Processing math: 63%
Research article

African American women perceptions of physician trustworthiness: A factorial survey analysis of physician race, gender and age

  • Background/Objective: Physical concordance between physicians and patients is advocated as a solution to improve trust and health outcomes for racial/ethnic minorities, but the empirical evidence is mixed. We assessed women’s perceptions of physician trustworthiness based on physician physical characteristics and context of medical visit. Methods: A factorial survey design was used in which a community-based sample of 313 African American (AA) women aged 45+ years responded to vignettes of contrived medical visits (routine versus serious medical concern visit) where the physician’s race/ethnicity, gender, and age were randomly manipulated. Eight physician profiles were generated. General linear mixed modeling was used to assess separately and as an index, trust items of fidelity, honesty, competence, confidentiality, and global trust. Trust scores were based on a scale of 1 to 5, with higher scores indicating higher trust. Mean scores and effect sizes (ES) were used to assess magnitude of trust ratings. Results: No significant differences were observed on the index of trust by physician profile characteristics or by medical visit context. However, the white-older-male was rated higher than the AA-older-female on fidelity (4.23 vs. 4.02; ES = 0.215, 95% CI: 0.001–0.431), competence (4.23 vs. 3.95; ES = 0.278, 95% CI: 0.062–0.494) and honesty (4.39 vs. 4.19, ES = 0.215, 95% CI: 0.001–0.431). The AA-older male was rated higher than the AA-older-female on competence (4.20 vs. 3.95; ES = 0.243, 95% CI: 0.022–0.464) and honesty (4.44 vs. 4.19; ES = 0.243, 95% CI: 0.022–0.464). The AA-young male was rated higher than AA-older-female on competence (4.16 vs. 3.95; ES = 0.205, 95% CI: 0.013–0.423). Conclusions: Concordance may hold no salience for some groups of older AA women with regards to perceived trustworthiness of a physician. Policies and programs that promote diversity in the healthcare workforce in order to reduce racial/ethnic disparities should emphasize cultural competency training for all physicians, which is important in understanding patients and to improving health outcomes.

    Citation: Jacqueline Wiltshire, Jeroan J. Allison, Roger Brown, Keith Elder. African American women perceptions of physician trustworthiness: A factorial survey analysis of physician race, gender and age[J]. AIMS Public Health, 2018, 5(2): 122-134. doi: 10.3934/publichealth.2018.2.122

    Related Papers:

    [1] Mouhamed Moustapha Fall, Veronica Felli, Alberto Ferrero, Alassane Niang . Asymptotic expansions and unique continuation at Dirichlet-Neumann boundary junctions for planar elliptic equations. Mathematics in Engineering, 2019, 1(1): 84-117. doi: 10.3934/Mine.2018.1.84
    [2] Masashi Misawa, Kenta Nakamura, Yoshihiko Yamaura . A volume constraint problem for the nonlocal doubly nonlinear parabolic equation. Mathematics in Engineering, 2023, 5(6): 1-26. doi: 10.3934/mine.2023098
    [3] Yves Achdou, Ziad Kobeissi . Mean field games of controls: Finite difference approximations. Mathematics in Engineering, 2021, 3(3): 1-35. doi: 10.3934/mine.2021024
    [4] Arthur. J. Vromans, Fons van de Ven, Adrian Muntean . Homogenization of a pseudo-parabolic system via a spatial-temporal decoupling: Upscaling and corrector estimates for perforated domains. Mathematics in Engineering, 2019, 1(3): 548-582. doi: 10.3934/mine.2019.3.548
    [5] Antonio Vitolo . Singular elliptic equations with directional diffusion. Mathematics in Engineering, 2021, 3(3): 1-16. doi: 10.3934/mine.2021027
    [6] Marco Cirant, Kevin R. Payne . Comparison principles for viscosity solutions of elliptic branches of fully nonlinear equations independent of the gradient. Mathematics in Engineering, 2021, 3(4): 1-45. doi: 10.3934/mine.2021030
    [7] Lucio Boccardo . A "nonlinear duality" approach to $ W_0^{1, 1} $ solutions in elliptic systems related to the Keller-Segel model. Mathematics in Engineering, 2023, 5(5): 1-11. doi: 10.3934/mine.2023085
    [8] Isabeau Birindelli, Kevin R. Payne . Principal eigenvalues for k-Hessian operators by maximum principle methods. Mathematics in Engineering, 2021, 3(3): 1-37. doi: 10.3934/mine.2021021
    [9] Edgard A. Pimentel, Miguel Walker . Potential estimates for fully nonlinear elliptic equations with bounded ingredients. Mathematics in Engineering, 2023, 5(3): 1-16. doi: 10.3934/mine.2023063
    [10] Giovanni Cupini, Paolo Marcellini, Elvira Mascolo . Local boundedness of weak solutions to elliptic equations with $ p, q- $growth. Mathematics in Engineering, 2023, 5(3): 1-28. doi: 10.3934/mine.2023065
  • Background/Objective: Physical concordance between physicians and patients is advocated as a solution to improve trust and health outcomes for racial/ethnic minorities, but the empirical evidence is mixed. We assessed women’s perceptions of physician trustworthiness based on physician physical characteristics and context of medical visit. Methods: A factorial survey design was used in which a community-based sample of 313 African American (AA) women aged 45+ years responded to vignettes of contrived medical visits (routine versus serious medical concern visit) where the physician’s race/ethnicity, gender, and age were randomly manipulated. Eight physician profiles were generated. General linear mixed modeling was used to assess separately and as an index, trust items of fidelity, honesty, competence, confidentiality, and global trust. Trust scores were based on a scale of 1 to 5, with higher scores indicating higher trust. Mean scores and effect sizes (ES) were used to assess magnitude of trust ratings. Results: No significant differences were observed on the index of trust by physician profile characteristics or by medical visit context. However, the white-older-male was rated higher than the AA-older-female on fidelity (4.23 vs. 4.02; ES = 0.215, 95% CI: 0.001–0.431), competence (4.23 vs. 3.95; ES = 0.278, 95% CI: 0.062–0.494) and honesty (4.39 vs. 4.19, ES = 0.215, 95% CI: 0.001–0.431). The AA-older male was rated higher than the AA-older-female on competence (4.20 vs. 3.95; ES = 0.243, 95% CI: 0.022–0.464) and honesty (4.44 vs. 4.19; ES = 0.243, 95% CI: 0.022–0.464). The AA-young male was rated higher than AA-older-female on competence (4.16 vs. 3.95; ES = 0.205, 95% CI: 0.013–0.423). Conclusions: Concordance may hold no salience for some groups of older AA women with regards to perceived trustworthiness of a physician. Policies and programs that promote diversity in the healthcare workforce in order to reduce racial/ethnic disparities should emphasize cultural competency training for all physicians, which is important in understanding patients and to improving health outcomes.


    Dedicated to Giuseppe Mingione, on the occasion of his 50th birthday.

    For localized problems, many papers showed that the weak solution of elliptic and parabolic equations can be obtained with a limit of approximations by regularizing the nonlinearities, see for instance [1,2,4,28,29,32]. However, as far as we are concerned, it was hard to find a suitable reference for global problems which considered approximations on domains. In this paper, we will show that the weak solution can be obtained with a limit of approximations by regularizing the nonlinearities and approximating the domains for Dirichlet boundary value problems. Also we refer to [19,20] which used regularization on the nonlinearities and approximation on the convex domains for a class of nonlinear elliptic systems.

    For the interested readers, we briefly explain about the mentioned papers in the previous paragraph, which are mainly related to the regularity of elliptic and parabolic problems. Acerbi and Fusco [1] obtained local $ C^{1, \gamma} $ for local minimizers of $ p $–energy density, where we refer to [35,52,53] for fundamental papers and [27] for generalized elliptic systems. Acerbi and Mingione [2] obtained local $ C^{1, \gamma} $ regularity for local minimizers with variable exponents, where we refer to [54] for fundamental paper and [3,8,16] for Calderón-Zygmund type estimates. Esposito, Leonetti and Mingione [32,33] obtained higher integrability results for elliptic equations with $ p $–$ q $ growth conditions, where we refer to [10,18,24] for the related results and [46,47] for Lipschitz regularity. Also we refer to [9,21,22,23,25] for double phase problems and [37] for a unified approach of $ p $–$ q $, Orlicz, $ p(x) $ and double phase growth conditions. Acerbi and Mingione [4] obtained Calderón-Zygmund type estimate for a class of parabolic systems, and we refer to [11,15,17] for the global results and [6] for Lorentz space type estimate. Duzaar and Mingione [28] obtained local Lipschitz regularity for nonlinear elliptic equations and a class of elliptic systems. Also Cianchi and Maz'ya [19,20] obtained Lipschitz regularity for a class of elliptic systems in convex domains. Duzaar and Mingione [29] obtained Wolff potential type estimate for nonlinear elliptic equations, and we refer to [39,40,41,42,43,44,49] for further references and [7] for nonlinear elliptic equations with general growth. We remark that one of the authors obtained [14] based on the techniques of [29,48].

    Suppose that $ a : \mathbb{R}^n \times \mathbb{R}^{n+1} \rightarrow \mathbb{R}^n $ satisfies

    $ {a(ξ,x,t) is measurable in (x,t) for every ξRn,a(ξ,x,t) is C1-regular in ξ for every (x,t)Rn+1, $ (1.1)

    and the following ellipticity and growth conditions:

    $ {|a(ξ,x,t)|+|Dξa(ξ,x,t)|(|ξ|2+s2)12Λ(|ξ|2+s2)p12,Dξa(ξ,x,t)ζ,ζλ(|ξ|2+s2)p22|ζ|2, $ (1.2)

    for every $ (x, t) \in \mathbb{R}^{n+1} $, for every $ \xi, \zeta \in \mathbb{R}^n $ and for some constants $ 0 < \lambda \leq \Lambda $ and $ s \geq 0 $.

    To regularize the nonlinearity $ a $, we define $ \phi \in C_{c}^{\infty}(\mathbb{R}^{n}) $ as a standard mollifier:

    $ ϕ(x)={c1exp(1|x|21)if |x|<1,0if |x|1, $ (1.3)

    where $ c_{1} > 0 $ is a constant chosen so that

    $ Rnϕ(x)dx=1. $ (1.4)

    Under the assumptions (1.1) and (1.2), let $ a_\epsilon(\xi, x, t) $ be a regularization of $ a(\xi, x, t) $:

    $ aϵ(ξ,x,t)=RnRna(ξϵy,xϵz,t)ϕ(y)ϕ(z)dydz(0<ϵ<1). $ (1.5)

    Then $ a_\epsilon(\xi, x, t) $ satisfies the ellipticity and growth conditions and it is smooth enough, precisely,

    $ {aϵ(ξ,x,t) is C-regular in ξRn for every (x,t)Rn+1,aϵ(ξ,x,t) is C-regular in xRn for every ξRn and tR, $

    and

    $ {|aϵ(ξ,x,t)|+|Dξaϵ(ξ,x,t)|(|ξ|2+s2ϵ)12cΛ(|ξ|2+s2ϵ)p12,|Dmxaϵ(ξ,x,t)|+|Dmξaϵ(ξ,x,t)|cΛϵm(|ξ|2+s2ϵ)p12,Dξaϵ(ξ,x,t)ζ,ζcλ(|ξ|2+s2ϵ)p22|ζ|2, $

    for $ s_{\epsilon} = (s^{2} + \epsilon^{2})^\frac{1}{2} > 0 $. Here, the constants $ c $ are depending only on $ n $ and $ p $. It will be proved in Lemma 2.13.

    As usual, we denote $ p' $ as the Hölder conjugate of $ p $ and by $ p^* $ the Sobolev exponent of $ p $. (Note that $ p^* $ can be any real number bigger than $ 1 $, provided that $ p \ge n $.) We denote $ d_{H}(X, Y) $ as the Hausdorff distance between two nonempty sets $ X $ and $ Y $, namely,

    $ dH(X,Y)=sup{dist(x,Y):xX}+sup{dist(y,X):yY}. $

    Remark 1.1. As mentioned before, $ a_{k}(\xi, x, t) $ is smooth with respect to $ \xi $ and $ x $ by Lemma 2.13. For Neumann boundary value problems, we need to consider extensions to compare weak solutions defined on different domains. In this paper, we consider Dirichlet boundary value problem with $ \gamma \in W^{1, p}(\Omega) $ to obtain the main theorem without using extensions.

    We will only prove the parabolic case, because the elliptic case can be done in a similar way. To consider parabolic equations, we denote $ \Omega_{\tau} = \Omega \times [0, \tau] $ and $ \mathbb{R}^{n}_{\tau} = \mathbb{R}^{n} \times [0, \tau] $ for $ \tau \in [0, T] $, where $ T > 0 $. We write $ \left\langle {\left\langle {} \right.} \right. \cdot, \cdot \left. {\left. {} \right\rangle } \right\rangle_{\Omega} = \left\langle {\left\langle {} \right.} \right. \cdot, \cdot \left. {\left. {} \right\rangle } \right\rangle_{\langle W^{-1, p'}(\Omega), W^{1, p}_{0}(\Omega) \rangle} $ as the pairing between $ W^{-1, p'}(\Omega) $ and $ W^{1, p}_{0}(\Omega) $, where $ W^{-1, p}(\Omega) $ is the dual space of $ W^{1, p}_{0}(\Omega) $. We carefully note that $ \langle \cdot, \cdot \rangle $ stands for the inner product in $ \mathbb{R}^n $ or $ \mathbb{R}^{n+1} $. We also note that for the consistency of the notation, we usually write $ W^{1, p}_{0}(\mathbb{R}^{n}) $ instead of $ W^{1, p}(\mathbb{R}^{n}) $. Here, we remark that $ W^{1, p}_{0}(\mathbb{R}^{n}) = W^{1, p}(\mathbb{R}^{n}) $. For $ \partial_{t}w $, we mean $ \partial_{t} w \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) $ satisfying

    $ T0tw,φΩdt=ΩTwφtdxdt for any φCc(ΩT). $

    We consider a sequence of functions $ \{ u_{k} \}_{k = 1}^{\infty} $ defined on the corresponding sequence of domains $ \{ \Omega^{k} \}_{k = 1}^{\infty} $ in this paper. So to use convergence on $ \{ u_{k} \}_{k = 1}^{\infty} $, we consider the zero extension as in the following definition. In this paper, '$ \to $' means the strong convergence and '$ \rightharpoonup $' means the weak convergence.

    Definition 1.2. For $ 1 < p < \infty $, we say $ v_{k} \in L^{p'} (\Omega_{T}^{k}) $ $ (k \in \mathbb{N}) $ converges strongly-$ \ast $ to $ v_{\infty} \in L^{p'}(\Omega_{T}^{\infty}) $, which is denoted by $ v_{k} \in L^{p'}(\Omega_{T}^{k}) \, \overset{\ast}{\to} \, v_{\infty} \in L^{p'}(\Omega_{T}^{\infty}) $, if

    $ ΩkTvkηkdxdtΩTvηdxdt, $

    for any $ \eta_{k} \in L^{p} (\Omega_{T}^{k}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ satisfying

    $ ˉηkˉη in Lp(RnT), $

    where $ \bar{\eta}_{k} $ is the zero extension of $ \eta_{k} $ from $ \Omega_{T}^{k} $ to $ \mathbb{R}^{n}_{T} $.

    Remark 1.3. In Definition 1.2, if $ \Omega^{k} = \Omega^{\infty} $ for any $ k \in \mathbb{N} $, then $ v_{k} \to v_{\infty} $ in $ L^{p'} (\Omega_{T}^{\infty}) $ is equivalent to strong-$ \ast $ convergence, see Lemma 3.1.

    We use a similar definition for $ W^{-1, p'} $. We remark that $ W^{1, p}_{0}(\Omega) $ is reflexive when $ 1 < p < \infty $.

    Definition 1.4. For $ 1 < p < \infty $, we say that $ v_{k} \in W^{-1, p'} (\Omega^{k}) $ $ (k \in \mathbb{N}) $ converges strongly-$ \ast $ to $ v_{\infty} \in W^{-1, p'}(\Omega^{\infty}) $, which is denoted by $ v_{k} \in W^{-1, p'} (\Omega^{k}) \, \overset{\ast}{\to} \, v_{\infty} \in W^{-1, p'}(\Omega^{\infty}) $, if

    $ vk,ηkΩkv,ηΩ, $

    for any $ \eta_{k} \in W^{1, p}_{0}(\Omega^{k}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ satisfying

    $ (ˉηk,Dˉηk)(ˉη,Dˉη)inLp(Rn,Rn+1) $

    where $ \bar{\eta}_{k} $ is the zero extension of $ \eta_{k} $ from $ \Omega^{k} $ to $ \mathbb{R}^{n} $.

    Definition 1.5. For $ 1 < p < \infty $, we say that $ v_{k} \in L^{p'} \big(0, T; W^{-1, p'} (\Omega^{k}) \big) $ $ (k \in \mathbb{N}) $ converges strongly-$ \ast $ to $ v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $, denoted by $ v_{k} \in L^{p'} \big(0, T; W^{-1, p'} (\Omega^{k}) \big) \, \overset{\ast}{\to} \, v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $, if

    $ T0vk,ηkΩkdtT0v,ηΩdt, $

    for any $ \eta_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ satisfying

    $ (ˉηk,Dˉηk)(ˉη,Dˉη)inLp(RnT,Rn+1) $

    where $ \bar{\eta}_{k} \in L^{p} \big(0, T; W_{0}^{1, p}(\mathbb{R}^{n}) \big) $ is the zero extension of $ \eta_{k} $.

    For $ p > \frac{2n}{n+2} $ and an open bounded domain $ \Omega \subset \mathbb{R}^{n} $ $ (n \geq 2) $, assume that

    $ FLp(ΩT,Rn),fLp(0,T;W1,p(Ω)) $

    and

    $ γC([0,T];L2(Ω))Lp(0,T;W1,p(Ω)) with tγLp(0,T;W1,p(Ω)). $

    Let $ u \in C \big([0, T]; L^{2}(\Omega) \big) \cap L^{p} \big(0, T; W^{1, p}(\Omega) \big) $ be the weak solution of

    $ {tudiv a(Du,x,t)=fdiv (|F|p2F) in ΩT,u=γ on PΩT. $ (1.6)

    Here, we say that $ u \in \gamma + L^{p} \big(0, T; W_{0}^{1, p}(\Omega) \big) \cap C^{0} \big([0, T]; L^{2} (\Omega) \big) $ is the weak solution of (1.6), if

    $ T0tu,φΩdt+ΩTa(Du,x,t),Dφdxdt=ΩT[|F|p2F,Dφ+fφ]dxdt $

    holds for any $ \varphi \in C_{0}^{\infty}(\Omega_{T}) $. Also for the initial condition, it means that

    $ limh01hh0Ω|u(x,t)γ(x,0)|2dxdt=0, $

    which is equivalent to $ u(x, 0) = \gamma(x, 0) $ when $ u \in C \big([0, T]; L^{2}(\Omega) \big) $.

