001) Microbes and microfauna associated with biological soil crusts, In: Belnap J, Lange OJ, Editors, Biological soil crusts: structure, function, and management, Ecological studies (analysis and synthesis), Berlin: Springer, 167–174. |
[32] |
Makhalanyane TP, Valverde A, Lacap DC, et al. (2013) Evidence of species recruitment and development of hot desert hypolithic communities. Environ Microbiol Rep 5: 219–224. doi: 10.1111/1758-2229.12003
![]() |
[33] | Lacap DC, Lau MC, Pointing SB (2011) Biogeography of prokaryotes, In: Fontaneto D, Editor, Biogeography of microscopic organisms: Is everything small everywhere? Cambridge: Cambridge University Press, 35–42. |
[34] | Carini P, Marsden PJ, Leff JW, et al. (2016) Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol 2: 16242. |
[35] |
Demmig-Adams B, Máguas C, Adams WW, et al. (1990) Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green phycobionts. Planta 180: 400–409. doi: 10.1007/BF01160396
![]() |
[36] |
Demmig-Adams B, Adams WW, Green TGA, et al. (1990) Differences in the susceptibility to light stress in two lichens forming a phycosymbiodeme, one partner possessing and one lacking the xanthophyll cycle. Oecologia 84: 451–456. doi: 10.1007/BF00328159
![]() |
[37] |
Bahl J, Lau MC, Smith GJ, et al. (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2: 163. doi: 10.1038/ncomms1167
![]() |
[38] | Pointing SB (2016) Hypolithic communities, In: Weber B, Büdel B, Belnap J, Editors, Biological soil crusts: An organizing principle in drylands, Switzerland: Springer International Publishing, 199–213. |
[39] | Warren-Rhodes KA, Rhodes KL, Liu S, et al. (2007) Nanoclimate environment of cyanobacterial communities in China's hot and cold hyperarid deserts. J Geophys Res-Biogeo 112: G01016. |
[40] |
Ingham RE, Trofymow JA, Ingham ER, et al. (1985) Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr 55: 119–140. doi: 10.2307/1942528
![]() |
Cases | Descriptions | ||
Uniform distribution | |||
116.7278 | 16.8680 | Exponential distribution | |
3.8152 | 2.8801 | Special |
|
2.7019 | 2.3530 | Special |
|
\right. $ |
Bernoulli distribution |
7.0605 | 0.3183 | 2.7692 | 0.4617 | 0.9713 |
8.2346 | 6.9483 | 3.1710 | 9.5022 | 0.3445 |
where the numbers are randomly selected in interval (0, 10). |
Cases | Results | ||
Uniform distribution (Fig. 1) | consensus | ||
periodic consensus | |||
Exponential distribution(Fig. 2) | consensus | ||
periodic consensus | |||
Special |
consensus | ||
periodic consensus | |||
Special |
consensus | ||
periodic consensus | |||
Bernoulli distribution(Fig. 5) | consensus | ||
periodic consensus |
Distribution cases | Group 1(blue) | Group 2(red) | ||
Uniform (Fig. 6) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Exponential (Fig. 7) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Gamma 1(Fig. 8) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Gamma 2(Fig. 9) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Bernoulli(Fig. 10) | consensus | periodic consensus | ||
periodic consensus | divergence |
Cases | Descriptions | ||
Uniform distribution | |||
116.7278 | 16.8680 | Exponential distribution | |
3.8152 | 2.8801 | Special |
|
2.7019 | 2.3530 | Special |
|
\right. $ |
Bernoulli distribution |
7.0605 | 0.3183 | 2.7692 | 0.4617 | 0.9713 |
8.2346 | 6.9483 | 3.1710 | 9.5022 | 0.3445 |
where the numbers are randomly selected in interval (0, 10). |
Cases | Results | ||
Uniform distribution (Fig. 1) | consensus | ||
periodic consensus | |||
Exponential distribution(Fig. 2) | consensus | ||
periodic consensus | |||
Special |
consensus | ||
periodic consensus | |||
Special |
consensus | ||
periodic consensus | |||
Bernoulli distribution(Fig. 5) | consensus | ||
periodic consensus |
Distribution cases | Group 1(blue) | Group 2(red) | ||
Uniform (Fig. 6) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Exponential (Fig. 7) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Gamma 1(Fig. 8) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Gamma 2(Fig. 9) | consensus | periodic consensus | ||
periodic consensus | divergence | |||
Bernoulli(Fig. 10) | consensus | periodic consensus | ||
periodic consensus | divergence |