    Now, we introduce the main result in this paper.

    Theorem 1.6. Let $ \Omega^{k} \subset \mathbb{R}^{n} $ $ (k \in \mathbb{N}) $ be a sequence of open bounded domains with

    $ limkdH(Ωk,Ω)=0. $ (1.7)

    For $ k \in \mathbb{N} $, assume that $ \epsilon_{k} > 0 $, $ F_{k} \in L^{p}(\Omega_{T}^{k}, \mathbb{R}^{n}) $, $ f_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) $ and

    $ γkC([0,T];L2(Ωk))Lp(0,T;W1,p0(Ωk))withtγkLp(0,T;W1,p(Ωk)) $

    satisfy that $ \lim_{k \to \infty} \epsilon_{k} = 0 $,

    $ {fkLp(0,T;W1,p(Ωk))fLp(0,T;W1,p(Ω)),tγkLp(0,T;W1,p(Ωk))tγLp(0,T;W1,p(Ω)), $ (1.8)

    and

    $ {|Fk|p2FkLp(ΩkT,Rn)|F|p2FLp(ΩT,Rn),γkLp(ΩkT)γLp(ΩT),DγkLp(ΩkT,Rn)DγLp(ΩT,Rn). $ (1.9)

    Then for the weak solution $ u_{k} \in C \big([0, T]; L^{2}(\Omega^{k}) \big) \cap L^{p} \big(0, T; W^{1, p}(\Omega^{k}) \big) $ of

    $ {tukdivak(Duk,x,t)=fkdiv(|Fk|p2Fk)inΩkT,uk=γkonPΩkT. $ (1.10)

    where $ a_{k}(\xi, x, t) = a_{\epsilon_{k}}(\xi, x, t) $, we have that

    $ limk[DukDuLp(ΩkTΩT)+DukLp(ΩkTΩT)+DuLp(ΩTΩkT)]=0, $ (1.11)

    where $ u $ is the weak solution of (1.6).

    We refer to [13] for Calderón-Zygmund type estimates for a class of elliptic and parabolic systems with nonzero boundary data in rough domains such as Reifenberg flat domains.

    Remark 1.7. For the sake of convenience and simplicity, we employ the letters $ c > 0 $ throughout this paper to denote any constants which can be explicitly computed in terms of known quantities such as $ n, p, \lambda, \Lambda $ and the diameter of the domains. Thus the exact value denoted by $ c $ may change from line to line in a given computation.

    Remark 1.8. We usually denote $ \bar{g} $ as the natural zero extension of $ g $ for such space as $ L^{p}(\Omega_{T}) $ and $ L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) $ which depends on the situations.

    We also have a result for elliptic equations which corresponds to Theorem 1.6. The proof is similar to that of Theorem 1.6, and we will only state the result.

    Suppose that $ a : \mathbb{R}^n \times \mathbb{R}^{n} \rightarrow \mathbb{R}^n $ satisfies

    $ {a(ξ,x) is measurable in x for every ξRn,a(ξ,x) is C1-regular in ξ for every xRn, $ (1.12)

    and the following ellipticity and growth conditions:

    $ {|a(ξ,x)|+|Dξa(ξ,x)|(|ξ|2+s2)12Λ(|ξ|2+s2)p12,Dξa(ξ,x)ζ,ζλ(|ξ|2+s2)p22|ζ|2, $ (1.13)

    for every $ x, \xi, \zeta \in \mathbb{R}^n $ and for some constants $ 0 < \lambda \leq \Lambda $ and $ s \geq 0 $.

    Under the assumptions (1.12) and (1.13), let $ a_\epsilon(\xi, x) $ be a regularization of $ a(\xi, x) $:

    $ aϵ(ξ,x)=RnRna(ξϵy,xϵz)ϕ(y)ϕ(z)dydz(0<ϵ<1). $ (1.14)

    Then $ a_\epsilon(\xi, x) $ satisfies the ellipticity and growth conditions, such as (1.2), and it is smooth enough, precisely,

    $ {aϵ(ξ,x) is C-regular in ξRn for every xRn,aϵ(ξ,x) is C-regular in xRn for every ξRn. $

    We have the following approximation results for elliptic problems.

    Theorem 1.9. For $ 1 < p < \infty $ and an open bounded domain $ \Omega \subset \mathbb{R}^{n} $ $ (n \geq 2) $, assume that $ F \in L^{p}(\Omega, \mathbb{R}^{n}) $, $ f \in L^{(p^{*})'}(\Omega) $ and $ \gamma \in W^{1, p}(\Omega) $. Let $ u \in \gamma + W_{0}^{1, p}(\Omega) $ be the weak solution of

    $ {diva(Du,x)=fdiv(|F|p2F)inΩ,u=γonΩ. $

    Let $ \Omega^{k} \subset \mathbb{R}^{n} $ $ (k \in \mathbb{N}) $ be a sequence of open bounded domains with

    $ \lim\limits_{k \to \infty} d_{H} (\partial \Omega^{k} , \partial \Omega) = 0. $

    For $ k \in \mathbb{N} $, assume that $ \epsilon_{k} > 0 $, $ F_{k} \in L^{p}(\Omega^{k}, \mathbb{R}^{n}) $, $ f_{k} \in L^{(p^{*})'}(\Omega^{k}) $ and $ \gamma \in W^{1, p}(\Omega^{k}) $ satisfy that

    $ limk[FkFLp(ΩkΩ)+fkfL(p)(ΩkΩ)+γkγW1,p(ΩkΩ)]=0, $

    and

    $ limk[ϵk+FkLp(ΩkΩ)+fkL(p)(ΩkΩ)+γkW1,p(ΩkΩ)]=0. $

    Then for the weak solution $ u_{k} \in \gamma_{k} + W_{0}^{1, p}(\Omega^{k}) $ of

    $ {divak(Duk,x)=div(|Fk|p2Fk)+fkinΩk,uk=γkonΩk. $

    where $ a_{k}(\xi, x) = a_{\epsilon_{k}}(\xi, x) $, we have that

    $ limk[DukDuLp(ΩkΩ)+DukLp(ΩkΩ)+DuLp(ΩΩk)]=0. $

    We use the following results related to weak convergence and weak* convergence.

    Proposition 2.1. [12, Proposition 3.13 (iii)] Let $ \{ f_{i} \} $ be a sequence in $ E^{*} $. If $ f_{i} \overset{\ast}{\rightharpoonup} f $ in $ \sigma(E^{*}, E) $ then $ \{ \| f_{i} \| \} $ is bounded and $ \| f \| \leq \liminf \| f_{i} \| $.

    Proposition 2.2. [12, Theorem 3.16 (Banach-Alaoglu-Bourbaki)] The closed unit ball $ B_{E^{*}} = \{ f \in E^{*} : \| f \| \leq 1 \} $ is compact in the weak-$ \ast $ topology $ \sigma (E^{*}, E) $.

    One can easily check that compactness in Proposition 2.2 implies sequential compactness for metric spaces.

    Proposition 2.3. If $ E^{*} $ is a metric space then any bounded sequence $ \{ f_{i} \} $ in $ E^{*} $ has a weakly-$ \ast $ convergent subsequence.

    To apply Proposition 2.1 and Proposition 2.3 to Sobolev space, we use Proposition 2.4.

    Proposition 2.4. [12, Proposition 8.1] $ W^{1, p} $ is a Banach space for $ 1 \leq p \leq \infty $. $ W^{1, p} $ is reflexive for $ 1 < p < \infty $ and separable for $ 1 \leq p < \infty $.

    To handle the dual space of $ W^{1, p}_{0}(\Omega) $, we use [45, Corollary 10.49].

    Proposition 2.5. [45, Corollary 10.49] Let $ \Omega \subset \mathbb{R}^{n} $ be an open set and $ 1 \leq p < \infty $. Then $ h \in W^{-1, p'}(\Omega) $ can be identified as

    $ h,φΩ=ΩH,(φ,Dφ)dx, $

    with

    $ hW1,p(Ω)=(Ωni=0|Hi|pdx)1p, $

    for some $ H = (H_{0}, H_{1}, \cdots, H_{n}) \in L^{p'}(\Omega, \mathbb{R}^{n+1}) $.

    We have the following result from [51, Proposition Ⅲ.1.2], [30, Lemma 2.1] and [50, Lemma 3.1].

    Proposition 2.6. [51, Proposition III.1.2] Let $ \Omega \subset \mathbb{R}^{n} $ be a bounded domain, $ t_{1} < t_{2} $ and $ p > \frac{2n}{n+2} $. Assume that $ v \in L^{p} \big(t_{1}, t_{2}; W^{1, p}_{0}(\Omega) \big) $ has a distributional derivative $ \partial_{t} v \in L^{p'} \big(t_{1}, t_{2}; W^{-1, p'}(\Omega) \big) $. Then there holds $ v \in C \big([t_{1}, t_{2}]; L^{2}(\Omega) \big) $ and moreover, the mapping $ t \mapsto \| v (\cdot, t) \|_{L^{2}(\Omega)}^{2} $ is absolutely continuous on $ [t_{1}, t_{2}] $ with

    $ ddtv(,t)2L2(Ω)=2tv,vΩ a.e.on[t1,t2], $

    where $ \left\langle {\left\langle {} \right.} \right. \cdot, \cdot \left. {\left. {} \right\rangle } \right\rangle_{\Omega} $ denotes the dual pairing between $ W^{-1, p'}(\Omega) $ and $ W^{1, p}_{0}(\Omega) $.

    We use the following basic inequality in this paper.

    Lemma 2.7. [38, Lemma 3.2] For any $ q > 1 $ and $ s \geq 0 $, there exists $ \kappa_{1} = \kappa_{1}(n, q) \in (0, 1] $ such that

    $ |ξζ|qcκq(|ξ|2+s2)q2+cκq2(|ξ|2+|ζ|2+s2)q22|ξζ|2, $

    for any $ \kappa \in (0, \kappa_{1}] $.

    We would like to emphasis that the inequalities in Lemmas 2.8 and 2.9 are obtained for $ s \geq 0 $ even when $ 1 < q < 2 $. We remark that a different proof for $ 1 < q < 2 $ was shown in [1, Lemma 2.1].

    Lemma 2.8. For any $ q > 1 $ and $ s \geq 0 $, we have that

    $ 10(|ξ+τ(ζξ)|2+s2)q22dτ=10(|ζ+τ(ξζ)|2+s2)q22dτc(|ξ|2+|ζ|2+s2)q22, $

    for any $ \xi, \zeta \in \mathbb{R}^{n} \setminus \{ 0 \} $, where $ c $ depends only on $ q $.

    Proof. By changing variable, one can easily check that

    $ 10(|ξ+τ(ζξ)|2+s2)q22dτ=10(|ζ+τ(ξζ)|2+s2)q22dτ, $

    and without loss of generality, we may assume $ |\xi| \geq |\zeta| $.

    If $ q \geq 2 $, then the lemma follows from the fact that

    $ |ξ+τ(ζξ)|28(|ξ|2+|ζ|2)(τ[0,1]). $

    So it only remains to prove the lemma when $ 1 < q < 2 $.

    Next, suppose that $ 1 < q < 2 $. We show the lemma by considering three cases:

    $ (1).2|ζξ||ξ|,(2).|ξ|2|ζξ|2s,(3).|ξ|2|ζξ| and s<|ζξ|. $

    (1). If $ 2|\zeta - \xi| \leq |\xi| $, then for any $ \tau \in [0, 1] $ we have

    $ |ξ+τ(ζξ)||ξ||τ(ζξ)||ξ|2|ξ|+|ζ|4(|ξ|2+|ζ|2)124, $

    because we assumed that $ |\xi| \geq |\zeta| $, which implies

    $ 10(|ξ+τ(ζξ)|2+s2)q22dτc(q)(|ξ|2+|ζ|2+s2)q22, $

    and the lemma is proved for the first case.

    (2). If $ |\xi| \leq 2|\zeta - \xi| \leq 2s $, then we obtain

    $ |ξ|2+|ζ|2+s2|ξ|2+2(|ξ|2+|ζξ|2)+s23(|ξ|2+|ζξ|2+s2)18s2, $

    which implies

    $ 10(|ξ+τ(ζξ)|2+s2)q22dτsq2c(q)(|ξ|2+|ζ|2+s2)q22, $

    and the lemma is proved for the second case.

    (3). Suppose that $ |\xi| \leq 2 |\zeta - \xi| $ and $ s < |\zeta - \xi| $. One can easily check that

    $ ξζξ,ξ(ζξ)|ζξ|2,ξ+τ(ζξ)(ξζξ,ξ(ζξ)|ζξ|2)=0, $

    which implies

    $ |ξ+τ(ζξ)|2=|ξζξ,ξ(ζξ)|ζξ|2|2+(τ+ζξ,ξ|ζξ|2)2|ζξ|2. $

    Then by changing variables, we obtain

    $ 10(|ξ+τ(ζξ)|2+s2)q22dτ=10(|ξζξ,ξ(ζξ)|ζξ|2|2+(τ+ζξ,ξ|ζξ|2)2|ζξ|2+s2)q22dτ=1+ζξ,ξ|ζξ|2ζξ,ξ|ζξ|2(|ξζξ,ξ(ζξ)|ζξ|2|2+θ2|ζξ|2+s2)q22dθc(q)1+ζξ,ξ|ζξ|2ζξ,ξ|ζξ|2(|ξζξ,ξ(ζξ)|ζξ|2|+|θ||ζξ|+s)q2dθc(q)(I+II), $ (2.1)

    where

    $ I=|1+ζξ,ξ|ζξ|2|0(|ξζξ,ξ(ζξ)|ζξ|2|+θ|ζξ|+s)q2dθ,II=|ζξ,ξ|ζξ|2|0(|ξζξ,ξ(ζξ)|ζξ|2|+θ|ζξ|+s)q2dθ. $

    By changing variables, we discover that

    $ I=1|ζξ||ζξ||1+ζξ,ξ|ζξ|2|+|ξζξ,ξ(ζξ)|ζξ|2|+s|ξζξ,ξ(ζξ)|ζξ|2|+sκq2dκ,=[|ζξ||1+ζξ,ξ|ζξ|2|+|ξζξ,ξ(ζξ)|ζξ|2|+s]q1[|ξζξ,ξ(ζξ)|ζξ|2|+s]q1(q1)|ζξ|c(q)(|ζξ|+|ξ|+s)q1(q1)|ζξ|. $

    Similarly, we have

    $ II=1|ζξ||ζξ||ζξ,ξ|ζξ|2|+|ξζξ,ξ(ζξ)|ζξ|2|+s|ξζξ,ξ(ζξ)|ζξ|2|+sκq2dκ,=[|ζξ||ζξ,ξ|ζξ|2|+|ξζξ,ξ(ζξ)|ζξ|2|+s]q1[|ξζξ,ξ(ζξ)|ζξ|2|+s]q1(q1)|ζξ|c(q)(|ζξ|+|ξ|+s)q1(q1)|ζξ|. $

    Since $ |\zeta| \leq |\xi| \leq 2 |\zeta - \xi| $ and $ s < |\zeta - \xi| $, we have $ |\xi|^{2} + |\zeta|^{2} + s^{2} \leq 9 |\zeta - \xi|^{2} $, and

    $ (|ζξ|+|ξ|+s)q1|ζξ|c(q)|ζξ|q1|ζξ|=c(q)|ζξ|q2c(q)(|ξ|2+|ζ|2+s2)q22. $

    By the above three inequalities and (2.1), we find that the lemma holds when $ |\xi| \leq 2 |\zeta-\xi| \text{ and } s < |\zeta - \xi| $. This completes the proof.

    Lemma 2.9. For any $ q > 1 $ and $ s \geq 0 $, we have that

    $ 10(|ξ+τ(ζξ)|2+s2)q22dτ=10(|ζ+τ(ξζ)|2+s2)q22dτc(|ξ|2+|ζ|2+s2)q22, $

    for any $ \xi, \zeta \in \mathbb{R}^{n} \setminus \{ 0 \} $, where $ c $ depends only on $ q $.

    Proof. One can easily check that

    $ |ξ+t(ζξ)|2+s2c(q)(|ξ|2+|ζ|2+s2)(τ[0,1]). $

    If $ 1 < q < 2 $, then

    $ 10(|ξ+τ(ζξ)|2+s2)q22dτc(q)10(|ξ|2+|ζ|2+s2)q22dτc(q)(|ξ|2+|ζ|2+s2)q22, $

    which prove the lemma for $ 1 < q < 2 $.

    To prove the lemma for the case $ q \geq 2 $, we assume that $ |\xi| \geq |\zeta| $ without loss of generality. Then for $ \tau \in [0, 1/4] $, we have

    $ |ξ+τ(ζξ)||ξ|τ|ζξ||ξ||ζξ|/4|ξ|/2c(q)(|ξ|2+|ζ|2)12. $

    So we obtain

    $ 10(|ξ+τ(ζξ)|2+s2)q22dτc(q)140(|ξ|2+|ζ|2+s2)q22dτc(q)(|ξ|2+|ζ|2+s2)q22, $

    which prove the lemma for $ q \geq 2 $. This completes the proof.

    To compare $ a(\xi, x, t) $ and $ a(\zeta, x, t) $, we use the following lemma.

    Lemma 2.10. Under the assumptions (1.1) and (1.2), we have

    $ |a(ξ,x,t)a(ζ,x,t)|pp1c|ξζ|(|ξ|2+|ζ|2+s2)p12, $

    for any $ \xi, \zeta \in \mathbb{R}^{n} $.

    Proof. We fix any $ \xi, \zeta \in \mathbb{R}^{n} $. If $ |\xi| = 0 $ or $ |\zeta| = 0 $ then the lemma holds trivially from (1.1) and (1.2). So we assume that $ \xi, \zeta \in \mathbb{R}^{n} \setminus \{ 0 \} $. Since $ |\xi - \zeta|^\frac{1}{p-1} \leq c (|\xi|^{2} + |\zeta|^{2} + s^{2})^\frac{1}{2(p-1)} $, we have from (1.2) and Lemma 2.8 that

    $ |a(ξ,x,t)a(ζ,x,t)|pp1=|10ddτ[a(τξ+(1τ)ζ,x,t)]dτ|pp1=|10Dξa(τξ+(1τ)ζ,x,t)(ξζ)dτ|pp1c|ξζ|pp1(10(|τξ+(1τ)ζ|2+s2)p22dτ)pp1c|ξζ|pp1(|ξ|2+|ζ|2+s2)p(p2)2(p1)c|ξζ|(|ξ|2+|ζ|2+s2)p12. $

    Since $ \xi, \zeta \in \mathbb{R}^{n} $ were arbitrary chosen, the lemma follows.

    We show the following well-known inequality. We remark that a different proof for $ 0 < q < 2 $ was shown in [1, Lemma 2.1] and [36, Lemma 2.1].

    Lemma 2.11. For any $ q > 0 $ and $ s \geq 0 $, we have that

    $ |(|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ|2c(|ξ|2+|ζ|2+s2)q22|ξζ|2, $

    and

    $ (|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ,ξζc(|ξ|2+|ζ|2+s2)q24|ξζ|2, $

    for any $ \xi, \zeta \in \mathbb{R}^{n} $, where $ c $ depends only on $ q $.

    Proof. We fix any $ \xi, \zeta \in \mathbb{R}^{n} $. If $ |\xi| = 0 $ or $ |\zeta| = 0 $ then the lemma holds trivially. So we assume that $ \xi, \zeta \in \mathbb{R}^{n} \setminus \{ 0 \} $. Then

    $ (|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ=10ddτ[(|τξ+(1τ)ζ|2+s2)q24(τξ+(1τ)ζ)]dτ=10q22(|τξ+(1τ)ζ|2+s2)q64τξ+(1τ)ζ,ξζ(τξ+(1τ)ζ)dτ+10(|τξ+(1τ)ζ|2+s2)q24(ξζ)dτ. $

    By taking $ \frac{q}{2} + 1 \in (1, \infty) $ instead for $ q \in (1, \infty) $ in Lemma 2.8,

    $ |(|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ|c(q)|ξζ|10(|τξ+(1τ)ζ|2+s2)q24dτc(q)|ξζ|(|ξ|2+|ζ|2+s2)q24. $

    Also we get

    $ (|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ,ξζ=10q22(|τξ+(1τ)ζ|2+s2)q64|τξ+(1τ)ζ,ξζ|2dτ+10(|τξ+(1τ)ζ|2+s2)q24|ξζ|2dτ. $

    If $ 0 < q \leq 2 $ then $ 1 = \frac{ 2-q}{2} + \frac{q}{2} $ and $ \frac{2-q}{2} \geq0 $. Also if $ q > 2 $ then $ \frac{q-2}{2} \geq 0 $. Thus

    $ (|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ,ξζmin{q2,1}10(|τξ+(1τ)ζ|2+s2)q24|ξζ|2dτ. $

    By taking $ \frac{q}{2} + 1 \in (1, \infty) $ instead for $ q \in (1, \infty) $ in Lemma 2.9,

    $ (|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ,ξζc(|ξ|2+|ζ|2+s2)q24|ξζ|2. $

    Since $ \xi, \zeta \in \mathbb{R}^{n} $ were arbitrary chosen, the lemma follows.

    We will use the following lemma.

    Lemma 2.12. For any $ q > 1 $ and $ s \geq 0 $, we have that

    $ |(|ξ|2+s2)q22ξ(|ζ|2+s2)q22ζ|qq1c(|ξ|2+|ζ|2+s2)q12|ξζ|, $

    for any $ \xi, \zeta \in \mathbb{R}^{n} $, where $ c $ only depends on $ q $.

    Proof. Fix any $ \xi, \zeta \in \mathbb{R}^{n} $. By taking $ 2q-2 > 0 $ instead of $ q \left(>0 \right) $ in Lemma 2.11,

    $ |(|ξ|2+s2)q22ξ(|ζ|2+s2)q22ζ|qq1c(q)(|ξ|2+|ζ|2+s2)q(q2)2(q1)|ξζ|qq1. $

    By that $ |\xi - \zeta|^\frac{1}{q-1} \leq c \left(|\xi|^{2} + |\zeta|^{2} + s^{2} \right)^\frac{1}{2(q-1)} $,

    $ |(|ξ|2+s2)q22ξ(|ζ|2+s2)q22ζ|qq1c(q)(|ξ|2+|ζ|2+s2)q12|ξζ|. $

    Since $ \xi, \zeta \in \mathbb{R}^{n} $ were arbitrary chosen, the lemma follows.

    To find the ellipticity and growth conditions of $ a_{\epsilon} (\xi, x, t) $ in (1.5), we follow the approach in the proof of [31, Lemma 2] and [32, Lemma 3.1].

    Lemma 2.13. For (1.5), we have

    $ {aϵ(ξ,x,t)isCregularinξRnforevery(x,t)Rn+1,aϵ(ξ,x,t)isCregularinxRnforeveryξRnandtR, $ (2.2)

    and

    $ {|aϵ(ξ,x,t)|+|Dξaϵ(ξ,x,t)|(|ξ|2+s2ϵ)12cΛ(|ξ|2+s2ϵ)p12,|Dmxaϵ(ξ,x,t)|+|Dmξaϵ(ξ,x,t)|cΛϵm(|ξ|2+s2ϵ)p12,Dξaϵ(ξ,x,t)ζ,ζcλ(|ξ|2+s2ϵ)p22|ζ|2, $ (2.3)

    for $ s_{\epsilon} = (s^{2} + \epsilon^{2})^\frac{1}{2} $. Here, the constants $ c $ are depending only on $ n $ and $ p $.

    Proof. Fix a vector $ \xi \in \mathbb{R}^{n} $. Since $ a(\xi, x, t) $ is $ C^{1} $-regular in $ \xi \in \mathbb{R}^{n} $ for every $ x \in \mathbb{R}^{n} $, we find that $ a_{\epsilon}(\xi, x, t) $ is $ C^{1} $-regular in $ \xi \in \mathbb{R}^{n} $ for every $ x \in \mathbb{R}^{n} $. Also by changing variable, we have from (1.5) that

    $ aϵ(ξ,x,t)=1ϵnRnRna(ξϵy,z,t)ϕ(y)ϕ(xzϵ)dydz, $

    which implies

    $ Dxaϵ(ξ,x,t)=1ϵn+1RnRna(ξϵy,z,t)ϕ(y)Dϕ(xzϵ)dydz. $

    Moreover, from (1.2), the fact that $ \mathrm{supp \, } \phi \subset \overline{B_{1}} $ and

    $ Dmxaϵ(ξ,x,t)=1ϵn+mRnRna(ξϵy,z,t)ϕ(y)Dmϕ(xzϵ)dydz=1ϵmRnRna(ξϵy,xϵz,t)ϕ(y)Dmϕ(z)dydz, $

    for any $ m \geq 0 $, which implies that

    $ |Dmxaϵ(ξ,x,t)|ΛϵmRnRn(|ξϵy|2+s2)p12ϕ(y)|Dmϕ(z)|dydz2p12ΛϵmRnRn(|ξ|2+ϵ2+s2)p12ϕ(y)|Dmϕ(z)|dydz2p12Λϵm(|ξ|2+ϵ2+s2)p12Rn|Dmϕ(z)|dz, $

    for any $ m \geq 0 $. Similarly, by changing variable, we have from (1.5) that

    $ aϵ(ξ,x,t)=1ϵnRnRna(y,xϵz,t)ϕ(ξyϵ)ϕ(z)dydz, $

    and one can obtain that

    $ |Dmξaϵ(ξ,x,t)|2p12Λϵm(|ξ|2+ϵ2+s2)p12Rn|Dmϕ(y)|dz. $

    So $ a_{\epsilon}(\xi, x, t) $ is $ C^{\infty} $-regular in $ \xi \in \mathbb{R}^{n} $ for every $ (x, t) \in \mathbb{R}^n $ and $ a_{\epsilon}(\xi, x, t) $ is $ C^{\infty} $-regular in $ x \in \mathbb{R}^{n} $ for every $ \xi \in \mathbb{R}^n $ and $ t \in \mathbb{R} $. Also the second inequality in (2.3) follows.

    From (1.2), (1.5) and the fact that $ \mathrm{supp \, } \phi \subset \overline{B_{1}} $, we have

    $ Dξaϵ(ξ,x,t)ζ,ζ=RnRnDξa(ξϵy,xϵz,t)ζ,ζϕ(y)ϕ(z)dydzλRnRn(|ξϵy|2+s2)p22|ζ|2ϕ(y)ϕ(z)dydzλ(B1B12)ξ,y0(|ξ|2+|ϵy|2+2ξ,ϵy+s2)p22|ζ|2ϕ(y)dyc(n,p)λ(|ξ|2+ϵ24+s2)p22|ζ|2(B1B12)ξ,y0ϕ(y)dyc(n,p)λ(|ξ|2+s2+ϵ2)p22|ζ|2, $

    and the third inequality in (2.3) holds.

    It only remains to prove the first inequality in (2.3). In view of (1.5), we have

    $ |aϵ(ξ,x,t)|ΛRnRn(|ξϵy|2+s2)p12ϕ(y)ϕ(z)dydz2p12ΛRnRn(|ξ|2+ϵ2+s2)p12ϕ(y)ϕ(z)dydz=2p12Λ(|ξ|2+ϵ2+s2)p12. $ (2.4)

    If $ 16 \epsilon^{2} \geq |\xi|^{2} + s^{2} $, then by changing variables and (1.5), we obtain

    $ |Dξaϵ(ξ,x,t)|=|Dξ(1ϵnRnRna(y,xϵz,t)ϕ(ξyϵ)ϕ(z)dydz)|Λϵn+1RnRn(|y|2+s2)p12|Dϕ(ξyϵ)|ϕ(z)dydz=Λϵ1RnRn(|ξϵy|2+s2)p12|Dϕ(y)|ϕ(z)dydz2p12Λϵ1(|ξ|2+ϵ2+s2)p12Rn|Dϕ(y)|dy. $

    and from the fact that $ 16 \epsilon^{2} \geq |\xi|^{2} + s^{2} $, we have $ 17 \epsilon^{2} \geq |\xi|^{2} + \epsilon^{2} + s^{2} $ and

    $ |Dξaϵ(ξ,x,t)|52p12Λ(|ξ|2+ϵ2+s2)p22Rn|Dϕ(y)|dy. $ (2.5)

    So we discover that the first inequality in (2.3) holds for the case $ 16 \epsilon^{2} \geq |\xi|^{2} + s^{2} $.

    On the other-hand, if $ 16 \epsilon^{2} \leq |\xi|^{2} + s^{2} $, then we have

    $ |ξϵy|2+s2=|ξ|22ϵξ,y+ϵ2|y|2+s2|ξ|2+s2+ϵ2|y|22(y¯B1), $

    and $ \mathrm{supp \, } \phi \subset \overline{B_{1}} $ implies

    $ |Dξaϵ(ξ,x,t)||RnRnDξa(ξϵy,xϵz,t)ϕ(y)ϕ(z)dydz|ΛRnRn(|ξϵy|2+s2)p22ϕ(y)ϕ(z)dydz2ΛRn(|ξϵy|2+s2)p2(|ξ|2+s2+ϵ2|y|2)1ϕ(y)dy, $

    which implies that

    $ |Dξaϵ(ξ,x,t)|cRn(|ξ|2+s2+ϵ2|y|2)p22ϕ(y)dy. $ (2.6)

    We claim that if $ 16 \epsilon^{2} \leq |\xi|^{2} + s^{2} \text{ and } |y| \leq 1 $ then

    $ (|ξ|2+s2+ϵ2|y|2)p222(|ξ|2+s2+ϵ2)p22. $ (2.7)

    If $ p \geq 2 $, then the claim (2.7) holds trivially. If $ 1 < p < 2 $, then $ 16 \epsilon^{2} \leq |\xi|^{2} + s^{2} $ implies

    $ (|ξ|2+s2+ϵ2|y|2)p22(|ξ|2+s2)p22(|ξ|2+s2+ϵ22)p222(|ξ|2+s2+ϵ2)p22, $

    and we find that the claim (2.7) holds. Thus the claim (2.7) is proved. In light of (2.6) and (2.7), we have that if $ 16 \epsilon^{2} \leq |\xi|^{2} + s^{2} $ then

    $ |Dξaϵ(ξ,x,t)|c(|ξ|2+s2+ϵ2)p22. $ (2.8)

    Thus the first inequality in (2.3) follows from (2.4), (2.5) and (2.8). This completes the proof.

    Later, we will apply the gradient of the weak solution in Lemma 2.14 by considering a zero extension from $ \Omega_{T} $ to $ \mathbb{R}^{n}_{T} $.

    Lemma 2.14. For any $ H \in L^{p}(\Omega_{T}, \mathbb{R}^{n}) $, we have that

    $ limϵ0a(H,)aϵ(H,)Lpp1(ΩT)=0. $

    Proof. Fix $ \delta > 0 $. From (1.5), we have

    $ a(H(x,t),x,t)aϵ(H(x,t),x,t)=RnRn[a(H(x,t),x,t)a(H(x,t)ϵy,xϵz,t)]ϕ(y)ϕ(z)dydz. $

    Let $ \tilde{\Omega}_{\epsilon} = \{ x \in \Omega : \mathrm{dist} \left(x, \partial \Omega \right) > \epsilon \} $ and $ \tilde{\Omega}_{\epsilon, T} = \tilde{\Omega}_{\epsilon} \times [0, T] $. Since $ H \in L^{p}(\Omega_{T}, \mathbb{R}^{n}) $, there exists $ \epsilon_{\delta} > 0 $ such that if $ \epsilon \in (0, \epsilon_{\delta}] $ then

    $ ΩT˜Ωϵ,T|H|pdx<δ, $

    which implies that

    $ a(H,)aϵ(H,)Lpp1(ΩT˜Ωϵ,T)=RnRn[a(H(),)a(H()ϵy,(ϵz,0))]ϕ(y)ϕ(z)dydzLpp1(ΩT˜Ωϵ,T)c(|H()|2+s2+ϵ2)p12Lpp1(ΩT˜Ωϵ,T)c[δ+|ΩT˜Ωϵ,T|(sp+ϵp)]p1p, $

    for any $ \epsilon \in (0, \epsilon_{\delta}] $. Thus

    $ lim supϵ0a(H,)aϵ(H,)Lpp1(ΩT˜Ωϵ,T)<cδp1p. $

    Since $ \delta > 0 $ was arbitrary chosen, we get

    $ limϵ0a(H,)aϵ(H,)Lpp1(ΩT˜Ωϵ,T)=0. $ (2.9)

    We now estimate $ a(H, \cdot) - a_{\epsilon}(H, \cdot) $ on $ \tilde{\Omega}_{\epsilon, T} $. By the triangle inequality,

    $ a(H,)aϵ(H,)Lpp1(˜Ωϵ,T)=RnRn[a(H(),)a(H()ϵy,(ϵz,0))]ϕ(y)ϕ(z)dydzLpp1(˜Ωϵ,T)I+II+III $ (2.10)

    where

    $ I=RnRn[a(H(),)a(H((ϵz,0)),(ϵz,0))]ϕ(y)ϕ(z)dydzLpp1(˜Ωϵ,T),II=RnRn[a(H((ϵz,0)),(ϵz,0))a(H(),(ϵz,0))]ϕ(y)ϕ(z)dydzLpp1(˜Ωϵ,T),III=RnRn[a(H(),(ϵz,0))a(H()ϵy,(ϵz,0))]ϕ(y)ϕ(z)dydzLpp1(˜Ωϵ,T). $

    We want to prove that the left-hand side of (2.10) goes to the zero as $ \epsilon \searrow 0 $.

    To handle $ I $, we use the standard approximation by mollifiers, see for instance [34, C. Theorem 6], to find that

    $ limϵ0RnRn[a(H(),)a(H((ϵz,0)),(ϵz,0))]ϕ(y)ϕ(z)dydzLpp1(˜Ωϵ,T)=0, $

    where we used that $ a(H, \cdot) \in L^{\frac{p}{p-1}}(\Omega_{T}) $ and $ \int_{\mathbb{R}^n} \phi(y) \, dy = 1 $, which implies that

    $ limϵ0I=0. $ (2.11)

    To handle $ II $, we apply Hölder's inequality and Lemma 2.10 to find that

    $ |Rn[a(H(xϵz,t),xϵz,t)a(H(x,t),xϵz,t)]ϕ(z)dz||Rn|a(H(xϵz,t),xϵz,t)a(H(x,t),xϵz,t)|pp1ϕ(z)dz|p1p|Rnϕ(z)dz|1pc|Rn|H(xϵz,t)H(x,t)|(|H(xϵz,t)|2+|H(x,t)|2+s2)p12ϕ(z)dz|p1p. $

    We apply Hölder's inequality to find that

    $ Rn[a(H((ϵz,0)),(ϵz,0))a(H(),(ϵz,0))]ϕ(z)dzLpp1(˜Ωϵ,T)Rn|H((ϵz,0))H()|pϕ(z)dzp1p2L1(˜Ωϵ,T)Rn(|H((ϵz,0))|2+|H()|2+s2)p2ϕ(z)dz(p1p)2L1(˜Ωϵ,T), $

    and by using that $ H \in L^{p}(\Omega_{T}, \mathbb{R}^{n}) $, we obtain that

    $ limϵ0Rn[a(H((ϵz,0)),(ϵz,0))a(H(),(ϵz,0))]ϕ(z)dzLpp1(˜Ωϵ,T)=0, $

    which implies that

    $ limϵ0II=0. $ (2.12)

    Last, to handle $ III $, we find from Lemma 2.10 that

    $ RnRn[a(H(x,t),xϵz,t)a(H(x,t)ϵy,xϵz,t)]ϕ(y)ϕ(z)dydzcRnRn|ϵy|(|H(x,t)|2+|H(x,t)ϵy|2+s2)p12ϕ(y)ϕ(z)dydzcϵRn(|H(x,t)|2+s2+ϵ2)p12ϕ(y)dy, $

    where we used that $ \mathrm{supp} \, \phi \subset \overline{B_{1}} $ from (1.3). So by that $ \int_{\mathbb{R}^n} \phi(y) \, dy = 1 $,

    $ RnRn[a(H(x,t),xϵz,t)a(H(x,t)ϵy,xϵz,t)]ϕ(y)ϕ(z)dydzcϵ(|H(x,t)|2+s2+ϵ2)p12. $

    So we again use Hölder's inequality to find that

    $ RnRn[a(H(),(ϵz,0))a(H()ϵy,(ϵz,0))]ϕ(y)ϕ(z)dzLpp1(˜Ωϵ,T)cϵ(|H|2+s2+ϵ2)p12Lpp1(˜Ωϵ,T). $

    By using $ H \in L^{p}(\Omega_{T}, \mathbb{R}^{n}) $, we obtain that

    $ limϵ0RnRn[a(H,(ϵz,0))a(Hϵy,(ϵz,0))]ϕ(y)ϕ(z)dzLpp1(˜Ωϵ,T)=0, $

    which implies that

    $ limϵ0III=0. $ (2.13)

    By combining (2.10), (2.11), (2.12) and (2.13), we find from that

    $ limϵ0a(H,)aϵ(H,)Lpp1(˜Ωϵ,T)=0, $

    and the lemma holds from (2.9).

    This section is devoted to the proof of our main result, Theorem 1.6. We start with proving our main tools for convergence lemmas for the zero extensions, Lemmas 3.1–3.7. Then we apply these tools to obtain the convergence lemmas, Lemmas 3.8–3.10. To conclude our main result, we apply an indirect method. By negating the conclusion of Theorem 1.6, we show that (3.1) contradicts Lemma 3.9 and Lemma 3.10.

    Let $ \bar{u}_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) \cap L^{\infty} \big(0, T; L^{2}(\mathbb{R}^{n}) \big) $ be the zero extension of $ u_{k} - \gamma_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) \cap L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) $ in Theorem 1.6. Also we define $ \bar{u} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) \cap L^{\infty} \big(0, T; L^{2}(\mathbb{R}^{n}) \big) $ as the zero extension of $ u - \gamma \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega) \big) \cap L^{\infty} \big(0, T; L^{2}(\Omega) \big) $ in (1.6). To prove Theorem 1.6, we will assume that the conclusion of Theorem 1.6 does not hold. Then there exist $ \delta_{0} > 0 $ and a subsequence, which will be still denoted as $ u_{k} $ $ (k \in \mathbb{N}) $, such that

    $ [DukDuLp(ΩkTΩT)+DukLp(ΩkTΩT)+DuLp(ΩTΩkT)]>δ0. $

    So by (1.7) and (1.9), it follows that

    $ RnT|DˉukDˉu|pdxdt>cδ0. $ (3.1)

    Later, we will show that a contradiction occurs due to (3.1).

    To prove Theorem 1.6, we first derive the energy estimates for regularized parabolic problems in (1.10). We test (1.10) by $ u_{k}- \gamma_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) \cap C \big([0, T]; L^{2} (\Omega^{k}) \big) $ to find that

    $ τ0tuk,ukγkΩkdt+Ωkτak(Duk,x,t),DukDγkdxdt=Ωkτ|Fk|p2Fk,DukDγk+fk(ukγk)dxdt, $

    for any $ \tau \in [0, T] $, which implies that

    $ τ0t(ukγk),ukγkΩkdt+Ωkτak(Duk,x,t)ak(Dγk,x,t),DukDγkdxdt=Ωkτ|Fk|p2Fk,DukDγk+fk(ukγk)dxdtΩkτak(Dγk,x,t),DukDγkdxdtτ0tγk,ukγkΩkdt, $

    for any $ \tau \in [0, T] $. So by Poincaré's inequality and Lemma 2.7,

    $ sup0τTΩk|(ukγk)(,τ)|2dx+ΩkT|DukDγk|pdxdtc[FkLp(ΩkT)+fkLp(0,T;W1,p(Ωk))+DγkLp(ΩkT)+tγkLp(0,T;W1,p(Ωk))]. $

    Here, the constant $ c > 0 $ for Poincaré's inequality only depends on the size of the domain and $ 1 < p < \infty $, see [5, Theorem 6.30]. By taking $ \bar{u}_{k} = u_{k} - \gamma_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) \cap L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) $,

    $ sup0τTΩk|ˉuk(,τ)|2dx+ΩkT|Dˉuk|pdxdtc[|Fk|p2FkLp(ΩkT)+fkLp(0,T;W1,p(Ωk))+DγkLp(ΩkT)+tγkLp(0,T;W1,p(Ωk))]. $ (3.2)

    The domain $ \Omega^{k} $ depends on the function $ \bar{u}_{k} $ $ (k \in \mathbb{N}) $. To deal with the convergence of the functions, we need to consider the domain of the functions. It is the main reason why we adapted Definitions 1.2–1.5.

    To use the compactness method, we need to show that the right-hand side of (3.2) is bounded uniformly. To do it, we use the zero extensions to $ \mathbb{R}^{n}_{T} $, which makes the domain of the functions independent of $ k \in \mathbb{N} $.

    Let $ \bar{v}_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ be the zero extensions of $ v_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) $ from $ \Omega_{T}^{k} $ to $ \mathbb{R}^{n}_{T} $. Also for $ h_{k} \in W^{-1, p'}(\Omega^{k}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $, we define $ \bar{h}_{k} \in W^{-1, p'}(\mathbb{R}^{n}) $ which corresponds to the zero extension in Corollary 3.3. Under the assumption (1.7), we obtain the following results.

    $ (1) $ [Lemma 3.1] If $ v_{k} \in L^{q}(\Omega_{T}^{k}) \ \overset{\ast}{\to} \ v_{\infty} \in L^{q}(\Omega_{T}^{\infty}) $ $ (1 < q < \infty) $ then

    $ ˉvk  ˉv in  Lq(RnT). $

    $ (2) $ [Lemma 3.4] If $ h_{k} \in W^{-1, p'}(\Omega^{k}) \ \overset{\ast}{\to} \ h_{\infty} \in W^{-1, p'}(\Omega^{\infty}) $ then

    $ ˉhk  ˉh in  W1,p(Rn). $

    $ (3) $ [Lemma 3.5] If $ h_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) \ \overset{\ast}{\to} \ h_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $ then

    $ ˉhk  ˉh in  Lp(0,T;W1,p(Rn)). $

    $ (4) $ [Lemma 3.6] If the sequence $ \| v_{k} \|_{L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) } $ $ (k \in \mathbb{N}) $ is bounded then there exists $ v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $ with

    $ ˉvk  ˉv in  Lp(0,T;W1,p(Rn)). $

    $ (5) $ [Lemma 3.7] If the sequence $ \| v_{k} \|_{ L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) } $ $ (k \in \mathbb{N}) $ is bounded then there exists $ v_{\infty} \in L^{\infty} \big(0, T; L^{2}(\Omega^{\infty}) \big) $ with

    $ ˉvk  ˉv in L(0,T;L2(Rn)). $

    We apply Lemmas 3.1–3.7 to (3.2) as follows. By using Lemma 3.1, we will show that the zero extensions of $ |F_{k}|^{p-2}F_{k} $, $ \gamma_{k} $ and $ D\gamma_{k} $ converge strongly-$ \ast $. By using Lemma 3.5, we will show that the zero extensions of $ f_{k} $ and $ \partial_{t} \gamma_{k} $ converge strongly-$ \ast $. With Lemma 3.6, the existence of weakly-$ \ast $ converging subsequence of $ \partial_{t} \bar{u}_{k} $ in $ L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) $ will be obtained. Also with Lemma 3.7, the existence of weakly-$ \ast $ converging subsequence of $ \bar{u}_{k} $ in $ L^{\infty} \big(0, T; L^{2}(\mathbb{R}^{n}) \big) $ will be obtained.

    We prove our main tools for convergence lemmas. From now on, we denote $ 1_{E} $ as the indicator function on the set $ E $.

    Lemma 3.1. With the assumption (1.7), suppose that $ 1 < q < \infty $ and $ N \geq 1 $. If

    $ VkLq(ΩkT,RN)  VLq(ΩT,RN), $

    then

    $ ˉVk  ˉV in Lq(RnT,RN), $

    where $ \bar{V}_{k} \in L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $ is the zero extension of $ V_{k} \in L^{q'}(\Omega^{k}_{T}, \mathbb{R}^{N}) $.

    Proof. Suppose that $ V_{k} \in L^{q'}(\Omega_{T}^{k}, \mathbb{R}^{N}) \ \overset{\ast}{\to} \ V_{\infty} \in L^{q'}(\Omega_{T}^{\infty}, \mathbb{R}^{N}) $. By (1.7),

    $ ˉη1ΩkT  ˉη1ΩT in  Lq(RnT,RN), $

    for any $ \bar{\eta} \in L^{q}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $. So by Definition 1.2, we have that

    $ RnTˉVk,ˉηdxdt=ΩkTVk,ˉη1ΩkTdxdtΩTV,ˉη1ΩTdxdt=RnTˉV,ˉηdxdt, $

    which implies that

    $ ˉVkˉV in  Lq(RnT,RN). $ (3.3)

    Suppose the lemma does not hold. Then there exist $ \delta > 0 $ and a subsequence (which will be still denoted as $ \{ \bar{V}_{k} \}_{k = 1}^{\infty} $) such that

    $ RnT|ˉVkˉV|qdxdt>δ(kN). $ (3.4)

    Choose $ \bar{\eta}_{k} = |\bar{V}_{k} - \bar{V}_{\infty}|^{q'-2}(\bar{V}_{k} - \bar{V}_{\infty}) $ then

    $ ˉηkLq(RnT,RN)=ˉVkˉV1q1Lq(RnT,RN).(kN). $

    Since $ (\bar{V}_{k} - \bar{V}_{\infty}) \rightharpoonup 0 $ in $ L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $ and any weakly convergent sequence is bounded, we see that $ \{ \bar{\eta}_{k} \}_{k = 1}^{\infty} $ is bounded in $ L^{q}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $. So there exists a subsequence (which will be still denoted as $ \{ \bar{\eta}_{k} \}_{k = 1}^{\infty} $) such that

    $ ˉηk  ˉη in  Lq(RnT,RN), $

    for some $ \bar{\eta}_{\infty} \in L^{q}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $. By (1.7) and that $ (\bar{V}_{k} - \bar{V}_{\infty}) \rightharpoonup 0 $ in $ L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $,

    $ ˉη=0 in RnTΩT. $

    Also we have that

    $ ˉηk1ΩkTˉη1ΩT in Lp(RnT,RN), $ (3.5)

    because for any $ \tilde{V} \in L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $,

    $ RnT˜V,ˉηk1ΩkTdxdt=RnT˜V1ΩT,ˉηkdxdt+RnT˜V(1ΩkT1ΩT),ˉηkdxdtRnT˜V,ˉη1ΩTdxdt, $

    which holds from $ |\Omega^{k} \setminus \Omega| \to 0 $ and $ |\Omega \setminus \Omega^{k}| \to 0 $ by (1.7). From (3.5) and that $ V_{k} \in L^{q'}(\Omega_{T}^{k}, \mathbb{R}^{N}) \ \overset{\ast}{\to} \ V_{\infty} \in L^{q'}(\Omega_{T}^{\infty}, \mathbb{R}^{N}) $, we use Definition 1.2 to find that

    $ RnTˉVk,ˉηkdxdt=ΩkTVk,ˉηk1ΩkTdxdtΩTV,ˉη1ΩTdxdt=RnTˉV,ˉηdxdt, $

    which implies that

    $ RnTˉVkˉV,ˉηkdxdt=RnTˉVk,ˉηkdxdtRnTˉV,ˉηkdxdt0. $ (3.6)

    On the other-hand, by (3.4), we find that

    $ RnTˉVkˉV,ˉηkdxdt=RnT|ˉVkˉV|qdxdt>δ>0(kN), $

    which contradicts (3.6). So the lemma follows.

    We have the following characterization for $ h \in W^{-1, p'}(\Omega) $.

    Lemma 3.2. With the assumption (1.7), suppose that $ h \in W^{-1, p'}(\Omega) $ $ (1 < p < \infty) $. Then there exists $ v \in W^{1, p}_{0}(\Omega) $ such that

    $ Ω(|v|p2v,|Dv|p2Dv),(φ,Dφ)dx=h,φW1,p(Ω),W1,p0(Ω), $

    for any $ \varphi \in W^{1, p}_{0}(\Omega) $. In addition, we have that $ \| h \|_{W^{-1, p'}(\Omega)} = \| v \|_{W^{1, p}_{0}(\Omega)}^{p-1} $.

    Proof. Since $ h \in W^{-1, p'}(\Omega) $, there exists $ H = (H_{0}, H_{1}, \cdots, H_{n}) \in L^{p'} (\Omega, \mathbb{R}^{n+1}) $ satisfying

    $ h,φW1,p(Ω),W1,p0(Ω)=ΩH,(φ,Dφ)dx for any φW1,p0(Ω), $

    by Proposition 2.5. Let $ v \in W^{1, p}_{0}(\Omega) $ be the weak solution of

    $ {|v|p2vdiv|Dv|p2Dv=H0div[(H1,,Hn)] in  Ω,v=0 on Ω. $

    Then for any $ \varphi \in W^{1, p}(\Omega) $, we get

    $ Ω(|v|p2v,|Dv|p2Dv),(φ,Dφ)dx=ΩH,(φ,Dφ)dx=h,φW1,p(Ω),W1,p0(Ω). $

    So by the definition of $ \| \cdot \|_{W^{-1, p'}(\Omega)} $,

    $ hW1,p(Ω)=supφW1,p0(Ω)=1h,φW1,p(Ω),W1,p0(Ω)vp1W1,p0(Ω). $

    By taking $ \varphi = \frac{ v }{ \| v \|_{W^{1, p}_{0}(\Omega)} } \in W^{1, p}_{0}(\Omega) $, we get

    $ vp1W1,p0(Ω)hW1,p(Ω). $

    By combining the above two estimates, we get $ \| h \|_{W^{-1, p'}(\Omega)} = \| v \|_{W^{1, p}_{0}(\Omega)}^{p-1} $.

    We extend $ h \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) $ to $ \bar{h} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) $ in Corollary 3.3, which can be viewed as a natural zero extension because of (3.7).

    Corollary 3.3. With the assumption (1.7), suppose that $ h \in W^{-1, p'}(\Omega) $ $ (1 < p < \infty) $. Then for $ v \in W^{1, p}_{0}(\Omega) $ in Lemma 3.2, one can define $ \bar{h} \in W^{-1, p'}(\mathbb{R}^{n}) $ as

    $ ˉh,ˉφW1,p(Rn),W1,p0(Rn)=Rn(|ˉv|p2ˉv,|Dˉv|p2Dˉv),(ˉφ,Dˉφ)dx, $ (3.7)

    for any $ \bar{\varphi} \in W^{1, p}_{0}(\mathbb{R}^{n}) $, where $ \bar{v} \in W^{1, p}_{0}(\mathbb{R}^{n}) $ is the zero extension of $ v \in W^{1, p}_{0}(\Omega) $. Moreover, we have that

    $ ˉh,ˉφW1,p(Rn),W1,p0(Rn)=h,φW1,p(Ω),W1,p0(Ω) $ (3.8)

    for any $ \varphi \in W^{1, p}_{0}(\Omega) $ and the zero extension $ \bar{\varphi} \in W^{1, p}_{0}(\mathbb{R}^{n}) $ of $ \varphi \in W^{1, p}_{0}(\Omega) $. In addition,

    $ ˉhW1,p(Rn)=ˉvp1W1,p0(Rn)=vp1W1,p0(Ω)=hW1,p(Ω). $

    In Definition 1.4, we defined a convergence for a sequence of the domains, say $ h_{k} \in W^{-1, p'}(\Omega^{k}) \overset{\ast}{\to} h_{\infty} \in W^{-1, p'}(\Omega^{\infty}) $. But this convergence implies strong convergence by considering the zero extension in Corollary 3.3 as in the next lemmas.

    Lemma 3.4. Under the assumption (1.7) and $ 1 < p < \infty $, if $ h_{k} \in W^{-1, p'}(\Omega^{k}) \, \overset{\ast}{\to} \, h_{\infty} \in W^{-1, p'}(\Omega^{\infty}) $ then

    $ ˉhk  ˉh in W1,p(Rn), $

    and

    $ {Rn(|ˉvk|2+|ˉv|2)p22|ˉvkˉv|2dx0,Rn(|Dˉvk|2+|Dˉv|2)p22|DˉvkDˉv|2dx0, $ (3.9)

    for $ \bar{v}_{k} \in W^{1, p}_{0}(\mathbb{R}^{n}) $ and $ \bar{h}_{k} \in W^{-1, p'}(\mathbb{R}^{n}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ in Corollary 3.3.

    Proof. By using Corollary 3.3, define $ \bar{h}_{k} \in W^{-1, p'}(\mathbb{R}^{n}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ as

    $ ˉhk,ˉφW1,p(Rn),W1,p0(Rn)=Rn(|ˉvk|p2ˉvk,|Dˉvk|p2Dˉvk),(ˉφ,Dˉφ)dx, $ (3.10)

    for any $ \bar{\varphi} \in W^{1, p}_{0}(\mathbb{R}^{n}) $. Here, $ v_{k} \in W^{1, p}_{0}(\Omega^{k}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ is defined in Lemma 3.2 and $ \bar{v}_{k} \in W^{1, p}_{0}(\mathbb{R}^{n}) $ the zero extension of $ v_{k} \in W^{1, p}_{0}(\Omega^{k}) $. Moreover,

    $ ˉhkW1,p(Rn)=ˉvkp1W1,p0(Rn)=vkp1W1,p0(Ω)=hkW1,p(Ω)(kN{}). $

    For $ k \in \mathbb{N} \cup \{ \infty \} $, let $ V_{k} = \left(|v_{k}|^{p-2} v_{k}, |Dv_{k}|^{p-2} Dv_{k} \right) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) $ and $ \bar{V}_{k} \in L^{p'} (\mathbb{R}^{n}, \mathbb{R}^{n+1}) $ be the zero extension of $ V_{k} $.

    Suppose that (3.9) does not hold. Then there exist $ \delta > 0 $ and a subsequence, which will be still denoted as $ \{ \bar{v}_{k} \}_{k = 1}^{\infty} $, such that

    $ Rn(|ˉvk|2+|ˉv|2)p22|ˉvkˉv|2dx+Rn(|Dˉvk|2+|Dˉv|2)p22|DˉvkDˉv|2dx>δ(kN). $ (3.11)

    Since $ \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})} ^{-1} $ is bounded in $ W^{1, p}_{0}(\mathbb{R}^{n}) $, there exists a subsequence, which will be still denoted as $ \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})} ^{-1} $ $ (k \in \mathbb{N}) $, such that

    $ ˉvkˉvk1W1,p0(Rn)  ˜v0 in  W1,p0(Rn), $

    for some $ v_{0} \in W^{1, p}_{0}(\Omega^{\infty}) $ and the zero extension $ \bar{v}_{0} \in W^{1, p}_{0}(\mathbb{R}^{n}) $ of $ v_{0} \in W^{1, p}_{0}(\Omega^{\infty}) $. By taking $ \bar{\varphi} = \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})} ^{-1} $ in (3.10), we find from Definition 1.4 that

    $ ˉvkp1W1,p0(Rn)=1ˉvkW1,p0(Rn)Rn(|ˉvk|p2ˉvk,|Dˉvk|p2Dˉvk),(ˉvk,Dˉvk)dx=ˉhk,ˉvkˉvk1W1,p0(Rn)W1,p(Rn),W1,p0(Rn)=hk,vkˉvk1W1,p0(Rn)W1,p(Ωk),W1,p0(Ωk)kh,v0W1,p(Ω),W1,p0(Ω). $

    So $ \bar{v}_{k} $ is bounded in $ W^{1, p}_{0}(\mathbb{R}^{n}) $, and there exist $ \bar{v}_{0} \in W^{1, p}_{0}(\mathbb{R}^{n}) $, $ \bar{V}_{0} \in L^{p'}(\mathbb{R}^{n}, \mathbb{R}^{n+1}) $ and a subsequence, which will be still denoted as $ \{ \bar{v}_{k} \}_{k = 1}^{\infty} $, such that

    $ {Dˉvk  Dˉv0 in Lp(Rn,Rn),ˉvk  ˉv0 in Lp(Rn),ˉVk  ˉV0 in Lp(Rn,Rn+1). $ (3.12)

    Recall that $ \bar{V}_{k} = \left(|\bar{v}_{k}|^{p-2} \bar{v}_{k}, |D\bar{v}_{k}|^{p-2} D\bar{v}_{k} \right) \in L^{p'} (\mathbb{R}^{n}, \mathbb{R}^{n+1}) $ is the zero extension of $ V_{k} = \left(|v_{k}|^{p-2} v_{k}, |Dv_{k}|^{p-2} Dv_{k} \right) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) $. Because of the assumption (1.7), one can also show that

    $ ˉv0=0 a.e. in RnΩandˉV0=0 a.e. in RnΩ. $ (3.13)

    Also by (1.7),

    $ there exists KN such that suppφ⊂⊂Ωk(kK) for any φCc(Ω). $ (3.14)

    From (3.13), (3.14) and Definition 1.4, we obtain that

    $ RnˉVk,(ˉφ,Dˉφ)dx=ΩkVk,(φ,Dφ)dxΩV,(φ,Dφ)dx, $

    for any $ \varphi \in C_{c}^{\infty}(\Omega^{\infty}) $ and the zero extension $ \bar{\varphi} \in C_{c}^{\infty}(\mathbb{R}^{n}) $ of $ \varphi \in C_{c}^{\infty}(\Omega^{\infty}) $. Also from (3.12), (3.13) and (3.14), we obtain that

    $ RnˉVk,(ˉφ,Dˉφ)dxRnˉV0,(ˉφ,Dˉφ)dx=ΩV0,(φ,Dφ)dx, $

    for any $ \varphi \in C_{c}^{\infty}(\Omega^{\infty}) $ and the zero extension $ \bar{\varphi} \in C_{c}^{\infty}(\mathbb{R}^{n}) $ of $ \varphi \in C_{c}^{\infty}(\Omega^{\infty}) $. Thus

    $ RnˉVˉV0,(φ,Dφ)dx=0 $

    for any $ \varphi \in C_{c}^{\infty}(\Omega^{\infty}) $. For any $ \varphi \in W^{1, p}_{0}(\Omega^{\infty}) $, there exists $ \varphi_{\epsilon} \in C_{c}^{\infty}(\Omega^{\infty}) $ with $ \| \varphi - \varphi_{\epsilon} \|_{W^{1, p}_{0}(\Omega^{\infty})} < \epsilon $, which implies that

    $ |ΩˉVˉV0,(φ,Dφ)dx|ϵ(ˉV0Lp(Ω)+ˉVLp(Ω)). $

    Since $ \epsilon > 0 $ was arbitrary chosen, we find that

    $ RnˉVˉV0,(φ,Dφ)dx=ΩˉVˉV0,(φ,Dφ)dx=0 $ (3.15)

    for any $ \varphi \in W^{1, p}_{0}(\Omega^{\infty}) $.

    Fix $ \varphi \in C_{c}^{\infty}(\Omega^{\infty}) $. By (3.14), there exists $ K \in \mathbb{N} $ with

    $ ˉvkˉvφW1,p0(Ωk)W1,p0(Rn)(kK). $

    By a direct calculation, it follows that

    $ RnˉVkˉV,(ˉvkˉv,D[ˉvkˉv])dx=RnˉVkˉV,((ˉvkˉvφ),D[(ˉvkˉvφ)])dxRnˉVkˉV,(ˉv(1φ),D[ˉv(1φ)])dx. $ (3.16)

    for any $ k \geq K $. By (3.12) and (3.14), $ (\bar{v}_{k} - \bar{v}_{\infty} \varphi) \rightharpoonup (\bar{v}_{0} - \bar{v}_{\infty} \varphi) $ in $ W^{1, p}_{0}(\mathbb{R}^{n}) $. So by Definition 1.4,

    $ RnˉVk,((ˉvkˉvφ),D(ˉvkˉvφ))dxRnˉV,((ˉv0ˉvφ),D(ˉv0ˉvφ))dx, $

    and

    $ RnˉV,((ˉvkˉvφ),D(ˉvkˉvφ))dxRnˉV,((ˉv0ˉv)φ,D(ˉv0ˉvφ))dx, $

    which implies that

    $ RnˉVkˉV,((ˉvkˉvφ),D(ˉvkˉvφ))dx0. $ (3.17)

    By (3.12),

    $ RnˉVkˉV,(ˉv(1φ),D[ˉv(1φ)])dxRnˉV0ˉV,(ˉv(1φ),D[ˉv(1φ)])dx. $ (3.18)

    By combining (3.17) and (3.18), we use (3.15) to find that

    $ RnˉVkˉV,(ˉvkˉv,D[ˉvkˉv])dxRnˉV0ˉV,(ˉv(1φ),D[ˉv(1φ)])dx=0, $ (3.19)

    because of that $ \bar{v}_{\infty} (1-\varphi) \in W^{1, p}_{0}(\Omega^{\infty}) $. Then by Lemma 2.11,

    $ Rn(|ˉvk|2+|ˉv|2)p22|ˉvkˉv|2+(|Dˉvk|2+|Dˉv|2)p22|DˉvkDˉv|2dx0, $

    but this contradicts (3.11) and we find that (3.9) holds. So by Lemma 2.12,

    $ Rn|ˉVkˉV|pdxc[Rn(|Dˉvk|2+|Dˉv|2)p22|DˉvkDˉv|2dx]12[Rn|Dˉvk|p+|Dˉv|pdx]12+c[Rn(|ˉvk|2+|ˉv|2)p22|ˉvkˉv|2dx]12[Rn|ˉvk|p+|ˉv|pdx]120. $

    This implies that

    $ ˉhkˉhW1,p(Rn)=supˉφW1,p0(Rn)=1ˉhkˉh,ˉφW1,p(Rn),W1,p0(Rn)=supˉφW1,p0(Rn)=1RnˉVkˉV,(ˉφ,Dˉφ)dx0, $

    and the lemma follows.

    Lemma 3.5. Under the assumption (1.7) and $ 1 < p < \infty $, suppose that $ h_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) \ \overset{\ast}{\to} \ h_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $. Then

    $ ˉhk  ˉh in Lp(0,T;W1,p(Rn)), $

    and

    $ {RnT(|ˉvk|2+|ˉv|2)p22|ˉvkˉv|2dx0,RnT(|Dˉvk|2+|Dˉv|2)p22|DˉvkDˉv|2dx0, $ (3.20)

    for $ \bar{v}_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $ and $ \bar{h}_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ in Corollary 3.3.

    Proof. For any $ t \in [0, T] $, by using Corollary 3.3, define $ \bar{h}_{k}(\cdot, t) \in W^{-1, p'}(\mathbb{R}^{n}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ as

    $ ˉhk(,t),ˉφ(,t)W1,p(Rn),W1,p0(Rn)=Rn(|ˉvk(,t)|p2ˉvk(,t),|Dˉvk(,t)|p2Dˉvk(,t)),(ˉφ(,t),Dˉφ(,t))dx, $ (3.21)

    for any $ \bar{\varphi} (\cdot, t) \in W^{1, p}_{0}(\mathbb{R}^{n}) $. Here, $ v_{k} (\cdot, t) \in W^{1, p}_{0}(\Omega^{k}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ is defined in Lemma 3.2 and $ \bar{v}_{k} (\cdot, t) \in W^{1, p}_{0}(\mathbb{R}^{n}) $ is the zero extension of $ v_{k} (\cdot, t) \in W^{1, p}_{0}(\Omega^{k}) $.

    For any $ t \in [0, T] $, let $ \bar{V}_{k}(\cdot, t) \in L^{p'} (\mathbb{R}^{n}, \mathbb{R}^{n+1}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ be the zero extension of

    $ Vk(,t):=(|vk(,t)|p2vk(,t),|Dvk(,t)|p2Dvk(,t))Lp(Ωk,Rn+1). $ (3.22)

    Suppose that (3.20) does not hold. Then there exist $ \delta > 0 $ and a subsequence, which will be still denoted as $ \{ \bar{v}_{k} \}_{k = 1}^{\infty} $, such that

    $ RnT(|ˉvk|2+|ˉv|2)p22|ˉvkˉv|2dxdt+RnT(|Dˉvk|2+|Dˉv|2)p22|DˉvkDˉv|2dxdt>δ(kN). $ (3.23)

    Since $ \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} $ $ (k \in \mathbb{N}) $ is bounded in $ L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $, there exist $ v_{0} \in L^{p} \big(0, T; W^{1, p}_{0} (\Omega^{\infty}) \big) $ and a subsequence, which will be still denoted as $ \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} $ $ (k \in \mathbb{N}) $, such that

    $ (ˉvk,Dˉvk)ˉvk1Lp(0,T;W1,p0(Rn))(˜v0,D˜v0) in  Lp(RnT,Rn+1), $

    where $ \tilde{v}_{0} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $ is the zero extension of $ v_{0} \in L^{p} \big(0, T; W^{1, p}_{0} (\Omega^{\infty}) \big) $. By a direct calculation and Corollary 3.3,

    $ ˉvkp1Lp(0,T;W1,p0(Rn))=1ˉvkLp(0,T;W1,p0(RnT))RnT(|ˉvk|p2ˉvk,|Dˉvk|p2Dˉvk),(ˉvk,Dˉvk)dxdt=T0ˉhk(,t),ˉvk(,t)ˉvk1Lp(0,T;W1,p0(Rn))W1,p(Rn),W1,p0(Rn)dt. $

    Since $ v_{k}(\cdot, t) \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big)} ^{-1} \in W^{1, p}_{0}(\Omega^{k}) $ $ (k \in \mathbb{N}) $, we find from (3.8) in Corollary 3.3 and Definition 1.5 that

    $ T0ˉhk(,t),ˉvk(,t)ˉvk1Lp(0,T;W1,p0(Rn))W1,p(Rn),W1,p0(Rn)dt=T0hk(,t),vk(,t)ˉvk1Lp(0,T;W1,p0(Rn))W1,p(Ωk),W1,p0(Ωk)dtT0h(,t),v0(,t)W1,p(Ω),W1,p0(Ω)dt. $

    By taking $ \varphi = \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} $ in (3.21), we combine the above equality and limit to find that

    $ ˉvkp1Lp(0,T;W1,p0(Rn))T0h(,t),v0(,t)W1,p(Ω),W1,p0(Ω)dt. $

    So $ \bar{v}_{k} $ is bounded in $ L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $, and there exists a subsequence, which will be still denoted as $ \{ \bar{v}_{k} \}_{k = 1}^{\infty} $, such that

    $ {Dˉvk  Dˉv0 in Lp(RnT,Rn),ˉvk  ˉv0 in Lp(RnT),ˉVk  ˉV0 in Lp(RnT,Rn+1), $ (3.24)

    where $ \bar{v}_{0} \in L^{p}(\mathbb{R}^{n}_{T}) $ is weakly differentiable in $ \mathbb{R}^{n}_{T} $ with respect to $ x $-variable. Because of the assumption (1.7), one can also show that

    $ ˉv0=0 a.e. in RnTΩTandˉV0=0 a.e. in RnTΩT. $ (3.25)

    Let $ [w]_{h}(\cdot, t) = \frac{1}{h} \int_{0}^{h} w(\cdot, t + \tau) \, d\tau $ be Steklov average of $ w $. In view of (1.7),

    $ there exists KN such that suppφ⊂⊂Ωk(kK) for any φCc(Ω). $ (3.26)

    By (3.21) and Definition 1.5, it follows that

    $ Rn[ˉVk]h(x,t),(ˉφ(x,t),Dˉφ(x,t))dx=1ht+htΩkVk(x,τ),(φ(x,t),Dφ(x,t))dxdτ1ht+htΩV(x,τ),(φ(x,t),Dφ(x,t))dxdτ=Rn[ˉV]h(x,t),(ˉφ(x,t),Dˉφ(x,t))dx, $

    for any $ \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) $. By (3.24) and (3.26),

    $ Rn[ˉVk]h(x,t),(ˉφ(x,t),Dˉφ(x,t))dx=1ht+htRnˉVk(x,τ),(φ(x,t),Dφ(x,t))dxdτ1ht+htRnˉV0(x,τ),(φ(x,t),Dφ(x,t))dxdτ=Rn[ˉV0]h(x,t),(ˉφ(x,t),Dˉφ(x,t))dx, $

    for any $ \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) $. Thus

    $ \begin{equation*} \begin{aligned} \label{} \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{\infty} - \bar{V}_{0}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx = 0 \end{aligned} \end{equation*} $

    for any $ \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) $. For any $ \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) $, there exists $ \varphi_{\epsilon} (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) $ with $ \| \varphi (\cdot, t) - \varphi_{\epsilon} (\cdot, t) \|_{W^{1, p}_{0}(\Omega^{\infty})} < \epsilon $. So we find that

    $ \begin{equation*} \begin{aligned} \label{} & \left| \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{\infty} - \bar{V}_{0}]_{h} (x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx \right| \leq \epsilon \left[ \| [\bar{V}_{\infty}]_{h}(\cdot, t) \|_{L^{p'}(\mathbb{R}^{n})} + \| [\bar{V}_{0}]_{h} (\cdot, t) \|_{L^{p'}(\mathbb{R}^{n})} \right], \end{aligned} \end{equation*} $

    for any $ \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) $ and the zero extension $ \bar{\varphi} (\cdot, t) \in W^{1, p}_{0}(\mathbb{R}^{n}) $ of $ \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) $. Since $ \epsilon > 0 $ was arbitrary chosen, we find from (3.25) that

    $ \begin{equation*} \begin{aligned} \label{} 0 & = \int_{\mathbb{R}^{n}} \left \langle [\bar{V}_{\infty} - \bar{V}_{0}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx = \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}]_{h}(x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx \end{aligned} \end{equation*} $

    for any $ \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) $. We now integrate it with respect to time variable $ t $ to find that

    $ \begin{equation*} \begin{aligned} \label{} 0 & = \int_{\epsilon}^{T-\epsilon} \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}]_{h}(x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx dt \end{aligned} \end{equation*} $

    for any $ 0 < h < \epsilon < T $ and $ \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega) \big) $. Since $ V_{\infty} - V_{0} \in L^{p'}(\Omega_{T}^{\infty}) $, we use [26, Lemma 3.2] to find that

    $ \begin{equation*} \begin{aligned} \label{} 0 & = \int_{\epsilon}^{T-\epsilon} \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}](x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx dt, \end{aligned} \end{equation*} $

    for any $ 0 < \epsilon < T $ and $ \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) $. Thus

    $ \begin{equation} \begin{aligned} 0 & = \int_{0}^{T} \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}](x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx dt, \end{aligned} \end{equation} $ (3.27)

    for any $ \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) $.

    Fix $ \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) $. By (3.26), there exists $ K \in \mathbb{N} $ with

    $ \begin{equation*} \label{} (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) (\cdot, t) \in W^{1, p}_{0}(\Omega^{k}) \cap W^{1, p}_{0}(\Omega^{\infty}) \qquad ( k \geq K). \end{equation*} $

    By a direct calculation,

    $ \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty}, D [ \bar{v}_{k} - \bar{v}_{\infty} ] \right) \right \rangle \, dx dt \\ & \quad = \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( (\bar{v}_{k} - \bar{v}_{\infty} \varphi ), D [\bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \\ & \qquad - \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt . \end{aligned} \end{equation} $ (3.28)

    Also by (3.24), $ (\bar{v}_{k} - \bar{v}_{\infty} \varphi, D [\bar{v}_{k} - \bar{v}_{\infty} \varphi]) \rightharpoonup (\bar{v}_{0} - \bar{v}_{\infty} \varphi, D[\bar{v}_{0} -\bar{v}_{\infty} \varphi]) $ in $ L^{p}(\mathbb{R}^{n}_{T}) $. So by Definition 1.5,

    $ \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} , \left( \bar{v}_{k} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{\infty} , \left( \bar{v}_{0} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{0} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt , \end{aligned} \end{equation*} $

    and

    $ \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{\infty} , \left( \bar{v}_{0} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{0} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt , \end{aligned} \end{equation*} $

    which implies that

    $ \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \to 0. \end{aligned} \end{equation} $ (3.29)

    By (3.24),

    $ \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty}, \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt \\ & \quad \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{0} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt. \end{aligned} \end{equation} $ (3.30)

    By combining (3.28), (3.29) and (3.30), we use (3.27) to find that

    $ \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty}, D [ \bar{v}_{k} - \bar{v}_{\infty} ] \right) \right \rangle \, dx dt \\ & \quad \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{0} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt = 0, \end{aligned} \end{equation} $ (3.31)

    because of that $ \bar{v}_{\infty} (1-\varphi) \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) $. So by Lemma 2.11 and (3.22),

    $ \begin{equation*} \begin{aligned} \label{} & \int_{ \mathbb{R}^{n}_{T} } \left( |\bar{v}_{k}|^{2} + |\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx dt + \int_{ \mathbb{R}^{n}_{T} } \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx dt \to 0, \end{aligned} \end{equation*} $

    but this contradicts (3.23) and we find that (3.20) holds. Then by Lemma 2.12

    $ \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}_{T}} |\bar{V}_{k} - \bar{V}_{\infty}|^{p'} \, dx dt \to 0, \end{aligned} \end{equation*} $

    which implies that

    $ \begin{equation*} \begin{aligned} \label{} \| \bar{h}_{k} - \bar{h}_{\infty} \|_{L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big)} & = \int_{0}^{T} \sup\limits_{ \| \bar{\varphi} \|_{ L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} = 1 } \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} - \bar{h}_{\infty} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\langle W^{-1, p'}(\mathbb{R}^{n}), W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \, dt \\ & = \int_{0}^{T} \sup\limits_{ \| \bar{\varphi} \|_{ L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} = 1 } \int_{\mathbb{R}^{n}} \left\langle {\left\langle {} \right.} \right. [\bar{V}_{k} - \bar{V}_{\infty}] , (\bar{\varphi}, D\bar{\varphi}) \left. {\left. {} \right\rangle } \right\rangle \, dx dt \\ & \to 0, \end{aligned} \end{equation*} $

    and the lemma follows.

    To obtain a weak convergence for $ \partial_{t} u_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) $ $ (k \in \mathbb{N}) $, we consider the zero extension in Corollary 3.3. We remark that

    $ \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. h, \eta \left. {\left. {} \right\rangle } \right\rangle_{\Omega} \, dt = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{h}, \bar{\eta} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt, \end{equation*} $

    for any $ \eta \in W^{1, p}_{0}(\Omega) $ and the zero extension $ \bar{\eta} \in W^{1, p}_{0}(\mathbb{R}^{n}) $ of $ \eta \in W^{1, p}_{0}(\Omega) $, where $ \bar{h} $ is defined in Corollary 3.3.

    Lemma 3.6. Under the assumption (1.7) and $ 1 < p < \infty $, let $ \Omega^{k} \subset \mathbb{R}^{n} $ $ (k \in \mathbb{N}) $ be a sequence of open bounded domains. If $ v_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) $ $ (k \in \mathbb{N}) $ satisfy

    $ \begin{equation*} \label{} \| v_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \leq M \qquad (k \in \mathbb{N}), \end{equation*} $

    for some $ M > 0 $, then there exists $ v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $ such that

    $ \begin{equation*} \label{} \bar{v}_{k} \ \overset{*}{\rightharpoonup} \ \bar{v}_{\infty} {{\ in \ }} L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \end{equation*} $

    where $ \bar{v}_{k} $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ is defined in Corollary 3.3, which implies that

    $ \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{v}_{k} (\cdot, t) , \bar{\eta} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt & \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{v}_{\infty} (\cdot, t) , \bar{\eta} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt \end{aligned} \end{equation*} $

    for any $ \bar{\eta} \in L^{p} \big(0, T; W^{1, p}_{0} (\mathbb{R}^{n}) \big) $.

    Proof. Since $ v_{k} \in L^{p'} \big(0, T; W^{-1, p'}_{0}(\Omega^{k}) \big) $ $ (k \in \mathbb{N}) $, for each $ t \in [0, T] $, there exists $ V_{k}(\cdot, t) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) $ such that

    $ \begin{equation} \left\langle {\left\langle {} \right.} \right. v_{k}(\cdot, t) , \varphi(\cdot) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} = \int_{\Omega^{k}} \langle V_{k} (\cdot, t), (\varphi, D\varphi) (\cdot) \rangle \, dx \text{ for any } \varphi \in W^{1, p}_{0}(\Omega^{k}), \end{equation} $ (3.32)

    by Proposition 3.2. Moreover,

    $ \begin{equation*} \label{} \| v_{k} (\cdot, t) \|_{W^{-1, p'}(\Omega^{k}) } = \inf \left \{ \| V_{k}(\cdot, t) \|_{L^{p'} (\Omega^{k}, \mathbb{R}^{n+1})} : V_{k} (\cdot, t) \text{ satisfies } (3.32) \right\}, \end{equation*} $

    for any $ t \in [0, T] $. So for $ t \in [0, T] $, choose $ V_{k}(\cdot, t) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) $ $ (k \in \mathbb{N}) $ so that

    $ \begin{equation*} \label{} \| V_{k}(\cdot, t) \|_{L^{p'} (\Omega^{k}, \mathbb{R}^{n+1})} \leq 2\| v_{k} (\cdot, t) \|_{W^{-1, p'}(\Omega^{k}) } \qquad (k \in \mathbb{N}), \end{equation*} $

    which implies that

    $ \begin{equation*} \| V_{k} \|_{L^{p'}(\Omega_{T}^{k} , \mathbb{R}^{n+1})} = \| V_{k} \|_{L^{p'} \big( 0, T ; L^{p'}(\Omega^{k} , \mathbb{R}^{n+1}) \big)} \leq 2\| v_{k} \|_{L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \leq 2M. \end{equation*} $

    for any $ k \in \mathbb{N} $.

    Let $ \bar{V}_{k} $ be the zero extension of $ V_{k} $ from $ \Omega_{T}^{k} $ to $ \mathbb{R}^{n}_{T} $. Since $ \| \bar{V}_{k} \|_{ L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}) } \leq 2M $ $ (k \in \mathbb{N}) $, by Proposition 2.3, there exists a weakly convergent subsequence, which will be still denoted by $ \{ \bar{V}_{k} \}_{k = 1}^{\infty} $, which converges to $ \bar{V}_{\infty} \in L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}) $, say

    $ \begin{equation*} \label{} \bar{V}_{k} \ \rightharpoonup \ \bar{V}_{\infty} \ \text{in }\ L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}), \end{equation*} $

    which implies that

    $ \begin{equation} \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{k}, (\bar{\eta}, D\bar{\eta}) \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{\infty}, (\bar{\eta}, D\bar{\eta} ) \rangle \, dx dt, \end{equation} $ (3.33)

    for any $ \bar{\eta} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $. Then one can check from (1.7) that $ \bar{V}_{\infty} = 0 $ a.e. in $ \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty} $. So define $ v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $ as

    $ \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \langle v_{\infty} (\cdot, t) , \eta (\cdot, t) \rangle _{\Omega^{\infty}} \, dt & = \int_{\Omega_{T}^{\infty}} \langle \bar{V}_{\infty}, (\eta , D\eta ) \rangle\, dx dt, \end{aligned} \end{equation*} $

    for any $ \eta \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) $. Then by Corollary 3.3,

    $ \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \langle \bar{v}_{\infty} (\cdot, t) , \bar{\eta} (\cdot, t) \rangle_{\mathbb{R}^{n}} \, dt & = \int_{\mathbb{R}^{n}_{T}} \langle \bar{V}_{\infty}, (\bar{\eta}, D\bar{\eta}) \rangle\, dx dt, \end{aligned} \end{equation*} $

    and

    $ \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \langle \bar{v}_{k}(\cdot, t), \bar{\eta} (\cdot, t) \rangle_{\Omega^{k}} \, dt & = \int_{ \mathbb{R}^{n}_{T} } \langle \bar{V}_{k}, (\bar{\eta} , D\bar{\eta} ) \rangle \, dx dt, \end{aligned} \end{equation*} $

    for any $ \bar{\eta} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $. So the lemma follows from (3.33).

    Lemma 3.7. Under the assumption (1.7) and $ 1 < p < \infty $, let $ \Omega^{k} \subset \mathbb{R}^{n} $ $ (k \in \mathbb{N}) $ be a sequence of open bounded domains. If $ v_{k} \in L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) $ $ (k \in \mathbb{N}) $ satisfy

    $ \begin{equation*} \label{} \| v_{k} \|_{ L^{\infty} \big( 0, T ; L^{2}(\Omega^{k}) \big) } \leq M \qquad (k \in \mathbb{N}), \end{equation*} $

    for some $ M > 0 $, then there exists $ v_{\infty} \in L^{\infty} \big(0, T; L^{2}(\Omega^{\infty}) \big) $ such that

    $ \begin{equation*} \label{} \bar{v}_{k} \ \overset{\ast}{\rightharpoonup} \ \bar{v}_{\infty}\; \mathit{\text{in}}\; L^{\infty} \big( 0, T ;L^{2}(\mathbb{R}^{n}) \big) \end{equation*} $

    where $ \bar{v}_{k} $ is the zero extension of $ v_{k} $ to $ L^{\infty} \big(0, T; L^{2}(\mathbb{R}^{n}) \big) $ for $ k \in \mathbb{N} \cup \{ \infty \} $.

    Proof. $ L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) $ is dual of $ L^{1} \big(0, T; L^{2}(\Omega^{k}) \big) $ for $ k \in \mathbb{N} \cup \{ \infty \} $. We denote $ \bar{v}_{k} $ as the zero extensions of $ v_{k} $ to $ L^{\infty} \big(0, T; L^{2} (\mathbb{R}^{n}) \big) $ for $ k \in \mathbb{N} \cup \{ \infty \} $. Since

    $ \begin{equation*} \label{} \| \bar{v}_{k} \|_{ L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big) } = \| v_{k} \|_{ L^{\infty} \big( 0, T ; L^{2}(\Omega^{k}) \big) } \leq M \qquad (k \in \mathbb{N}), \end{equation*} $

    by Proposition 2.3 we find that there exists a weakly convergent subsequence, which will be still denoted as $ \{ \bar{v}_{k} \}_{k = 1}^{\infty} $, which converges as

    $ \begin{equation*} \label{} \bar{v}_{k} \ \overset{\ast}{\rightharpoonup} \ \bar{v}_{\infty} \text{ in } L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big). \end{equation*} $

    We remark that weak-$ \ast $ convergence was used instead of weak convergence, because $ (L^{\infty})^{\ast} \not = L^{1} $. One can easily check from (1.7) that $ \bar{v}_{\infty} = 0 $ a.e. in $ \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty} $. So the lemma follows by taking $ v_{\infty} = \bar{v}_{\infty} \cdot1_{\Omega_{T}^{\infty} } $.

    Now recall the energy estimate (3.2).

    $ \begin{equation} \begin{aligned} & \sup\limits_{ 0 \leq \tau \leq T } \int_{\Omega^{k}} \left| \bar{u}_{k} (\cdot, \tau) \right|^{2} \, dx + \int_{\Omega_{T}^{k}} |D\bar{u}_{k}|^{p} \, dx dt \\ & \quad \leq c \left[ \| |F_{k}|^{p-2}F_{k} \|_{L^{p'}(\Omega_{T}^{k})} + \| f_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } + \| D\gamma_{k} \|_{L^{p}(\Omega_{T}^{k})} + \| \partial_{t} \gamma_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \right]. \end{aligned} \end{equation} $ (3.34)

    Let $ \bar{F}_{k}, \bar{\gamma}_{k}, D\bar{\gamma}_{k} \in L^{p}(\mathbb{R}^{n}_{T}) $ be the zero extension of $ F_{k}, \gamma_{k}, D\gamma_{k} \in L^{p}(\Omega_{T}^{k}) $, respectively. (We remark that $ \bar{\gamma}_{k} $ might not be weakly differentiable in $ \mathbb{R}^{n}_{T} $, but we abuse the notation for the simplicity of the computation.) We apply Lemma 3.1 to (1.9). Then

    $ \begin{equation} \left\{\begin{array}{rcll} |\bar{F}_{k}|^{p-2}\bar{F}_{k} & \to & |\bar{F}|^{p-2}\bar{F} & \text{in } L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{\gamma}_{k} & \to & \bar{\gamma} & \text{in } L^{p}(\mathbb{R}^{n}_{T}), \\ D\bar{\gamma}_{k} & \to & D\bar{\gamma} & \text{in } L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \end{array}\right. \end{equation} $ (3.35)

    which implies that

    $ \begin{equation*} \begin{aligned} \label{} \lim\limits_{k \to \infty} \| |F_{k}|^{p-2}F_{k} \|_{L^{p'}(\Omega_{T}^{k})} = \lim\limits_{k \to \infty} \| |\bar{F}_{k}|^{p-2}\bar{F}_{k} \|_{L^{p'}(\mathbb{R}^{n}_{T})} = \| |\bar{F}|^{p-2}\bar{F} \|_{L^{p'}(\mathbb{R}^{n}_{T})}, \end{aligned} \end{equation*} $

    and

    $ \begin{equation*} \begin{aligned} \label{} \lim\limits_{k \to \infty} \| D\gamma_{k} \|_{L^{p}(\Omega_{T}^{k})} = \lim\limits_{k \to \infty} \| D\bar{\gamma}_{k} \|_{L^{p}(\mathbb{R}^{n}_{T})} = \| D\bar{\gamma} \|_{L^{p}(\mathbb{R}^{n}_{T})}. \end{aligned} \end{equation*} $

    Let $ \bar{f}_{k} $, $ \partial_{t} \bar{\gamma}_{k} $, $ \bar{f} $ and $ \partial_{t} \bar{\gamma} $ be the zero extension of $ f_{k}, \partial_{t} \gamma_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) $ and $ f, \partial_{t} \gamma \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) $ in Corollary 3.3 respectively. By Corollary 3.3 and Lemma 3.5, we find from (1.8) that

    $ \begin{equation} \left\{\begin{array}{rcll} \bar{f}_{k} & \overset{\ast}{\to} & \bar{f} & \text{in } L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \\ \partial_{t}\bar{\gamma}_{k} & \overset{\ast}{\to} & \partial_{t} \bar{\gamma} & \text{in } L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \end{array}\right. \end{equation} $ (3.36)

    which implies that

    $ \begin{equation*} \label{} \lim\limits_{k \to \infty} \| f_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } = \lim\limits_{k \to \infty} \| \bar{f}_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big) } = \| \bar{f} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big) }, \end{equation*} $

    and

    $ \begin{equation*} \begin{aligned} \label{} \lim\limits_{k \to \infty} \| \partial_{t} \gamma_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big) } = \lim\limits_{k \to \infty} \| \partial_{t} \bar{\gamma}_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big) } = \| \partial_{t} \bar{\gamma} \|_{L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big)}. \end{aligned} \end{equation*} $

    So the right-hand side of (3.34) is bounded, and one can apply Aubin-Lions Lemma, Lemma 3.7 and the zero extension to find that there exists a subsequence of $ \{ \bar{u}_{k} \}_{k = 1}^{\infty} $, which will be still denote by $ \{ \bar{u}_{k} \}_{k = 1}^{\infty} $, and $ \bar{u}_{0} \in L^{p} \big(0, T; W^{1, p}_{0} (\mathbb{R}^{n}) \big) \cap L^{\infty}\big(0, T; L^{2}(\mathbb{R}^{n}) \big) $ such that

    $ \begin{equation} \left\{\begin{array}{rcll} D\bar{u}_{k} & \rightharpoonup & D\bar{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{u}_{k} & \to & \bar{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n}_{T}) , \\ \bar{u}_{k} & \overset{\ast}{\rightharpoonup} & \bar{u}_{0} & \text{in } L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big). \end{array}\right. \end{equation} $ (3.37)

    Here, the compactness method is applied to some ball satisfying $ B \supset \Omega^{k} $ $ (k \in \mathbb{N}) $ and $ B \supset \Omega $ by using the zero extensions.

    By (1.10),

    $ \begin{equation*} \begin{aligned} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt = \int_{\Omega^{k}_{T} } \langle |F_{k}|^{p-2}F_{k}, D\varphi \rangle + f_{k} \varphi - \langle a_{k}(Du_{k}, x, t) , D\varphi \rangle\; dx dt, \end{aligned} \end{equation*} $

    for any $ \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) $. Then we see that $ \| \partial_{t} u_{k} \|_{L^{p'} \big(0, T; W^{-1, p'} (\Omega^{k}) \big)} $ is bounded. We denote the zero extension of $ \partial_{t} u_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) $ in Corollary 3.3 as $ \partial_{t} \bar{u}_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) $. Then we find from Corollary 3.3 that

    $ \begin{equation} \| \partial_{t} \bar{u}_{k} \|_{L^{p'} \big( 0, T ; W^{-1, p'} (\mathbb{R}^{n}) \big)} = \| \partial_{t} u_{k} \|_{L^{p'} \big( 0, T ; W^{-1, p'} (\Omega^{k}) \big)} \ (k \in \mathbb{N}) \text{ is bounded.} \end{equation} $ (3.38)

    So by Lemma 3.6, there exist $ \partial_{t} u_{0} \text{ in } L^{p'} \big(0, T; W^{-1, p'} (\Omega) \big) $ and a subsequence of $ \{ \bar{u}_{k} \}_{k = 1}^{\infty} $, which will be still denoted by $ \{ \bar{u}_{k} \}_{k = 1}^{\infty} $ such that

    $ \begin{equation} \partial_{t} \bar{u}_{k} \ \overset{\ast}{\rightharpoonup} \ \partial_{t} \bar{u}_{0} \ \text{in }\ L^{p'} \big( 0, T ; W^{-1, p'} ( \mathbb{R}^{n} ) \big). \end{equation} $ (3.39)

    Here, we denoted the zero extension of $ \partial_{t} u_{0} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) $ in Corollary 3.3 as $ \partial_{t} \bar{u}_{0} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) $. Define $ u_{0} = \bar{u}_{0} + \gamma $ in $ \Omega_{T} $. Then we have that following lemma. We remark that a different proof is shown in Step 4 in the proof of [30, Lemma 5.1].

    Lemma 3.8. For $ u_{0} = \bar{u}_{0} + \gamma $ in $ \Omega_{T} $, we have that

    $ \begin{equation*} \label{} \lim\limits_{h \searrow 0} \frac{1}{h} \int_{0}^{h} \int_{\Omega} |u_{0}(x, t) - \gamma(x, 0)|^{2} \, dx dt = 0. \end{equation*} $

    Proof. Let $ \hat{u}_{k} $ be the zero extension of $ \bar{u}_{k} $ from $ \mathbb{R}^{n} \times [0, T] $ to $ \mathbb{R}^{n} \times [-T, T] $, which means that $ \hat{u}_{k} = 0 $ in $ (\mathbb{R}^{n} \times [-T, T]) \setminus (\mathbb{R}^{n} \times [0, T]) $. Also define $ \partial_{t} \hat{u}_{k} $ as

    $ \begin{equation*} \left\langle {\left\langle {} \right.} \right. \partial_{t} \hat{u}_{k}, \varphi \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} = \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{k}, \varphi \, \chi_{\Omega_{T}} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \text{ for any } \varphi \in L^{p} \big( -T, T ; W^{1, p} (\mathbb{R}^{n}) \big). \end{equation*} $

    Then we see that $ \partial_{t} \hat{u}_{k} \in L^{p'} \big(-T, T; W^{-1, p'} (\mathbb{R}^{n}) \big) $, because

    $ \begin{equation*} \begin{aligned} \int_{-T}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \hat{u}_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt & = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt = - \int_{0}^{T} \int_{ \mathbb{R}^{n} }\bar{u}_{k} \, \varphi_{t} \, dx dt = - \int_{-T}^{T} \int_{ \mathbb{R}^{n} } \hat{u}_{k} \, \varphi_{t} \, dx dt \end{aligned} \end{equation*} $

    for any $ \varphi \in C_{c}^{\infty}(\mathbb{R}^{n} \times [-T, T]) $. Here, we used that $ \bar{u}_{k} = 0 $ on $ \mathbb{R}^{n} \times \{ 0 \} $.

    By (3.37) and (3.39), there exists a subsequence, which will be still denoted as $ \hat{u}_{k} $ and $ \partial_{t} \hat{u}_{k} $ $ (k \in \mathbb{N}) $, such that

    $ \begin{equation} \left\{\begin{array}{rcll} D\hat{u}_{k} & \rightharpoonup & D\hat{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n} \times (-T, T), \mathbb{R}^{n}), \\ \hat{u}_{k} & \to & \hat{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n} \times (-T, T)) , \\ \hat{u}_{k} & \overset{\ast}{\rightharpoonup} & \hat{u}_{0} & \text{in } L^{\infty} \big( -T, T ; L^{2}(\mathbb{R}^{n}) \big). \end{array}\right. \end{equation} $ (3.40)

    and

    $ \begin{equation*} \label{} \partial_{t} \hat{u}_{k} \ \overset{\ast}{\rightharpoonup} \ \partial_{t} \hat{u}_{0} \ \text{in }\ L^{p'} \big( -T, T ; W^{-1, p'} ( \mathbb{R}^{n} ) \big), \end{equation*} $

    for some $ \hat{u}_{0} \in L^{p} \big(-T, T; W^{1, p}_{0} (\mathbb{R}^{n}) \big) \cap L^{\infty}\big(-T, T; L^{2}(\mathbb{R}^{n}) \big) $ and $ \partial_{t} \hat{u}_{0} \in L^{p'} \big(-T, T; W^{-1, p'} (\mathbb{R}^{n}) \big) $. Then by Proposition 2.6, we have that $ \hat{u}_{0} \in C \big([-T, T]; L^{2}(\mathbb{R}^{n}) \big) $, which implies that

    $ \begin{equation*} 0 = \lim\limits_{h \nearrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}} |\hat{u}_{0}|^{2} \, dx dt = \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}} |\hat{u}_{0}|^{2} \, dx dt = \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}} |\bar{u}_{0}|^{2} \, dx dt , \end{equation*} $

    where we used that $ \hat{u}_{0} = \bar{u}_{0} $ in $ \mathbb{R}^{n}_{T} $, which holds from (3.37), (3.40) and that $ \hat{u}_{k} $ is the zero extension of $ \bar{u}_{k} $ from $ \mathbb{R}^{n}_{T} $ to $ \mathbb{R}^{n} \times [-T, T] $. Since $ \bar{u}_{0} = u_{0} - \gamma $ in $ \Omega $, we get

    $ \begin{equation*} \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\Omega} |u_{0}(x, t) - \gamma(x, t)|^{2} \, dx dt = 0. \end{equation*} $

    Since $ \gamma \in C\big([0, T]; L^{2}(\Omega) \big) $, we find that

    $ \begin{equation*} \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\Omega} |\gamma(x, t) - \gamma(x, 0)|^{2} \, dx dt = 0, \end{equation*} $

    and the lemma follows.

    Lemma 3.9. For the weak solutions $ u \in \gamma + L^{p} \big(0, T; W^{1, p}_{0}(\Omega) \big) \cap C \big([0, T]; L^{2}(\Omega) \big) $ of (1.6) and $ u_{k} \in \gamma_{k} + L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) \cap C \big([0, T]; L^{2}(\Omega^{k}) \big) $ in (1.10), we have that

    $ \begin{equation*} \label{} \lim\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \varphi^{p} \; dx dt = 0 {{\; for\; any \; }} \varphi \in C_{c}^{\infty}(\Omega)\; \mathit{\text{with}} \;0 \leq \varphi \leq 1, \end{equation*} $

    and

    $ \begin{equation} \lim\limits_{k \to \infty} \int_{ U_{T}} |D\bar{u}_{k} - D\bar{u}|^{p} \; dx dt = 0 \quad {{for \;any}} \;\quad U \subset \subset \Omega. \end{equation} $ (3.41)

    Moreover, we have that

    $ \begin{equation*} \label{} \left\{\begin{array}{rcll} D\bar{u}_{k} & \rightharpoonup & D\bar{u} & \mathit{\text{in}} \; L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{u}_{k} & \to & \bar{u} & \mathit{\text{in}} \;L^{p}(\mathbb{R}^{n}_{T}) , \\ \bar{u}_{k} & \overset{\ast}{\rightharpoonup} & \bar{u} & \mathit{\text{in}}\; L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big). \end{array}\right. \end{equation*} $

    Proof. Recall from (1.7) that

    $ \begin{equation} \lim\limits_{k \to \infty} d_{H} \left( \partial \Omega^{k}, \partial \Omega \right) = 0, \end{equation} $ (3.42)

    which implies that

    $ \begin{equation} \text{there exists } K \in \mathbb{N}{\text{ such that }} \mathop{supp} \varphi \subset \subset \Omega^{k} \, (k \geq K) \text{ for any } \varphi \in C_{c}^{\infty}(\Omega). \end{equation} $ (3.43)

    Fix $ \varphi(x) \in C_{c}^{\infty}(\Omega) $ with $ 0 \leq \varphi \leq 1 $, which is independent of $ t $-variable. Choose $ K \in \mathbb{N} $ in (3.43). Test (1.10) by $ \left(\bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} $ to find that

    $ \begin{equation*} \begin{aligned} \label{} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt + \int_{ \Omega_{T}^{k} } \left \langle a_{k}(Du_{k}, x, t) , (D\bar{u}_{k} - D\bar{u}_{0})\varphi^{p} + p (\bar{u}_{k} - \bar{u}_{0} )\varphi^{p-1} D\varphi \right \rangle \; dx dt\\ & \quad = \int_{ \Omega_{T}^{k} } \left \langle |F_{k}|^{p-2}F_{k}, (D\bar{u}_{k} - D\bar{u}_{0} )\varphi^{p} + p (\bar{u}_{k} - \bar{u}_{0} )\varphi^{p-1} D\varphi \right \rangle + f_{k} (\bar{u}_{k} - \bar{u}_{0}) \varphi^{p} \, dx dt, \end{aligned} \end{equation*} $

    for any $ k \geq K $. Recall that $ \bar{u}_{k} = u_{k} - \gamma_{k} $, $ \bar{u}_{0} = u_{0} - \gamma $ and $ \varphi \in C_{c}^{\infty}(\Omega) \cap C_{c}^{\infty}(\Omega^{k}) $ for any $ k \geq K $. For $ (\mathop{supp } \varphi)_{T} = \mathop{supp } \varphi \times [0, T] $, we discover that

    $ \begin{equation*} \begin{aligned} \label{} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \left( \bar{u}_{k} - \bar{u}_{0}\right), \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle a_{k}(Du_{k}, x, t) - a_{k}(Du_{0}, x, t) , (Du_{k} - Du_{0})\varphi^{p} \right \rangle \; dx dt \\ & \quad = I_{k} + II_{k} + III_{k} + IV_{k}, \end{aligned} \end{equation*} $

    where

    $ \begin{equation*} \begin{aligned} I_{k} & = \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle a_{k}(Du_{k}, x, t) , (D\bar{\gamma}_{k} - D\bar{\gamma}) \varphi^{p} - p (\bar{u}_{k} - \bar{u}_{0})\varphi^{p-1} D\varphi \right \rangle \; dx dt, \\ II_{k} & = \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2} \bar{F}_{k}, (D\bar{u}_{k} - D\bar{u}_{0} ) \varphi^p \right \rangle \, dx dt \\ & \quad + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2}\bar{F}_{k}, p (\bar{u}_{k} - \bar{u}_{0})\varphi^{p-1} D\varphi \right \rangle + \bar{f}_{k} (\bar{u}_{k} - \bar{u}_{0} ) \varphi^{p} \; dx dt, \\ III_{k} & = - \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \langle a_{k}(Du_{0}, x, t) , (Du_{k} - Du_{0}) \varphi^p \rangle \; dx dt, \\ IV_{k} & = - \int_{0}^{T} \left \langle \partial_{t} \bar{\gamma}_{k} + \partial_{t} \bar{u}_{0} , \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \right \rangle_{\mathbb{R}^{n}} \, dt, \end{aligned} \end{equation*} $

    for $ k \geq K $. One can easily check from (3.35) and (3.37) that

    $ \begin{equation} \lim\limits_{k \rightarrow \infty} I_{k} = 0. \end{equation} $ (3.44)

    By a direct calculation, we have

    $ \begin{equation*} \begin{aligned} II_{k} & = \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}|^{p-2} \bar{F}, (D\bar{u}_{k} - D\bar{u}_{0} ) \varphi^p \right \rangle \, dx dt \\ & \quad + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2} \bar{F}_{k} - |\bar{F}|^{p-2}\bar{F}, (D\bar{u}_{k} - D\bar{u}_{0} ) \varphi^p \right \rangle \, dx dt \\ & \quad + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2} \bar{F}_{k}, p (\bar{u}_{k} - \bar{u}_{0})\varphi^{p-1} D\varphi \right \rangle + \bar{f}_{k} (\bar{u}_{k} - \bar{u}_{0} ) \varphi^{p} \; dx dt. \end{aligned} \end{equation*} $

    By (3.35)–(3.37),

    $ \begin{equation} \limsup\limits_{k \rightarrow \infty} II_{k} = 0. \end{equation} $ (3.45)

    We handle $ III_{k} $. By Lemma 2.14,

    $ \begin{equation*} \begin{aligned} \label{} & \lim\limits_{ k \to \infty } \left\| a_{k}(Du_{0}, \cdot) - a(Du_{0}, \cdot) \right\|_{L^{p'} \big( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} \big)} \leq \lim\limits_{ k \to \infty } \left\| a_{k}(Du_{0}, \cdot) - a(Du_{0}, \cdot) \right\|_{L^{p'}(\Omega_{T})} = 0. \end{aligned} \end{equation*} $

    So by (3.37),

    $ \begin{equation} \limsup\limits_{k \rightarrow \infty} III_{k} = 0. \end{equation} $ (3.46)

    By (3.36) and (3.37),

    $ \begin{equation} \limsup\limits_{k \rightarrow \infty} IV_{k} = 0. \end{equation} $ (3.47)

    Since $ \varphi = \varphi(x) $ and $ 0 \leq \varphi \leq 1 $, one can easily show that

    $ \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \left( \bar{u}_{k} - \bar{u}_{0} \right), \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt = \int_{\mathbb{R}^{n}} \frac{ \left| \left[ \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{\frac{p}{2}} \right] \left( x, T \right) \right|^{2} }{2} \, dx \geq 0. \end{equation*} $

    because $ \bar{u}_{k} = 0 = \bar{u}_{0} $ on $ \mathbb{R}^{n} \times \{ 0 \} $, which holds from Lemma 3.8. So by (3.44), (3.45), (3.46) and (3.47),

    $ \begin{equation*} \begin{aligned} \label{} \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle a_{k}(Du_{k}, x, t) - a_{k}(Du_{0}, x, t) , (Du_{k} - Du_{0})\varphi^{p} \right \rangle \; dx dt \to 0, \end{aligned} \end{equation*} $

    because $ \left \langle a_{k}(Du_{k}, x, t) - a_{k}(Du_{0}, x, t), (Du_{k} - Du_{0})\varphi^{p} \right \rangle \geq 0 $ in $ \mathbb{R}^{n}_{T} \cap (\mathop{supp } \varphi)_{T} $, which implies that

    $ \begin{equation*} \label{} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{k}|^{2} + |Du_{0}|^{2} + s^{2})^{\frac{p-2}{2}} |Du_{k} - Du_{0}|^{2} \varphi^{p} dx dt \to 0. \end{equation*} $

    For any $ \kappa \in (0, \kappa_{1}] $, we have from Lemma 2.7 that

    $ \begin{equation*} \begin{aligned} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } |Du_{k} - Du_{0}|^{p} \varphi^{p} \; dx dt & \leq c \kappa^{p} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{0}|^{2}+s^{2})^{\frac{p}{2}} \varphi^{p} \, dx dt\\ &\quad + c \kappa^{p-2} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{k}|^{2} + |Du_{0}|^{2} + s^{2})^{\frac{p-2}{2}} |Du_{k} - Du_{0}|^{2} \varphi^{p} dx dt. \end{aligned} \end{equation*} $

    So we find that

    $ \begin{equation*} \begin{aligned} \label{} 0 & \leq \limsup\limits_{k \rightarrow \infty} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } |Du_{k} - Du_{0}|^{p} \varphi^{p} \; dx dt \leq c \kappa^{p} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{0}|^{2}+s^{2})^{\frac{p}{2}} \varphi^{p} \; dx dt. \end{aligned} \end{equation*} $

    Since $ \kappa \in (0, \kappa_{1}] $ and $ \varphi \in C_{c}^{\infty}(\Omega) $ were arbitrary chosen, we discover that

    $ \begin{equation*} \label{} \lim\limits_{k \rightarrow \infty} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } |Du_{k} - Du_{0}|^{p} \varphi^{p} \; dx dt = 0 \text{ for any } \varphi \in C_{c}^{\infty}(\Omega) \text{ with } 0 \leq \varphi \leq 1. \end{equation*} $

    So by (3.35),

    $ \begin{equation} \lim\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}_{0}|^{p} \varphi^{p} \; dx dt = 0 \text{ for any } \varphi \in C_{c}^{\infty}(\Omega) \text{ with } 0 \leq \varphi \leq 1. \end{equation} $ (3.48)

    For any $ U \subset \subset \Omega $, there exists a cut-off function $ \eta \in C_{c}^{\infty} (\Omega) $ such that $ 0 \leq \eta \leq 1 $ in $ \Omega $ and $ \eta = 1 $ on $ U $. Moreover, by (3.42), there exists $ K \in \mathbb{N} $ such that

    $ \begin{equation} U \subset \subset \Omega^{k} \qquad (k \geq K). \end{equation} $ (3.49)

    So by (3.48),

    $ \begin{equation} \lim\limits_{k \to \infty} \int_{ U_{T} } |D\bar{u}_{k} - D\bar{u}_{0}|^{p} \; dx dt = 0 \quad \text{ for any } \quad U \subset \subset \Omega. \end{equation} $ (3.50)

    By Corollary 3.3 and (3.39),

    $ \begin{equation} \begin{aligned} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{k} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt \, \overset{\ast}{\to} \, \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{0} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{0} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\Omega} \, dt, \end{aligned} \end{equation} $ (3.51)

    for any $ \varphi \in C_{0 }^{\infty} (\Omega_{T}) $.

    Now, we show that $ u_{0} $ is the weak solution of (1.6), which implies that $ u = u_{0} $ by the uniqueness. Fix $ \varphi \in C_{0 }^{\infty} (\Omega_{T}) $ and choose $ U \subset \subset \Omega $ with $ \text{supp } \varphi \subset \overline{U_{T}} $. By (3.42), there exists $ K \in \mathbb{N} $ such that $ U \subset \subset \Omega^{k} $ $ (k \geq K) $. We have from (1.10) that

    $ \begin{equation*} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt + \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) , D\varphi \rangle \; dx dt = \int_{\Omega_{T}^{k}} \langle |F_{k}|^{p-2}F_{k}, D\varphi \rangle + f_{k} \varphi \; dx dt, \end{equation*} $

    for any $ k \geq K $. So by Lemma 2.10, Lemma 2.14, (3.35), (3.36), (3.50) and (3.51),

    $ \begin{equation*} \begin{aligned} &\int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{0}, \varphi \left. {\left. {} \right\rangle } \right\rangle_{ \Omega } + \int_{ \Omega_{T} } \langle a(Du_{0}, x, t) , D\varphi \rangle \, dx dt = \int_{ \Omega_{T} } \langle |F|^{p-2}F, D\varphi \rangle + f \varphi \, dx dt. \end{aligned} \end{equation*} $

    We find from Lemma 3.8 that $ u_{0} \in L^{\infty} \big(0, T; L^{2}(\Omega) \big) \cap L^{p} \big(0, T; W^{1, p}_{0} (\Omega) \big) $ is also the weak solution of (1.6). By uniqueness of the weak solution, we find that $ u_{0} = u $, and the lemma follows from (3.37), (3.48) and (3.50).

    We next estimate the concentration of $ D\bar{u}_{k} $ near the boundary $ \partial \Omega \times [0, T] $.

    Lemma 3.10. For any $ \varphi \in C_{c}^{\infty}(\Omega) $ with $ 0 \leq \varphi \leq 1 $, we have that

    $ \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\mathbb{R}^{n}_{T}} |D\bar{u}_{k}|^{p} \left( 1- \varphi^{p} \right) \, dx dt\\ & \quad \leq c \left[ \int_{\Omega_{T}} (|Du|^{2} + |D\gamma|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt + \int_{ \Omega} \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}}] ( x , T) |^{2} }{2} \, dx \right]. \end{aligned} \end{equation*} $

    Proof. Fix $ \varphi \in C_{c}^{\infty}(\Omega) $ with $ 0 \leq \varphi \leq 1 $. We have from (1.7) that

    $ \begin{equation} \text{there exists $K \in \mathbb{N}$ such that } \mathop{supp} \varphi \subset \subset \Omega^{k} \, (k \geq K) \text{ for any } \varphi \in C_{c}^{\infty}(\Omega). \end{equation} $ (3.52)

    We next take $ \kappa = \kappa_{1}(n, p, \lambda, \Lambda) $ in Lemma 2.7 to find that

    $ \begin{equation} \begin{aligned} \int_{\Omega_{T}^{k}} |Du_{k} - D\gamma_{k}|^{p} \left( 1- \varphi^{p} \right) \, dx dt & \leq c \int_{\Omega_{T}^{k}} (|D\gamma_{k}|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt\\ &\quad + c \int_{\Omega_{T}^{k}} (|Du_{k}|^{2}+|D\gamma_{k}|^{2}+s^{2})^{\frac{p-2}{2}}|Du_{k}-D\gamma_{k}|^{2} \left( 1- \varphi^{p} \right) \, dx dt, \end{aligned} \end{equation} $ (3.53)

    for any $ k \geq K $. In view of (1.2), we discover that

    $ \begin{equation} \begin{aligned} &\int_{\Omega_{T}^{k}} (|Du_{k}|^{2}+|D\gamma_{k}|^{2}+s^{2})^{\frac{p-2}{2}}|Du_{k}-D\gamma_{k}|^{2} \left( 1- \varphi^{p} \right) \, dx dt\\ &\quad \leq c \int_{\Omega_{T}^{k}} \langle a(Du_{k}, x, t) - a(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \rangle \left( 1- \varphi^{p} \right) \; dx dt, \end{aligned} \end{equation} $ (3.54)

    for any $ k \geq K $.

    We will estimate the limit superior of the right-hand side of (3.54). We test (1.10) by $ (u_{k}- \gamma_{k}) \left(1-\varphi^{p} \right) $ to find that

    $ \begin{equation} \begin{aligned} & \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt = I_{k} + II_{k} + III_{k} + IV_{k}, \end{aligned} \end{equation} $ (3.55)

    where

    $ \begin{equation*} \begin{aligned} \label{} & I_{k} = \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) , \left( u_{k} - \gamma_{k} \right) p\varphi^{p-1} D\varphi \rangle \; dx dt , \\ & II_{k} = - \int_{\Omega_{T}^{k}} \langle a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \; dx dt , \\ & III_{k} = \int_{\Omega_{T}^{k}} \langle |F_{k}|^{p-2}F_{k}, D[(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) ] \rangle + f_{k}(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \; dx dt , \\ & IV_{k} = - \int_{0}^{T} \langle \partial_{t} u_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \rangle_{\Omega^{k}} \, dt, \end{aligned} \end{equation*} $

    for any $ k \geq K $.

    We estimate the limit of the right-hand side as $ k \to \infty $. Without loss of generality, assume that $ k \geq K $. Then we have from (3.52) that

    $ \begin{equation*} \label{} \varphi \in C_{c}^{\infty}(\Omega) \cap C_{c}^{\infty}(\Omega^{k}). \end{equation*} $

    We first compute the limit of $ I_{k} $. By the triangle inequality,

    $ \begin{equation*} \begin{aligned} & \left\| \left| a_{k}(Du_{k}, x, t) - a(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}}( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T})} \\ & \ \leq \left\| \left| a_{k}(Du_{k}, x, t) - a_{k}(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}}( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} )} + \left\| \left| a_{k}(Du, x, t) - a(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}} (\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T})}. \end{aligned} \end{equation*} $

    Since $ \varphi \in C_{c}^{\infty}(\Omega) \cap C_{c}^{\infty}(\Omega^{k}) $, we have from Lemma 2.10, Lemma 2.14 and (3.41) in Lemma 3.9 that

    $ \begin{equation} \lim\limits_{k \to \infty} \left\| \left| a_{k}(Du_{k}, x, t) - a(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}}( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} )} = 0. \end{equation} $ (3.56)

    By Lemma 3.9, we have that $ \bar{u}_{k} \to \bar{u} $ in $ L^{p}(\mathbb{R}^{n}_{T}) $. Since $ u_{k} - \gamma_{k} = \bar{u}_{k} $ in $ \Omega_{T}^{k} $ and $ u - \gamma = \bar{u} $ in $ \Omega_{T} $, we find from (3.50) that

    $ \begin{equation} \begin{aligned} I_{k} & = \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) , ( u_{k} - \gamma_{k}) p\varphi^{p-1} D\varphi \rangle \, dx dt \to \int_{\Omega_{T}} \langle a(Du, x, t) , \left( u - \gamma \right) p\varphi^{p-1} D\varphi \rangle \, dx dt. \end{aligned} \end{equation} $ (3.57)

    Similarly, by the triangle inequality,

    $ \begin{equation*} \begin{aligned} & \left\| a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} - a(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} ) } \\ & \quad \leq \left\| a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} - a_{k}(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} )} + \left\| a_{k}(D\gamma, x, t) \cdot 1_{\Omega_{T}} - a(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} )}. \end{aligned} \end{equation*} $

    So we get from (3.35), Lemma 2.10 and Lemma 2.14 that

    $ \begin{equation*} \lim\limits_{k \to \infty} \left\| a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} - a(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} ) } = 0, \end{equation*} $

    and it follows from Lemma 3.9 that

    $ \begin{equation} \begin{aligned} II_{k} & = - \int_{\Omega_{T}^{k}} \langle a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & = - \int_{\mathbb{R}^{n}_{T} } \langle a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} , D\bar{u}_{k} \left( 1-\varphi^{p} \right) \rangle \; dx dt \\ & \to - \int_{ \mathbb{R}^{n}_{T} } \langle a(D\gamma, x, t) \cdot 1_{\Omega_{T}}, D\bar{u} \left( 1-\varphi^{p} \right) \rangle \; dx dt \\ & = - \int_{\Omega_{T}} \langle a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \rangle \, dx dt. \end{aligned} \end{equation} $ (3.58)

    Recall that

    $ \begin{equation*} \begin{aligned} \label{} III_{k} & = \int_{\Omega_{T}^{k}} \langle |F_{k}|^{p-2}F_{k}, D[(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) ] \rangle + f_{k}(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \; dx dt. \end{aligned} \end{equation*} $

    Then one can easily check from (3.35), (3.36) and Lemma 3.9 that

    $ \begin{equation} \begin{aligned} III_{k} \to \int_{ \Omega_{T} } \langle |F|^{p-2} F, D[(u - \gamma) \left( 1-\varphi^{p} \right) ] \rangle + f(u - \gamma) \left( 1-\varphi^{p} \right) \; dx dt. \end{aligned} \end{equation} $ (3.59)

    Now, we estimate $ IV_{k} $.

    $ \begin{equation*} \begin{aligned} \label{} IV_{k} & = - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } \, dt \\ & = - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} - \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega_{T}^{k} } - \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } \, dt. \end{aligned} \end{equation*} $

    Since $ \varphi = \varphi(x) $, $ 0 \leq \varphi \leq 1 $ and $ u_{k} - \gamma_{k} = 0 $ on $ \Omega^{k} \times \{ 0 \} $, we find that

    $ \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} - \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } dt = \int_{\Omega^{k}} \frac{ | [(u_{k}-\gamma_{k}) (1-\varphi^{p})^{\frac{1}{2}}] ( x , T ) |^{2} }{2} \, dx \geq 0. \end{equation*} $

    Since $ u_{k} - \gamma_{k} = \bar{u}_{k} $ in $ \Omega_{T}^{k} $ and $ u - \gamma = \bar{u} $ in $ \Omega_{T} $, we find from (3.36) and Lemma 3.9 that

    $ \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } \, dt \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{equation*} $

    Thus

    $ \begin{equation} \begin{aligned} & \limsup\limits_{k \to \infty} IV_{k} \leq - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{aligned} \end{equation} $ (3.60)

    In view of (3.55), we find from (3.57), (3.58), (3.59) and (3.60) that

    $ \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & \quad \leq \int_{\Omega_{T}} \langle a(Du, x, t) , \left( u - \gamma \right) p\varphi^{p-1} D\varphi \rangle - \langle a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \rangle \; dx dt \\ & \qquad + \int_{ \Omega_{T} } \langle |F|^{p-2} F, D[(u - \gamma) \left( 1-\varphi^{p} \right) ] \rangle + f(u - \gamma) \left( 1-\varphi^{p} \right) \; dx dt \\ & \qquad - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{aligned} \end{equation*} $

    By taking $ (u-\gamma) \left(1 - \varphi^{p} \right) $ in (1.6), we get that

    $ \begin{equation*} \begin{aligned} \label{} &\int_{\Omega_{T}} \langle a(Du, x, t) , \left( u - \gamma \right) p \varphi^{p-1} D\gamma \rangle - \langle a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \rangle \; dx dt\\ &\quad + \int_{\Omega_{T}} \langle |F|^{p-2}F, D[(u - \gamma) \left( 1-\varphi^{p} \right) ] \rangle + g(u - \gamma) \left( 1-\varphi^{p} \right) \; dx dt\\ &\qquad = \int_{\Omega_{T}} \left \langle a(Du, x, t) - a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \right \rangle \; dx dt + \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{aligned} \end{equation*} $

    Thus

    $ \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & \quad \leq \int_{\Omega_{T}} \left \langle a(Du, x, t) - a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \right \rangle \; dx dt + \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u - \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt . \end{aligned} \end{equation*} $

    Since $ \bar{u} = u-\gamma $, we find that

    $ \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & \quad \leq \int_{\Omega_{T}} \left \langle a(Du, x, t) - a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \right \rangle \; dx dt + \int_{ \Omega } \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}} ] ( x , T) |^{2} }{2} \, dx. \end{aligned} \end{equation*} $

    Since $ \bar{u}_{k} = u_{k} - \gamma_{k} $, by (3.35), (3.53) and (3.54),

    $ \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\mathbb{R}^{n}_{T}} |D\bar{u}_{k}|^{p} \left( 1- \varphi^{p} \right) \, dx dt\\ & \quad \leq c \left[ \int_{\Omega_{T}} (|Du|^{2} + |D\gamma|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt + \int_{ \Omega } \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}}] ( x , T) |^{2} }{2} \, dx \right], \end{aligned} \end{equation*} $

    and the lemma follows.

    We are ready to prove Theorem 1.6.

    Proof of Theorem 1.6. By Lemmas 3.9 and 3.10,

    $ \begin{equation*} \begin{aligned} & \limsup\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \, dx dt \\ & \quad = \limsup\limits_{ k \to \infty}\left[ \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \varphi^{p} \, dx dt + \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} (1-\varphi^{p}) \, dx dt \right] \\ & \quad \leq c \left[ \int_{\Omega_{T}} (|Du|^{2} + |D\gamma|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt + \int_{ \Omega } \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}}] ( x , T) |^{2} }{2} \, dx \right], \end{aligned} \end{equation*} $

    for any $ \varphi \in C_{c}^{\infty}(\Omega) $ with $ 0 \leq \varphi \leq 1 $. Since $ \varphi \in C_{c}^{\infty}(\Omega) $ with $ 0 \leq \varphi \leq 1 $ can be arbitrary chosen in the above estimates, one can choose a sequence of monotone increasing functions in $ C_{c}^{\infty}(\Omega) $ which converges to $ 1 $ a.e. in $ \Omega $. Then by Lebesgue's dominated convergence theorem, we get

    $ \begin{equation*} \limsup\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \, dx dt \leq 0. \end{equation*} $

    This contradicts (3.1). So we find that (1.11) holds.

    Y. Kim was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. NRF-2020R1C1C1A01013363). S. Ryu was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1A01014310). P. Shin was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2020R1I1A1A01066850). The authors would like to thank the referee for the careful reading of this manuscript and for offering valuable comments.

    The authors declare no conflict of interest.

    [1] Hall MA, Dugan E, Zheng B, et al. (2001) Trust in physicians and medical institutions: what is it, can it be measured, and does it matter? Milbank Q 79: 613–639. doi: 10.1111/1468-0009.00223
    [2] Boulware LE, Cooper LA, Ratner LE, et al. (2003) Race and trust in the health care system. Public Health Rep 118: 358–365. doi: 10.1016/S0033-3549(04)50262-5
    [3] Armstrong K, Ravenell KL, McMurphy S, et al. (2007) Racial/ethnic differences in physician distrust in the United States. Am J Public Health 97: 1283–1289. doi: 10.2105/AJPH.2005.080762
    [4] Halbert CH, Armstrong K, Gandy OH, et al. (2006) Racial differences in trust in health care providers. Arch Intern Med 166: 896–901. doi: 10.1001/archinte.166.8.896
    [5] Jacobs EA, Rolle I, Ferrans CE, et al. (2006) Understanding African Americans' views of the trustworthiness of physicians. J Gen Intern Med 21: 642–647. doi: 10.1111/j.1525-1497.2006.00485.x
    [6] Street RL, O'Malley KJ, Cooper LA, et al. (2008) Understanding concordance in patient-physician relationships: personal and ethnic dimensions of shared identity. Ann Fam Med 6: 198–205. doi: 10.1370/afm.821
    [7] Cooper-Patrick L, Gallo JJ, Gonzales JJ, et al. (1999) Race, gender, and partnership in the patient-physician relationship. JAMA 282: 583–589. doi: 10.1001/jama.282.6.583
    [8] Malat J, Hamilton MA (2006) Preference for same-race health care providers and perceptions of interpersonal discrimination in health care. J Health Soc Behav 47: 173–187. doi: 10.1177/002214650604700206
    [9] LaVeist TA, Nuru-Jeter A, Jones KE (2003) The association of doctor-patient race concordance with heatlh services utilization. J Public Health Policy 24: 312–323. doi: 10.2307/3343378
    [10] Johnson RL, Roter D, Powe NR, et al. (2004) Patient race/ethnicity and quality of patient-physician communication during medical visits. Am J Public Health 94: 2084–2090. doi: 10.2105/AJPH.94.12.2084
    [11] Saha S, Komaromy M, Koepsell TD, et al. (1999) Patient-physician racial concordance and the perceived quality and use of health care. Arch Internal Med 159: 997–1004. doi: 10.1001/archinte.159.9.997
    [12] Chen FM, Fryer GE, Phillips RL, et al. (2005) Patients' beliefs about racism, preferences for physician race, and satisfaction with care. Ann Fam Med 3: 138–143. doi: 10.1370/afm.282
    [13] Benkert R, Hollie B, Nordstrom CK, et al. (2009) Trust, mistrust, racial identity and patient satisfaction in urban African American primary care patients of nurse practitioners. J Nurs Scholarsh 41: 211–219. doi: 10.1111/j.1547-5069.2009.01273.x
    [14] Meghani SH, Brooks JM, Gipson-Jones T, et al. (2009) Patient-provider race-concordance: does it matter in improving minority patients' health outcomes? Ethn Health 14: 107–130. doi: 10.1080/13557850802227031
    [15] Saha S, Shipman S (2006) The rationale for diversity in the health professions: A review of the evidence. In: Administration HRaS, editor. Rockville, MD.
    [16] Traylor AH, Subramanian U, Uratsu CS, et al. (2010) Patient race/ethnicity and patient-physician race/ethnicity concordance in the management of cardiovascular disease risk factors for patients with diabetes. Diabetes care 33: 520–525. doi: 10.2337/dc09-0760
    [17] Chan KS, Bird CE, Weiss R, et al. (2006) Does patient-provider gender concordance affect mental health care received by primary care patients with major depression? Womens Health Issues 16: 122–132. doi: 10.1016/j.whi.2006.03.003
    [18] Garcia JA, Paterniti DA, Romano PS, et al. (2003) Patient preferences for physician characteristics in university-based primary care clinics. Ethn Dis 13: 259–267.
    [19] Derose KP, Hays RD, McCaffrey DF, et al. (2001) Does Physician Gender Affect Satisfaction of Men and Women Visiting the Emergency Department? J Gen Intern Med 16: 218–226. doi: 10.1046/j.1525-1497.2001.016004218.x
    [20] Bertakis KD, Franks P, Epstein RM (2009) Patient-centered communication in primary care: physician and patient gender and gender concordance. J Women's Health 18: 539–545. doi: 10.1089/jwh.2008.0969
    [21] Hall JA, Roter DL, Blanch-Hartigan D, et al. (2014) How patient-centered do female physicians need to be? Analogue patients' satisfaction with male and female physicians' identical behaviors. Health Commun 30: 1–7.
    [22] Saha S, Taggart SH, Komaromy M, et al. (2000) Do patients choose physicians of their own race? Health Aff 19: 76–83. doi: 10.1377/hlthaff.19.4.76
    [23] Rossi PH, Nock SL (1982) Measuring social judgments: The factorial survey approach. Beverly Hills, CA: SAGE Publications.
    [24] Brown RL, Saunders LA, Castelaz CA, et al. (1997) Physicians' decisions to prescribe benzodiazepines for nervousness and insomnia. J Gen Intern Med 12: 44–52. doi: 10.1007/s11606-006-0006-2
    [25] Musa D, Schulz R, Harris R, et al. (2009) Trust in the health care system and the use of preventive health services by older black and white adults. Am J Public Health 99: 1293–1299. doi: 10.2105/AJPH.2007.123927
    [26] Mascarenhas OA, Cardozo LJ, Afonso NM, et al. (2006) Hypothesized predictors of patient-physician trust and distrust in the elderly: implications for health and disease management. Clin Interv Aging 1: 175–188. doi: 10.2147/ciia.2006.1.2.175
    [27] Lauder W (1999) A survey of self-neglect in patients living in the community. J Clin Nurs 8: 95–102. doi: 10.1046/j.1365-2702.1999.00231.x
    [28] Atzmüller C, Steiner PM (2010) Experimental vignette studies in survey research. Methodol Eur J Res Methods Behav Soc Sci 6: 128–138.
    [29] Muller-Engelmann M, Krones T, Keller H, et al. (2008) Decision making preferences in the medical encounter--a factorial survey design. BMC Health Serv Res 8: 260. doi: 10.1186/1472-6963-8-260
    [30] Shlay AB (2010) African American, White and Hispanic child care preferences: A factorial survey analysis of welfare leavers by race and ethnicity. Soc Sci Res 39: 125–141. doi: 10.1016/j.ssresearch.2009.07.005
    [31] Reysen S (2005) Construction of a new scale: The Reysen Likability scale. Soc Behav Personal An Int J 33: 201–208. doi: 10.2224/sbp.2005.33.2.201
    [32] Cabral D, Napoles-Springer A, Miike R, et al. (2003) Population- and community-based recruitment of African Americans and Latinos: the San Francisco Bay Area Lung Cancer Study. Am J Epidemiol 158: 272–279. doi: 10.1093/aje/kwg138
    [33] Lipsey MW (1990) Design sensitivity: statistical power for experimental research. Newbury Park, CA: Sage Publications.
    [34] Hall MA, Zheng B, Dugan E, et al. (2002) Measuring patients' trust in their primary care providers. Med Care Res Rev 59: 293–318. doi: 10.1177/1077558702059003004
    [35] Babbie E (2009) The Practice of Social Research. CA: Wadsworth Publishing.
    [36] Hox JJ, Kreft IGG, Hermkens PLJ (1991) The analysis of factorial surveys. Sociol Methods Res 19: 493–510. doi: 10.1177/0049124191019004003
    [37] Rabash J, Steele F, Browne WJ, et al. (2012) A User's Guide to MLwiN, v2.26. University of Bristol: Centre for Multilevel Modeling.
    [38] Brown RL, Brown RL, Edwards JA, et al. (1992) Variation in a medical faculty's decisions to transfuse: Implications for modifying blood product utilization. Med Care 30: 1083–1096. doi: 10.1097/00005650-199212000-00002
    [39] Hintze J (2007) NCSS 2007. Kaysville, Utah, USA: NCSS, LLC.
    [40] Roter DL, Erby LH, Adams A, et al. (2014) Talking about depression: An analogue study of physician gender and communication style on patient disclosures. Patient Educ Couns 96: 339–348. doi: 10.1016/j.pec.2014.05.006
    [41] Kumar D, Schlundt DG, Wallston KA (2009) Patient-physician race concordance and its relationship to perceived health outcomes. Ethn Dis 19: 345–351.
    [42] Cohen PN, Huffman ML (2003) Occupational segregation and the devaluation of women's work across U.S. labor markets. Soc Forces 81: 881–908. doi: 10.1353/sof.2003.0027
    [43] Hall JA, Blanch-Hartigan D, Roter DL (2011) Patients' satisfaction with male versus female physicians: a meta-analysis. Med Care 49: 611–617. doi: 10.1097/MLR.0b013e318213c03f
    [44] Beavers FP, Satiani B (2010) Diversity in vascular surgery: Adapting to America's new face. Vasc Surg 51.
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5310) PDF downloads(776) Cited by(9)

Figures and Tables

Figures(1)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog