Citation: Jacqueline Wiltshire, Jeroan J. Allison, Roger Brown, Keith Elder. African American women perceptions of physician trustworthiness: A factorial survey analysis of physician race, gender and age[J]. AIMS Public Health, 2018, 5(2): 122-134. doi: 10.3934/publichealth.2018.2.122
[1] | Mouhamed Moustapha Fall, Veronica Felli, Alberto Ferrero, Alassane Niang . Asymptotic expansions and unique continuation at Dirichlet-Neumann boundary junctions for planar elliptic equations. Mathematics in Engineering, 2019, 1(1): 84-117. doi: 10.3934/Mine.2018.1.84 |
[2] | Masashi Misawa, Kenta Nakamura, Yoshihiko Yamaura . A volume constraint problem for the nonlocal doubly nonlinear parabolic equation. Mathematics in Engineering, 2023, 5(6): 1-26. doi: 10.3934/mine.2023098 |
[3] | Yves Achdou, Ziad Kobeissi . Mean field games of controls: Finite difference approximations. Mathematics in Engineering, 2021, 3(3): 1-35. doi: 10.3934/mine.2021024 |
[4] | Arthur. J. Vromans, Fons van de Ven, Adrian Muntean . Homogenization of a pseudo-parabolic system via a spatial-temporal decoupling: Upscaling and corrector estimates for perforated domains. Mathematics in Engineering, 2019, 1(3): 548-582. doi: 10.3934/mine.2019.3.548 |
[5] | Antonio Vitolo . Singular elliptic equations with directional diffusion. Mathematics in Engineering, 2021, 3(3): 1-16. doi: 10.3934/mine.2021027 |
[6] | Marco Cirant, Kevin R. Payne . Comparison principles for viscosity solutions of elliptic branches of fully nonlinear equations independent of the gradient. Mathematics in Engineering, 2021, 3(4): 1-45. doi: 10.3934/mine.2021030 |
[7] | Lucio Boccardo . A "nonlinear duality" approach to $ W_0^{1, 1} $ solutions in elliptic systems related to the Keller-Segel model. Mathematics in Engineering, 2023, 5(5): 1-11. doi: 10.3934/mine.2023085 |
[8] | Isabeau Birindelli, Kevin R. Payne . Principal eigenvalues for k-Hessian operators by maximum principle methods. Mathematics in Engineering, 2021, 3(3): 1-37. doi: 10.3934/mine.2021021 |
[9] | Edgard A. Pimentel, Miguel Walker . Potential estimates for fully nonlinear elliptic equations with bounded ingredients. Mathematics in Engineering, 2023, 5(3): 1-16. doi: 10.3934/mine.2023063 |
[10] | Giovanni Cupini, Paolo Marcellini, Elvira Mascolo . Local boundedness of weak solutions to elliptic equations with $ p, q- $growth. Mathematics in Engineering, 2023, 5(3): 1-28. doi: 10.3934/mine.2023065 |
Dedicated to Giuseppe Mingione, on the occasion of his 50th birthday.
For localized problems, many papers showed that the weak solution of elliptic and parabolic equations can be obtained with a limit of approximations by regularizing the nonlinearities, see for instance [1,2,4,28,29,32]. However, as far as we are concerned, it was hard to find a suitable reference for global problems which considered approximations on domains. In this paper, we will show that the weak solution can be obtained with a limit of approximations by regularizing the nonlinearities and approximating the domains for Dirichlet boundary value problems. Also we refer to [19,20] which used regularization on the nonlinearities and approximation on the convex domains for a class of nonlinear elliptic systems.
For the interested readers, we briefly explain about the mentioned papers in the previous paragraph, which are mainly related to the regularity of elliptic and parabolic problems. Acerbi and Fusco [1] obtained local $ C^{1, \gamma} $ for local minimizers of $ p $–energy density, where we refer to [35,52,53] for fundamental papers and [27] for generalized elliptic systems. Acerbi and Mingione [2] obtained local $ C^{1, \gamma} $ regularity for local minimizers with variable exponents, where we refer to [54] for fundamental paper and [3,8,16] for Calderón-Zygmund type estimates. Esposito, Leonetti and Mingione [32,33] obtained higher integrability results for elliptic equations with $ p $–$ q $ growth conditions, where we refer to [10,18,24] for the related results and [46,47] for Lipschitz regularity. Also we refer to [9,21,22,23,25] for double phase problems and [37] for a unified approach of $ p $–$ q $, Orlicz, $ p(x) $ and double phase growth conditions. Acerbi and Mingione [4] obtained Calderón-Zygmund type estimate for a class of parabolic systems, and we refer to [11,15,17] for the global results and [6] for Lorentz space type estimate. Duzaar and Mingione [28] obtained local Lipschitz regularity for nonlinear elliptic equations and a class of elliptic systems. Also Cianchi and Maz'ya [19,20] obtained Lipschitz regularity for a class of elliptic systems in convex domains. Duzaar and Mingione [29] obtained Wolff potential type estimate for nonlinear elliptic equations, and we refer to [39,40,41,42,43,44,49] for further references and [7] for nonlinear elliptic equations with general growth. We remark that one of the authors obtained [14] based on the techniques of [29,48].
Suppose that $ a : \mathbb{R}^n \times \mathbb{R}^{n+1} \rightarrow \mathbb{R}^n $ satisfies
$ {a(ξ,x,t) is measurable in (x,t) for every ξ∈Rn,a(ξ,x,t) is C1-regular in ξ for every (x,t)∈Rn+1, $ | (1.1) |
and the following ellipticity and growth conditions:
$ {|a(ξ,x,t)|+|Dξa(ξ,x,t)|(|ξ|2+s2)12≤Λ(|ξ|2+s2)p−12,⟨Dξa(ξ,x,t)ζ,ζ⟩≥λ(|ξ|2+s2)p−22|ζ|2, $ | (1.2) |
for every $ (x, t) \in \mathbb{R}^{n+1} $, for every $ \xi, \zeta \in \mathbb{R}^n $ and for some constants $ 0 < \lambda \leq \Lambda $ and $ s \geq 0 $.
To regularize the nonlinearity $ a $, we define $ \phi \in C_{c}^{\infty}(\mathbb{R}^{n}) $ as a standard mollifier:
$ ϕ(x)={c1exp(1|x|2−1)if |x|<1,0if |x|≥1, $ | (1.3) |
where $ c_{1} > 0 $ is a constant chosen so that
$ ∫Rnϕ(x)dx=1. $ | (1.4) |
Under the assumptions (1.1) and (1.2), let $ a_\epsilon(\xi, x, t) $ be a regularization of $ a(\xi, x, t) $:
$ aϵ(ξ,x,t)=∫Rn∫Rna(ξ−ϵy,x−ϵz,t)ϕ(y)ϕ(z)dydz(0<ϵ<1). $ | (1.5) |
Then $ a_\epsilon(\xi, x, t) $ satisfies the ellipticity and growth conditions and it is smooth enough, precisely,
$ {aϵ(ξ,x,t) is C∞-regular in ξ∈Rn for every (x,t)∈Rn+1,aϵ(ξ,x,t) is C∞-regular in x∈Rn for every ξ∈Rn and t∈R, $ |
and
$ {|aϵ(ξ,x,t)|+|Dξaϵ(ξ,x,t)|(|ξ|2+s2ϵ)12≤cΛ(|ξ|2+s2ϵ)p−12,|Dmxaϵ(ξ,x,t)|+|Dmξaϵ(ξ,x,t)|≤cΛϵ−m(|ξ|2+s2ϵ)p−12,⟨Dξaϵ(ξ,x,t)ζ,ζ⟩≥cλ(|ξ|2+s2ϵ)p−22|ζ|2, $ |
for $ s_{\epsilon} = (s^{2} + \epsilon^{2})^\frac{1}{2} > 0 $. Here, the constants $ c $ are depending only on $ n $ and $ p $. It will be proved in Lemma 2.13.
As usual, we denote $ p' $ as the Hölder conjugate of $ p $ and by $ p^* $ the Sobolev exponent of $ p $. (Note that $ p^* $ can be any real number bigger than $ 1 $, provided that $ p \ge n $.) We denote $ d_{H}(X, Y) $ as the Hausdorff distance between two nonempty sets $ X $ and $ Y $, namely,
$ dH(X,Y)=sup{dist(x,Y):x∈X}+sup{dist(y,X):y∈Y}. $ |
Remark 1.1. As mentioned before, $ a_{k}(\xi, x, t) $ is smooth with respect to $ \xi $ and $ x $ by Lemma 2.13. For Neumann boundary value problems, we need to consider extensions to compare weak solutions defined on different domains. In this paper, we consider Dirichlet boundary value problem with $ \gamma \in W^{1, p}(\Omega) $ to obtain the main theorem without using extensions.
We will only prove the parabolic case, because the elliptic case can be done in a similar way. To consider parabolic equations, we denote $ \Omega_{\tau} = \Omega \times [0, \tau] $ and $ \mathbb{R}^{n}_{\tau} = \mathbb{R}^{n} \times [0, \tau] $ for $ \tau \in [0, T] $, where $ T > 0 $. We write $ \left\langle {\left\langle {} \right.} \right. \cdot, \cdot \left. {\left. {} \right\rangle } \right\rangle_{\Omega} = \left\langle {\left\langle {} \right.} \right. \cdot, \cdot \left. {\left. {} \right\rangle } \right\rangle_{\langle W^{-1, p'}(\Omega), W^{1, p}_{0}(\Omega) \rangle} $ as the pairing between $ W^{-1, p'}(\Omega) $ and $ W^{1, p}_{0}(\Omega) $, where $ W^{-1, p}(\Omega) $ is the dual space of $ W^{1, p}_{0}(\Omega) $. We carefully note that $ \langle \cdot, \cdot \rangle $ stands for the inner product in $ \mathbb{R}^n $ or $ \mathbb{R}^{n+1} $. We also note that for the consistency of the notation, we usually write $ W^{1, p}_{0}(\mathbb{R}^{n}) $ instead of $ W^{1, p}(\mathbb{R}^{n}) $. Here, we remark that $ W^{1, p}_{0}(\mathbb{R}^{n}) = W^{1, p}(\mathbb{R}^{n}) $. For $ \partial_{t}w $, we mean $ \partial_{t} w \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) $ satisfying
$ ∫T0⟨⟨∂tw,φ⟩⟩Ωdt=−∫ΩTwφtdxdt for any φ∈C∞c(ΩT). $ |
We consider a sequence of functions $ \{ u_{k} \}_{k = 1}^{\infty} $ defined on the corresponding sequence of domains $ \{ \Omega^{k} \}_{k = 1}^{\infty} $ in this paper. So to use convergence on $ \{ u_{k} \}_{k = 1}^{\infty} $, we consider the zero extension as in the following definition. In this paper, '$ \to $' means the strong convergence and '$ \rightharpoonup $' means the weak convergence.
Definition 1.2. For $ 1 < p < \infty $, we say $ v_{k} \in L^{p'} (\Omega_{T}^{k}) $ $ (k \in \mathbb{N}) $ converges strongly-$ \ast $ to $ v_{\infty} \in L^{p'}(\Omega_{T}^{\infty}) $, which is denoted by $ v_{k} \in L^{p'}(\Omega_{T}^{k}) \, \overset{\ast}{\to} \, v_{\infty} \in L^{p'}(\Omega_{T}^{\infty}) $, if
$ ∫ΩkTvkηkdxdt→∫Ω∞Tv∞η∞dxdt, $ |
for any $ \eta_{k} \in L^{p} (\Omega_{T}^{k}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ satisfying
$ ˉηk⇀ˉη∞ in Lp(RnT), $ |
where $ \bar{\eta}_{k} $ is the zero extension of $ \eta_{k} $ from $ \Omega_{T}^{k} $ to $ \mathbb{R}^{n}_{T} $.
Remark 1.3. In Definition 1.2, if $ \Omega^{k} = \Omega^{\infty} $ for any $ k \in \mathbb{N} $, then $ v_{k} \to v_{\infty} $ in $ L^{p'} (\Omega_{T}^{\infty}) $ is equivalent to strong-$ \ast $ convergence, see Lemma 3.1.
We use a similar definition for $ W^{-1, p'} $. We remark that $ W^{1, p}_{0}(\Omega) $ is reflexive when $ 1 < p < \infty $.
Definition 1.4. For $ 1 < p < \infty $, we say that $ v_{k} \in W^{-1, p'} (\Omega^{k}) $ $ (k \in \mathbb{N}) $ converges strongly-$ \ast $ to $ v_{\infty} \in W^{-1, p'}(\Omega^{\infty}) $, which is denoted by $ v_{k} \in W^{-1, p'} (\Omega^{k}) \, \overset{\ast}{\to} \, v_{\infty} \in W^{-1, p'}(\Omega^{\infty}) $, if
$ ⟨⟨vk,ηk⟩⟩Ωk→⟨⟨v∞,η∞⟩⟩Ω∞, $ |
for any $ \eta_{k} \in W^{1, p}_{0}(\Omega^{k}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ satisfying
$ (ˉηk,Dˉηk)⇀(ˉη∞,Dˉη∞)inLp(Rn,Rn+1) $ |
where $ \bar{\eta}_{k} $ is the zero extension of $ \eta_{k} $ from $ \Omega^{k} $ to $ \mathbb{R}^{n} $.
Definition 1.5. For $ 1 < p < \infty $, we say that $ v_{k} \in L^{p'} \big(0, T; W^{-1, p'} (\Omega^{k}) \big) $ $ (k \in \mathbb{N}) $ converges strongly-$ \ast $ to $ v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $, denoted by $ v_{k} \in L^{p'} \big(0, T; W^{-1, p'} (\Omega^{k}) \big) \, \overset{\ast}{\to} \, v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $, if
$ ∫T0⟨⟨vk,ηk⟩⟩Ωkdt→∫T0⟨⟨v∞,η∞⟩⟩Ω∞dt, $ |
for any $ \eta_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ satisfying
$ (ˉηk,Dˉηk)⇀(ˉη∞,Dˉη∞)inLp(RnT,Rn+1) $ |
where $ \bar{\eta}_{k} \in L^{p} \big(0, T; W_{0}^{1, p}(\mathbb{R}^{n}) \big) $ is the zero extension of $ \eta_{k} $.
For $ p > \frac{2n}{n+2} $ and an open bounded domain $ \Omega \subset \mathbb{R}^{n} $ $ (n \geq 2) $, assume that
$ F∈Lp(ΩT,Rn),f∈Lp′(0,T;W−1,p′(Ω)) $ |
and
$ γ∈C([0,T];L2(Ω))∩Lp(0,T;W1,p(Ω)) with ∂tγ∈Lp′(0,T;W−1,p′(Ω)). $ |
Let $ u \in C \big([0, T]; L^{2}(\Omega) \big) \cap L^{p} \big(0, T; W^{1, p}(\Omega) \big) $ be the weak solution of
$ {∂tu−div a(Du,x,t)=f−div (|F|p−2F) in ΩT,u=γ on ∂PΩT. $ | (1.6) |
Here, we say that $ u \in \gamma + L^{p} \big(0, T; W_{0}^{1, p}(\Omega) \big) \cap C^{0} \big([0, T]; L^{2} (\Omega) \big) $ is the weak solution of (1.6), if
$ ∫T0⟨⟨∂tu,φ⟩⟩Ωdt+∫ΩT⟨a(Du,x,t),Dφ⟩dxdt=∫ΩT[⟨|F|p−2F,Dφ⟩+fφ]dxdt $ |
holds for any $ \varphi \in C_{0}^{\infty}(\Omega_{T}) $. Also for the initial condition, it means that
$ limh↘01h∫h0∫Ω|u(x,t)−γ(x,0)|2dxdt=0, $ |
which is equivalent to $ u(x, 0) = \gamma(x, 0) $ when $ u \in C \big([0, T]; L^{2}(\Omega) \big) $.
Now, we introduce the main result in this paper.
Theorem 1.6. Let $ \Omega^{k} \subset \mathbb{R}^{n} $ $ (k \in \mathbb{N}) $ be a sequence of open bounded domains with
$ limk→∞dH(∂Ωk,∂Ω)=0. $ | (1.7) |
For $ k \in \mathbb{N} $, assume that $ \epsilon_{k} > 0 $, $ F_{k} \in L^{p}(\Omega_{T}^{k}, \mathbb{R}^{n}) $, $ f_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) $ and
$ γk∈C([0,T];L2(Ωk))∩Lp′(0,T;W1,p0(Ωk))with∂tγk∈Lp′(0,T;W−1,p′(Ωk)) $ |
satisfy that $ \lim_{k \to \infty} \epsilon_{k} = 0 $,
$ {fk∈Lp′(0,T;W−1,p′(Ωk))∗→f∈Lp′(0,T;W−1,p′(Ω)),∂tγk∈Lp′(0,T;W−1,p′(Ωk))∗→∂tγ∈Lp′(0,T;W−1,p′(Ω)), $ | (1.8) |
and
$ {|Fk|p−2Fk∈Lp′(ΩkT,Rn)∗→|F|p−2F∈Lp′(ΩT,Rn),γk∈Lp(ΩkT)∗→γ∈Lp(ΩT),Dγk∈Lp(ΩkT,Rn)∗→Dγ∈Lp(ΩT,Rn). $ | (1.9) |
Then for the weak solution $ u_{k} \in C \big([0, T]; L^{2}(\Omega^{k}) \big) \cap L^{p} \big(0, T; W^{1, p}(\Omega^{k}) \big) $ of
$ {∂tuk−divak(Duk,x,t)=fk−div(|Fk|p−2Fk)inΩkT,uk=γkon∂PΩkT. $ | (1.10) |
where $ a_{k}(\xi, x, t) = a_{\epsilon_{k}}(\xi, x, t) $, we have that
$ limk→∞[‖Duk−Du‖Lp(ΩkT∩ΩT)+‖Duk‖Lp(ΩkT∖ΩT)+‖Du‖Lp(ΩT∖ΩkT)]=0, $ | (1.11) |
where $ u $ is the weak solution of (1.6).
We refer to [13] for Calderón-Zygmund type estimates for a class of elliptic and parabolic systems with nonzero boundary data in rough domains such as Reifenberg flat domains.
Remark 1.7. For the sake of convenience and simplicity, we employ the letters $ c > 0 $ throughout this paper to denote any constants which can be explicitly computed in terms of known quantities such as $ n, p, \lambda, \Lambda $ and the diameter of the domains. Thus the exact value denoted by $ c $ may change from line to line in a given computation.
Remark 1.8. We usually denote $ \bar{g} $ as the natural zero extension of $ g $ for such space as $ L^{p}(\Omega_{T}) $ and $ L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) $ which depends on the situations.
We also have a result for elliptic equations which corresponds to Theorem 1.6. The proof is similar to that of Theorem 1.6, and we will only state the result.
Suppose that $ a : \mathbb{R}^n \times \mathbb{R}^{n} \rightarrow \mathbb{R}^n $ satisfies
$ {a(ξ,x) is measurable in x for every ξ∈Rn,a(ξ,x) is C1-regular in ξ for every x∈Rn, $ | (1.12) |
and the following ellipticity and growth conditions:
$ {|a(ξ,x)|+|Dξa(ξ,x)|(|ξ|2+s2)12≤Λ(|ξ|2+s2)p−12,⟨Dξa(ξ,x)ζ,ζ⟩≥λ(|ξ|2+s2)p−22|ζ|2, $ | (1.13) |
for every $ x, \xi, \zeta \in \mathbb{R}^n $ and for some constants $ 0 < \lambda \leq \Lambda $ and $ s \geq 0 $.
Under the assumptions (1.12) and (1.13), let $ a_\epsilon(\xi, x) $ be a regularization of $ a(\xi, x) $:
$ aϵ(ξ,x)=∫Rn∫Rna(ξ−ϵy,x−ϵz)ϕ(y)ϕ(z)dydz(0<ϵ<1). $ | (1.14) |
Then $ a_\epsilon(\xi, x) $ satisfies the ellipticity and growth conditions, such as (1.2), and it is smooth enough, precisely,
$ {aϵ(ξ,x) is C∞-regular in ξ∈Rn for every x∈Rn,aϵ(ξ,x) is C∞-regular in x∈Rn for every ξ∈Rn. $ |
We have the following approximation results for elliptic problems.
Theorem 1.9. For $ 1 < p < \infty $ and an open bounded domain $ \Omega \subset \mathbb{R}^{n} $ $ (n \geq 2) $, assume that $ F \in L^{p}(\Omega, \mathbb{R}^{n}) $, $ f \in L^{(p^{*})'}(\Omega) $ and $ \gamma \in W^{1, p}(\Omega) $. Let $ u \in \gamma + W_{0}^{1, p}(\Omega) $ be the weak solution of
$ {−diva(Du,x)=f−div(|F|p−2F)inΩ,u=γon∂Ω. $ |
Let $ \Omega^{k} \subset \mathbb{R}^{n} $ $ (k \in \mathbb{N}) $ be a sequence of open bounded domains with
$ \lim\limits_{k \to \infty} d_{H} (\partial \Omega^{k} , \partial \Omega) = 0. $ |
For $ k \in \mathbb{N} $, assume that $ \epsilon_{k} > 0 $, $ F_{k} \in L^{p}(\Omega^{k}, \mathbb{R}^{n}) $, $ f_{k} \in L^{(p^{*})'}(\Omega^{k}) $ and $ \gamma \in W^{1, p}(\Omega^{k}) $ satisfy that
$ limk→∞[‖Fk−F‖Lp(Ωk∩Ω)+‖fk−f‖L(p∗)′(Ωk∩Ω)+‖γk−γ‖W1,p(Ωk∩Ω)]=0, $ |
and
$ limk→∞[ϵk+‖Fk‖Lp(Ωk∖Ω)+‖fk‖L(p∗)′(Ωk∖Ω)+‖γk‖W1,p(Ωk∖Ω)]=0. $ |
Then for the weak solution $ u_{k} \in \gamma_{k} + W_{0}^{1, p}(\Omega^{k}) $ of
$ {divak(Duk,x)=−div(|Fk|p−2Fk)+fkinΩk,uk=γkon∂Ωk. $ |
where $ a_{k}(\xi, x) = a_{\epsilon_{k}}(\xi, x) $, we have that
$ limk→∞[‖Duk−Du‖Lp(Ωk∩Ω)+‖Duk‖Lp(Ωk∖Ω)+‖Du‖Lp(Ω∖Ωk)]=0. $ |
We use the following results related to weak convergence and weak* convergence.
Proposition 2.1. [12, Proposition 3.13 (iii)] Let $ \{ f_{i} \} $ be a sequence in $ E^{*} $. If $ f_{i} \overset{\ast}{\rightharpoonup} f $ in $ \sigma(E^{*}, E) $ then $ \{ \| f_{i} \| \} $ is bounded and $ \| f \| \leq \liminf \| f_{i} \| $.
Proposition 2.2. [12, Theorem 3.16 (Banach-Alaoglu-Bourbaki)] The closed unit ball $ B_{E^{*}} = \{ f \in E^{*} : \| f \| \leq 1 \} $ is compact in the weak-$ \ast $ topology $ \sigma (E^{*}, E) $.
One can easily check that compactness in Proposition 2.2 implies sequential compactness for metric spaces.
Proposition 2.3. If $ E^{*} $ is a metric space then any bounded sequence $ \{ f_{i} \} $ in $ E^{*} $ has a weakly-$ \ast $ convergent subsequence.
To apply Proposition 2.1 and Proposition 2.3 to Sobolev space, we use Proposition 2.4.
Proposition 2.4. [12, Proposition 8.1] $ W^{1, p} $ is a Banach space for $ 1 \leq p \leq \infty $. $ W^{1, p} $ is reflexive for $ 1 < p < \infty $ and separable for $ 1 \leq p < \infty $.
To handle the dual space of $ W^{1, p}_{0}(\Omega) $, we use [45, Corollary 10.49].
Proposition 2.5. [45, Corollary 10.49] Let $ \Omega \subset \mathbb{R}^{n} $ be an open set and $ 1 \leq p < \infty $. Then $ h \in W^{-1, p'}(\Omega) $ can be identified as
$ ⟨h,φ⟩Ω=∫Ω⟨H,(φ,Dφ)⟩dx, $ |
with
$ ‖h‖W−1,p′(Ω)=(∫Ωn∑i=0|Hi|p′dx)1p′, $ |
for some $ H = (H_{0}, H_{1}, \cdots, H_{n}) \in L^{p'}(\Omega, \mathbb{R}^{n+1}) $.
We have the following result from [51, Proposition Ⅲ.1.2], [30, Lemma 2.1] and [50, Lemma 3.1].
Proposition 2.6. [51, Proposition III.1.2] Let $ \Omega \subset \mathbb{R}^{n} $ be a bounded domain, $ t_{1} < t_{2} $ and $ p > \frac{2n}{n+2} $. Assume that $ v \in L^{p} \big(t_{1}, t_{2}; W^{1, p}_{0}(\Omega) \big) $ has a distributional derivative $ \partial_{t} v \in L^{p'} \big(t_{1}, t_{2}; W^{-1, p'}(\Omega) \big) $. Then there holds $ v \in C \big([t_{1}, t_{2}]; L^{2}(\Omega) \big) $ and moreover, the mapping $ t \mapsto \| v (\cdot, t) \|_{L^{2}(\Omega)}^{2} $ is absolutely continuous on $ [t_{1}, t_{2}] $ with
$ ddt‖v(⋅,t)‖2L2(Ω)=2⟨⟨∂tv,v⟩⟩Ω a.e.on[t1,t2], $ |
where $ \left\langle {\left\langle {} \right.} \right. \cdot, \cdot \left. {\left. {} \right\rangle } \right\rangle_{\Omega} $ denotes the dual pairing between $ W^{-1, p'}(\Omega) $ and $ W^{1, p}_{0}(\Omega) $.
We use the following basic inequality in this paper.
Lemma 2.7. [38, Lemma 3.2] For any $ q > 1 $ and $ s \geq 0 $, there exists $ \kappa_{1} = \kappa_{1}(n, q) \in (0, 1] $ such that
$ |ξ−ζ|q≤cκq(|ξ|2+s2)q2+cκq−2(|ξ|2+|ζ|2+s2)q−22|ξ−ζ|2, $ |
for any $ \kappa \in (0, \kappa_{1}] $.
We would like to emphasis that the inequalities in Lemmas 2.8 and 2.9 are obtained for $ s \geq 0 $ even when $ 1 < q < 2 $. We remark that a different proof for $ 1 < q < 2 $ was shown in [1, Lemma 2.1].
Lemma 2.8. For any $ q > 1 $ and $ s \geq 0 $, we have that
$ ∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ=∫10(|ζ+τ(ξ−ζ)|2+s2)q−22dτ≤c(|ξ|2+|ζ|2+s2)q−22, $ |
for any $ \xi, \zeta \in \mathbb{R}^{n} \setminus \{ 0 \} $, where $ c $ depends only on $ q $.
Proof. By changing variable, one can easily check that
$ ∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ=∫10(|ζ+τ(ξ−ζ)|2+s2)q−22dτ, $ |
and without loss of generality, we may assume $ |\xi| \geq |\zeta| $.
If $ q \geq 2 $, then the lemma follows from the fact that
$ |ξ+τ(ζ−ξ)|2≤8(|ξ|2+|ζ|2)(τ∈[0,1]). $ |
So it only remains to prove the lemma when $ 1 < q < 2 $.
Next, suppose that $ 1 < q < 2 $. We show the lemma by considering three cases:
$ (1).2|ζ−ξ|≤|ξ|,(2).|ξ|≤2|ζ−ξ|≤2s,(3).|ξ|≤2|ζ−ξ| and s<|ζ−ξ|. $ |
(1). If $ 2|\zeta - \xi| \leq |\xi| $, then for any $ \tau \in [0, 1] $ we have
$ |ξ+τ(ζ−ξ)|≥|ξ|−|τ(ζ−ξ)|≥|ξ|2≥|ξ|+|ζ|4≥(|ξ|2+|ζ|2)124, $ |
because we assumed that $ |\xi| \geq |\zeta| $, which implies
$ ∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ≤c(q)(|ξ|2+|ζ|2+s2)q−22, $ |
and the lemma is proved for the first case.
(2). If $ |\xi| \leq 2|\zeta - \xi| \leq 2s $, then we obtain
$ |ξ|2+|ζ|2+s2≤|ξ|2+2(|ξ|2+|ζ−ξ|2)+s2≤3(|ξ|2+|ζ−ξ|2+s2)≤18s2, $ |
which implies
$ ∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ≤sq−2≤c(q)(|ξ|2+|ζ|2+s2)q−22, $ |
and the lemma is proved for the second case.
(3). Suppose that $ |\xi| \leq 2 |\zeta - \xi| $ and $ s < |\zeta - \xi| $. One can easily check that
$ ⟨ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2,ξ+τ(ζ−ξ)−(ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2)⟩=0, $ |
which implies
$ |ξ+τ(ζ−ξ)|2=|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|2+(τ+⟨ζ−ξ,ξ⟩|ζ−ξ|2)2|ζ−ξ|2. $ |
Then by changing variables, we obtain
$ ∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ=∫10(|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|2+(τ+⟨ζ−ξ,ξ⟩|ζ−ξ|2)2|ζ−ξ|2+s2)q−22dτ=∫1+⟨ζ−ξ,ξ⟩|ζ−ξ|2⟨ζ−ξ,ξ⟩|ζ−ξ|2(|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|2+θ2|ζ−ξ|2+s2)q−22dθ≤c(q)∫1+⟨ζ−ξ,ξ⟩|ζ−ξ|2⟨ζ−ξ,ξ⟩|ζ−ξ|2(|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+|θ||ζ−ξ|+s)q−2dθ≤c(q)(I+II), $ | (2.1) |
where
$ I=∫|1+⟨ζ−ξ,ξ⟩|ζ−ξ|2|0(|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+θ|ζ−ξ|+s)q−2dθ,II=∫|⟨ζ−ξ,ξ⟩|ζ−ξ|2|0(|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+θ|ζ−ξ|+s)q−2dθ. $ |
By changing variables, we discover that
$ I=1|ζ−ξ|∫|ζ−ξ||1+⟨ζ−ξ,ξ⟩|ζ−ξ|2|+|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+s|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+sκq−2dκ,=[|ζ−ξ||1+⟨ζ−ξ,ξ⟩|ζ−ξ|2|+|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+s]q−1−[|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+s]q−1(q−1)|ζ−ξ|≤c(q)(|ζ−ξ|+|ξ|+s)q−1(q−1)|ζ−ξ|. $ |
Similarly, we have
$ II=1|ζ−ξ|∫|ζ−ξ||⟨ζ−ξ,ξ⟩|ζ−ξ|2|+|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+s|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+sκq−2dκ,=[|ζ−ξ||⟨ζ−ξ,ξ⟩|ζ−ξ|2|+|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+s]q−1−[|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+s]q−1(q−1)|ζ−ξ|≤c(q)(|ζ−ξ|+|ξ|+s)q−1(q−1)|ζ−ξ|. $ |
Since $ |\zeta| \leq |\xi| \leq 2 |\zeta - \xi| $ and $ s < |\zeta - \xi| $, we have $ |\xi|^{2} + |\zeta|^{2} + s^{2} \leq 9 |\zeta - \xi|^{2} $, and
$ (|ζ−ξ|+|ξ|+s)q−1|ζ−ξ|≤c(q)|ζ−ξ|q−1|ζ−ξ|=c(q)|ζ−ξ|q−2≤c(q)(|ξ|2+|ζ|2+s2)q−22. $ |
By the above three inequalities and (2.1), we find that the lemma holds when $ |\xi| \leq 2 |\zeta-\xi| \text{ and } s < |\zeta - \xi| $. This completes the proof.
Lemma 2.9. For any $ q > 1 $ and $ s \geq 0 $, we have that
$ ∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ=∫10(|ζ+τ(ξ−ζ)|2+s2)q−22dτ≥c(|ξ|2+|ζ|2+s2)q−22, $ |
for any $ \xi, \zeta \in \mathbb{R}^{n} \setminus \{ 0 \} $, where $ c $ depends only on $ q $.
Proof. One can easily check that
$ |ξ+t(ζ−ξ)|2+s2≤c(q)(|ξ|2+|ζ|2+s2)(τ∈[0,1]). $ |
If $ 1 < q < 2 $, then
$ ∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ≥c(q)∫10(|ξ|2+|ζ|2+s2)q−22dτ≥c(q)(|ξ|2+|ζ|2+s2)q−22, $ |
which prove the lemma for $ 1 < q < 2 $.
To prove the lemma for the case $ q \geq 2 $, we assume that $ |\xi| \geq |\zeta| $ without loss of generality. Then for $ \tau \in [0, 1/4] $, we have
$ |ξ+τ(ζ−ξ)|≥|ξ|−τ|ζ−ξ|≥|ξ|−|ζ−ξ|/4≥|ξ|/2≥c(q)(|ξ|2+|ζ|2)12. $ |
So we obtain
$ ∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ≥c(q)∫140(|ξ|2+|ζ|2+s2)q−22dτ≥c(q)(|ξ|2+|ζ|2+s2)q−22, $ |
which prove the lemma for $ q \geq 2 $. This completes the proof.
To compare $ a(\xi, x, t) $ and $ a(\zeta, x, t) $, we use the following lemma.
Lemma 2.10. Under the assumptions (1.1) and (1.2), we have
$ |a(ξ,x,t)−a(ζ,x,t)|pp−1≤c|ξ−ζ|(|ξ|2+|ζ|2+s2)p−12, $ |
for any $ \xi, \zeta \in \mathbb{R}^{n} $.
Proof. We fix any $ \xi, \zeta \in \mathbb{R}^{n} $. If $ |\xi| = 0 $ or $ |\zeta| = 0 $ then the lemma holds trivially from (1.1) and (1.2). So we assume that $ \xi, \zeta \in \mathbb{R}^{n} \setminus \{ 0 \} $. Since $ |\xi - \zeta|^\frac{1}{p-1} \leq c (|\xi|^{2} + |\zeta|^{2} + s^{2})^\frac{1}{2(p-1)} $, we have from (1.2) and Lemma 2.8 that
$ |a(ξ,x,t)−a(ζ,x,t)|pp−1=|∫10ddτ[a(τξ+(1−τ)ζ,x,t)]dτ|pp−1=|∫10Dξa(τξ+(1−τ)ζ,x,t)(ξ−ζ)dτ|pp−1≤c|ξ−ζ|pp−1(∫10(|τξ+(1−τ)ζ|2+s2)p−22dτ)pp−1≤c|ξ−ζ|pp−1(|ξ|2+|ζ|2+s2)p(p−2)2(p−1)≤c|ξ−ζ|(|ξ|2+|ζ|2+s2)p−12. $ |
Since $ \xi, \zeta \in \mathbb{R}^{n} $ were arbitrary chosen, the lemma follows.
We show the following well-known inequality. We remark that a different proof for $ 0 < q < 2 $ was shown in [1, Lemma 2.1] and [36, Lemma 2.1].
Lemma 2.11. For any $ q > 0 $ and $ s \geq 0 $, we have that
$ |(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ|2≤c(|ξ|2+|ζ|2+s2)q−22|ξ−ζ|2, $ |
and
$ ⟨(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ,ξ−ζ⟩≥c(|ξ|2+|ζ|2+s2)q−24|ξ−ζ|2, $ |
for any $ \xi, \zeta \in \mathbb{R}^{n} $, where $ c $ depends only on $ q $.
Proof. We fix any $ \xi, \zeta \in \mathbb{R}^{n} $. If $ |\xi| = 0 $ or $ |\zeta| = 0 $ then the lemma holds trivially. So we assume that $ \xi, \zeta \in \mathbb{R}^{n} \setminus \{ 0 \} $. Then
$ (|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ=∫10ddτ[(|τξ+(1−τ)ζ|2+s2)q−24(τξ+(1−τ)ζ)]dτ=∫10q−22⋅(|τξ+(1−τ)ζ|2+s2)q−64⟨τξ+(1−τ)ζ,ξ−ζ⟩(τξ+(1−τ)ζ)dτ+∫10(|τξ+(1−τ)ζ|2+s2)q−24(ξ−ζ)dτ. $ |
By taking $ \frac{q}{2} + 1 \in (1, \infty) $ instead for $ q \in (1, \infty) $ in Lemma 2.8,
$ |(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ|≤c(q)|ξ−ζ|∫10(|τξ+(1−τ)ζ|2+s2)q−24dτ≤c(q)|ξ−ζ|(|ξ|2+|ζ|2+s2)q−24. $ |
Also we get
$ ⟨(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ,ξ−ζ⟩=∫10q−22⋅(|τξ+(1−τ)ζ|2+s2)q−64|⟨τξ+(1−τ)ζ,ξ−ζ⟩|2dτ+∫10(|τξ+(1−τ)ζ|2+s2)q−24|ξ−ζ|2dτ. $ |
If $ 0 < q \leq 2 $ then $ 1 = \frac{ 2-q}{2} + \frac{q}{2} $ and $ \frac{2-q}{2} \geq0 $. Also if $ q > 2 $ then $ \frac{q-2}{2} \geq 0 $. Thus
$ ⟨(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ,ξ−ζ⟩≥min{q2,1}∫10(|τξ+(1−τ)ζ|2+s2)q−24|ξ−ζ|2dτ. $ |
By taking $ \frac{q}{2} + 1 \in (1, \infty) $ instead for $ q \in (1, \infty) $ in Lemma 2.9,
$ ⟨(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ,ξ−ζ⟩≥c(|ξ|2+|ζ|2+s2)q−24|ξ−ζ|2. $ |
Since $ \xi, \zeta \in \mathbb{R}^{n} $ were arbitrary chosen, the lemma follows.
We will use the following lemma.
Lemma 2.12. For any $ q > 1 $ and $ s \geq 0 $, we have that
$ |(|ξ|2+s2)q−22ξ−(|ζ|2+s2)q−22ζ|qq−1≤c(|ξ|2+|ζ|2+s2)q−12|ξ−ζ|, $ |
for any $ \xi, \zeta \in \mathbb{R}^{n} $, where $ c $ only depends on $ q $.
Proof. Fix any $ \xi, \zeta \in \mathbb{R}^{n} $. By taking $ 2q-2 > 0 $ instead of $ q \left(>0 \right) $ in Lemma 2.11,
$ |(|ξ|2+s2)q−22ξ−(|ζ|2+s2)q−22ζ|qq−1≤c(q)(|ξ|2+|ζ|2+s2)q(q−2)2(q−1)|ξ−ζ|qq−1. $ |
By that $ |\xi - \zeta|^\frac{1}{q-1} \leq c \left(|\xi|^{2} + |\zeta|^{2} + s^{2} \right)^\frac{1}{2(q-1)} $,
$ |(|ξ|2+s2)q−22ξ−(|ζ|2+s2)q−22ζ|qq−1≤c(q)(|ξ|2+|ζ|2+s2)q−12|ξ−ζ|. $ |
Since $ \xi, \zeta \in \mathbb{R}^{n} $ were arbitrary chosen, the lemma follows.
To find the ellipticity and growth conditions of $ a_{\epsilon} (\xi, x, t) $ in (1.5), we follow the approach in the proof of [31, Lemma 2] and [32, Lemma 3.1].
Lemma 2.13. For (1.5), we have
$ {aϵ(ξ,x,t)isC∞−regularinξ∈Rnforevery(x,t)∈Rn+1,aϵ(ξ,x,t)isC∞−regularinx∈Rnforeveryξ∈Rnandt∈R, $ | (2.2) |
and
$ {|aϵ(ξ,x,t)|+|Dξaϵ(ξ,x,t)|(|ξ|2+s2ϵ)12≤cΛ(|ξ|2+s2ϵ)p−12,|Dmxaϵ(ξ,x,t)|+|Dmξaϵ(ξ,x,t)|≤cΛϵ−m(|ξ|2+s2ϵ)p−12,⟨Dξaϵ(ξ,x,t)ζ,ζ⟩≥cλ(|ξ|2+s2ϵ)p−22|ζ|2, $ | (2.3) |
for $ s_{\epsilon} = (s^{2} + \epsilon^{2})^\frac{1}{2} $. Here, the constants $ c $ are depending only on $ n $ and $ p $.
Proof. Fix a vector $ \xi \in \mathbb{R}^{n} $. Since $ a(\xi, x, t) $ is $ C^{1} $-regular in $ \xi \in \mathbb{R}^{n} $ for every $ x \in \mathbb{R}^{n} $, we find that $ a_{\epsilon}(\xi, x, t) $ is $ C^{1} $-regular in $ \xi \in \mathbb{R}^{n} $ for every $ x \in \mathbb{R}^{n} $. Also by changing variable, we have from (1.5) that
$ aϵ(ξ,x,t)=1ϵn∫Rn∫Rna(ξ−ϵy,z,t)ϕ(y)ϕ(x−zϵ)dydz, $ |
which implies
$ Dxaϵ(ξ,x,t)=1ϵn+1∫Rn∫Rna(ξ−ϵy,z,t)ϕ(y)Dϕ(x−zϵ)dydz. $ |
Moreover, from (1.2), the fact that $ \mathrm{supp \, } \phi \subset \overline{B_{1}} $ and
$ Dmxaϵ(ξ,x,t)=1ϵn+m∫Rn∫Rna(ξ−ϵy,z,t)ϕ(y)Dmϕ(x−zϵ)dydz=1ϵm∫Rn∫Rna(ξ−ϵy,x−ϵz,t)ϕ(y)Dmϕ(z)dydz, $ |
for any $ m \geq 0 $, which implies that
$ |Dmxaϵ(ξ,x,t)|≤Λϵ−m∫Rn∫Rn(|ξ−ϵy|2+s2)p−12ϕ(y)|Dmϕ(z)|dydz≤2p−12Λϵ−m∫Rn∫Rn(|ξ|2+ϵ2+s2)p−12ϕ(y)|Dmϕ(z)|dydz≤2p−12Λϵ−m(|ξ|2+ϵ2+s2)p−12∫Rn|Dmϕ(z)|dz, $ |
for any $ m \geq 0 $. Similarly, by changing variable, we have from (1.5) that
$ aϵ(ξ,x,t)=1ϵn∫Rn∫Rna(y,x−ϵz,t)ϕ(ξ−yϵ)ϕ(z)dydz, $ |
and one can obtain that
$ |Dmξaϵ(ξ,x,t)|≤2p−12Λϵ−m(|ξ|2+ϵ2+s2)p−12∫Rn|Dmϕ(y)|dz. $ |
So $ a_{\epsilon}(\xi, x, t) $ is $ C^{\infty} $-regular in $ \xi \in \mathbb{R}^{n} $ for every $ (x, t) \in \mathbb{R}^n $ and $ a_{\epsilon}(\xi, x, t) $ is $ C^{\infty} $-regular in $ x \in \mathbb{R}^{n} $ for every $ \xi \in \mathbb{R}^n $ and $ t \in \mathbb{R} $. Also the second inequality in (2.3) follows.
From (1.2), (1.5) and the fact that $ \mathrm{supp \, } \phi \subset \overline{B_{1}} $, we have
$ ⟨Dξaϵ(ξ,x,t)ζ,ζ⟩=∫Rn∫Rn⟨Dξa(ξ−ϵy,x−ϵz,t)ζ,ζ⟩ϕ(y)ϕ(z)dydz≥λ∫Rn∫Rn(|ξ−ϵy|2+s2)p−22|ζ|2ϕ(y)ϕ(z)dydz≥λ∫(B1∖B12)∩⟨ξ,y⟩≥0(|ξ|2+|ϵy|2+2⟨ξ,ϵy⟩+s2)p−22|ζ|2ϕ(y)dy≥c(n,p)λ(|ξ|2+ϵ24+s2)p−22|ζ|2∫(B1∖B12)∩⟨ξ,y⟩≥0ϕ(y)dy≥c(n,p)λ(|ξ|2+s2+ϵ2)p−22|ζ|2, $ |
and the third inequality in (2.3) holds.
It only remains to prove the first inequality in (2.3). In view of (1.5), we have
$ |aϵ(ξ,x,t)|≤Λ∫Rn∫Rn(|ξ−ϵy|2+s2)p−12ϕ(y)ϕ(z)dydz≤2p−12Λ∫Rn∫Rn(|ξ|2+ϵ2+s2)p−12ϕ(y)ϕ(z)dydz=2p−12Λ(|ξ|2+ϵ2+s2)p−12. $ | (2.4) |
If $ 16 \epsilon^{2} \geq |\xi|^{2} + s^{2} $, then by changing variables and (1.5), we obtain
$ |Dξaϵ(ξ,x,t)|=|Dξ(1ϵn∫Rn∫Rna(y,x−ϵz,t)ϕ(ξ−yϵ)ϕ(z)dydz)|≤Λϵn+1∫Rn∫Rn(|y|2+s2)p−12|Dϕ(ξ−yϵ)|ϕ(z)dydz=Λϵ−1∫Rn∫Rn(|ξ−ϵy|2+s2)p−12|Dϕ(y)|ϕ(z)dydz≤2p−12Λϵ−1(|ξ|2+ϵ2+s2)p−12∫Rn|Dϕ(y)|dy. $ |
and from the fact that $ 16 \epsilon^{2} \geq |\xi|^{2} + s^{2} $, we have $ 17 \epsilon^{2} \geq |\xi|^{2} + \epsilon^{2} + s^{2} $ and
$ |Dξaϵ(ξ,x,t)|≤5⋅2p−12Λ(|ξ|2+ϵ2+s2)p−22∫Rn|Dϕ(y)|dy. $ | (2.5) |
So we discover that the first inequality in (2.3) holds for the case $ 16 \epsilon^{2} \geq |\xi|^{2} + s^{2} $.
On the other-hand, if $ 16 \epsilon^{2} \leq |\xi|^{2} + s^{2} $, then we have
$ |ξ−ϵy|2+s2=|ξ|2−2ϵ⟨ξ,y⟩+ϵ2|y|2+s2≥|ξ|2+s2+ϵ2|y|22(y∈¯B1), $ |
and $ \mathrm{supp \, } \phi \subset \overline{B_{1}} $ implies
$ |Dξaϵ(ξ,x,t)|≤|∫Rn∫RnDξa(ξ−ϵy,x−ϵz,t)ϕ(y)ϕ(z)dydz|≤Λ∫Rn∫Rn(|ξ−ϵy|2+s2)p−22ϕ(y)ϕ(z)dydz≤2Λ∫Rn(|ξ−ϵy|2+s2)p2(|ξ|2+s2+ϵ2|y|2)−1ϕ(y)dy, $ |
which implies that
$ |Dξaϵ(ξ,x,t)|≤c∫Rn(|ξ|2+s2+ϵ2|y|2)p−22ϕ(y)dy. $ | (2.6) |
We claim that if $ 16 \epsilon^{2} \leq |\xi|^{2} + s^{2} \text{ and } |y| \leq 1 $ then
$ (|ξ|2+s2+ϵ2|y|2)p−22≤2(|ξ|2+s2+ϵ2)p−22. $ | (2.7) |
If $ p \geq 2 $, then the claim (2.7) holds trivially. If $ 1 < p < 2 $, then $ 16 \epsilon^{2} \leq |\xi|^{2} + s^{2} $ implies
$ (|ξ|2+s2+ϵ2|y|2)p−22≤(|ξ|2+s2)p−22≤(|ξ|2+s2+ϵ22)p−22≤2(|ξ|2+s2+ϵ2)p−22, $ |
and we find that the claim (2.7) holds. Thus the claim (2.7) is proved. In light of (2.6) and (2.7), we have that if $ 16 \epsilon^{2} \leq |\xi|^{2} + s^{2} $ then
$ |Dξaϵ(ξ,x,t)|≤c(|ξ|2+s2+ϵ2)p−22. $ | (2.8) |
Thus the first inequality in (2.3) follows from (2.4), (2.5) and (2.8). This completes the proof.
Later, we will apply the gradient of the weak solution in Lemma 2.14 by considering a zero extension from $ \Omega_{T} $ to $ \mathbb{R}^{n}_{T} $.
Lemma 2.14. For any $ H \in L^{p}(\Omega_{T}, \mathbb{R}^{n}) $, we have that
$ limϵ↘0‖a(H,⋅)−aϵ(H,⋅)‖Lpp−1(ΩT)=0. $ |
Proof. Fix $ \delta > 0 $. From (1.5), we have
$ a(H(x,t),x,t)−aϵ(H(x,t),x,t)=∫Rn∫Rn[a(H(x,t),x,t)−a(H(x,t)−ϵy,x−ϵz,t)]ϕ(y)ϕ(z)dydz. $ |
Let $ \tilde{\Omega}_{\epsilon} = \{ x \in \Omega : \mathrm{dist} \left(x, \partial \Omega \right) > \epsilon \} $ and $ \tilde{\Omega}_{\epsilon, T} = \tilde{\Omega}_{\epsilon} \times [0, T] $. Since $ H \in L^{p}(\Omega_{T}, \mathbb{R}^{n}) $, there exists $ \epsilon_{\delta} > 0 $ such that if $ \epsilon \in (0, \epsilon_{\delta}] $ then
$ ∫ΩT∖˜Ωϵ,T|H|pdx<δ, $ |
which implies that
$ ‖a(H,⋅)−aϵ(H,⋅)‖Lpp−1(ΩT∖˜Ωϵ,T)=‖∫Rn∫Rn[a(H(⋅),⋅)−a(H(⋅)−ϵy,⋅−(ϵz,0))]ϕ(y)ϕ(z)dydz‖Lpp−1(ΩT∖˜Ωϵ,T)≤c‖(|H(⋅)|2+s2+ϵ2)p−12‖Lpp−1(ΩT∖˜Ωϵ,T)≤c[δ+|ΩT∖˜Ωϵ,T|(sp+ϵp)]p−1p, $ |
for any $ \epsilon \in (0, \epsilon_{\delta}] $. Thus
$ lim supϵ↘0‖a(H,⋅)−aϵ(H,⋅)‖Lpp−1(ΩT∖˜Ωϵ,T)<cδp−1p. $ |
Since $ \delta > 0 $ was arbitrary chosen, we get
$ limϵ↘0‖a(H,⋅)−aϵ(H,⋅)‖Lpp−1(ΩT∖˜Ωϵ,T)=0. $ | (2.9) |
We now estimate $ a(H, \cdot) - a_{\epsilon}(H, \cdot) $ on $ \tilde{\Omega}_{\epsilon, T} $. By the triangle inequality,
$ ‖a(H,⋅)−aϵ(H,⋅)‖Lpp−1(˜Ωϵ,T)=‖∫Rn∫Rn[a(H(⋅),⋅)−a(H(⋅)−ϵy,⋅−(ϵz,0))]ϕ(y)ϕ(z)dydz‖Lpp−1(˜Ωϵ,T)≤I+II+III $ | (2.10) |
where
$ I=‖∫Rn∫Rn[a(H(⋅),⋅)−a(H(⋅−(ϵz,0)),⋅−(ϵz,0))]ϕ(y)ϕ(z)dydz‖Lpp−1(˜Ωϵ,T),II=‖∫Rn∫Rn[a(H(⋅−(ϵz,0)),⋅−(ϵz,0))−a(H(⋅),⋅−(ϵz,0))]ϕ(y)ϕ(z)dydz‖Lpp−1(˜Ωϵ,T),III=‖∫Rn∫Rn[a(H(⋅),⋅−(ϵz,0))−a(H(⋅)−ϵy,⋅−(ϵz,0))]ϕ(y)ϕ(z)dydz‖Lpp−1(˜Ωϵ,T). $ |
We want to prove that the left-hand side of (2.10) goes to the zero as $ \epsilon \searrow 0 $.
To handle $ I $, we use the standard approximation by mollifiers, see for instance [34, C. Theorem 6], to find that
$ limϵ↘0‖∫Rn∫Rn[a(H(⋅),⋅)−a(H(⋅−(ϵz,0)),⋅−(ϵz,0))]ϕ(y)ϕ(z)dydz‖Lpp−1(˜Ωϵ,T)=0, $ |
where we used that $ a(H, \cdot) \in L^{\frac{p}{p-1}}(\Omega_{T}) $ and $ \int_{\mathbb{R}^n} \phi(y) \, dy = 1 $, which implies that
$ limϵ↘0I=0. $ | (2.11) |
To handle $ II $, we apply Hölder's inequality and Lemma 2.10 to find that
$ |∫Rn[a(H(x−ϵz,t),x−ϵz,t)−a(H(x,t),x−ϵz,t)]ϕ(z)dz|≤|∫Rn|a(H(x−ϵz,t),x−ϵz,t)−a(H(x,t),x−ϵz,t)|pp−1ϕ(z)dz|p−1p|∫Rnϕ(z)dz|1p≤c|∫Rn|H(x−ϵz,t)−H(x,t)|(|H(x−ϵz,t)|2+|H(x,t)|2+s2)p−12ϕ(z)dz|p−1p. $ |
We apply Hölder's inequality to find that
$ ‖∫Rn[a(H(⋅−(ϵz,0)),⋅−(ϵz,0))−a(H(⋅),⋅−(ϵz,0))]ϕ(z)dz‖Lpp−1(˜Ωϵ,T)≤‖∫Rn|H(⋅−(ϵz,0))−H(⋅)|pϕ(z)dz‖p−1p2L1(˜Ωϵ,T)‖∫Rn(|H(⋅−(ϵz,0))|2+|H(⋅)|2+s2)p2ϕ(z)dz‖(p−1p)2L1(˜Ωϵ,T), $ |
and by using that $ H \in L^{p}(\Omega_{T}, \mathbb{R}^{n}) $, we obtain that
$ limϵ↘0‖∫Rn[a(H(⋅−(ϵz,0)),⋅−(ϵz,0))−a(H(⋅),⋅−(ϵz,0))]ϕ(z)dz‖Lpp−1(˜Ωϵ,T)=0, $ |
which implies that
$ limϵ↘0II=0. $ | (2.12) |
Last, to handle $ III $, we find from Lemma 2.10 that
$ ∫Rn∫Rn[a(H(x,t),x−ϵz,t)−a(H(x,t)−ϵy,x−ϵz,t)]ϕ(y)ϕ(z)dydz≤c∫Rn∫Rn|ϵy|(|H(x,t)|2+|H(x,t)−ϵy|2+s2)p−12ϕ(y)ϕ(z)dydz≤cϵ∫Rn(|H(x,t)|2+s2+ϵ2)p−12ϕ(y)dy, $ |
where we used that $ \mathrm{supp} \, \phi \subset \overline{B_{1}} $ from (1.3). So by that $ \int_{\mathbb{R}^n} \phi(y) \, dy = 1 $,
$ ∫Rn∫Rn[a(H(x,t),x−ϵz,t)−a(H(x,t)−ϵy,x−ϵz,t)]ϕ(y)ϕ(z)dydz≤cϵ(|H(x,t)|2+s2+ϵ2)p−12. $ |
So we again use Hölder's inequality to find that
$ ‖∫Rn∫Rn[a(H(⋅),⋅−(ϵz,0))−a(H(⋅)−ϵy,⋅−(ϵz,0))]ϕ(y)ϕ(z)dz‖Lpp−1(˜Ωϵ,T)≤cϵ‖(|H|2+s2+ϵ2)p−12‖Lpp−1(˜Ωϵ,T). $ |
By using $ H \in L^{p}(\Omega_{T}, \mathbb{R}^{n}) $, we obtain that
$ limϵ↘0‖∫Rn∫Rn[a(H,⋅−(ϵz,0))−a(H−ϵy,⋅−(ϵz,0))]ϕ(y)ϕ(z)dz‖Lpp−1(˜Ωϵ,T)=0, $ |
which implies that
$ limϵ↘0III=0. $ | (2.13) |
By combining (2.10), (2.11), (2.12) and (2.13), we find from that
$ limϵ↘0‖a(H,⋅)−aϵ(H,⋅)‖Lpp−1(˜Ωϵ,T)=0, $ |
and the lemma holds from (2.9).
This section is devoted to the proof of our main result, Theorem 1.6. We start with proving our main tools for convergence lemmas for the zero extensions, Lemmas 3.1–3.7. Then we apply these tools to obtain the convergence lemmas, Lemmas 3.8–3.10. To conclude our main result, we apply an indirect method. By negating the conclusion of Theorem 1.6, we show that (3.1) contradicts Lemma 3.9 and Lemma 3.10.
Let $ \bar{u}_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) \cap L^{\infty} \big(0, T; L^{2}(\mathbb{R}^{n}) \big) $ be the zero extension of $ u_{k} - \gamma_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) \cap L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) $ in Theorem 1.6. Also we define $ \bar{u} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) \cap L^{\infty} \big(0, T; L^{2}(\mathbb{R}^{n}) \big) $ as the zero extension of $ u - \gamma \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega) \big) \cap L^{\infty} \big(0, T; L^{2}(\Omega) \big) $ in (1.6). To prove Theorem 1.6, we will assume that the conclusion of Theorem 1.6 does not hold. Then there exist $ \delta_{0} > 0 $ and a subsequence, which will be still denoted as $ u_{k} $ $ (k \in \mathbb{N}) $, such that
$ [‖Duk−Du‖Lp(ΩkT∩ΩT)+‖Duk‖Lp(ΩkT∖ΩT)+‖Du‖Lp(ΩT∖ΩkT)]>δ0. $ |
So by (1.7) and (1.9), it follows that
$ ∫RnT|Dˉuk−Dˉu|pdxdt>cδ0. $ | (3.1) |
Later, we will show that a contradiction occurs due to (3.1).
To prove Theorem 1.6, we first derive the energy estimates for regularized parabolic problems in (1.10). We test (1.10) by $ u_{k}- \gamma_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) \cap C \big([0, T]; L^{2} (\Omega^{k}) \big) $ to find that
$ ∫τ0⟨⟨∂tuk,uk−γk⟩⟩Ωkdt+∫Ωkτ⟨ak(Duk,x,t),Duk−Dγk⟩dxdt=∫Ωkτ⟨|Fk|p−2Fk,Duk−Dγk⟩+fk(uk−γk)dxdt, $ |
for any $ \tau \in [0, T] $, which implies that
$ ∫τ0⟨⟨∂t(uk−γk),uk−γk⟩⟩Ωkdt+∫Ωkτ⟨ak(Duk,x,t)−ak(Dγk,x,t),Duk−Dγk⟩dxdt=∫Ωkτ⟨|Fk|p−2Fk,Duk−Dγk⟩+fk(uk−γk)dxdt−∫Ωkτ⟨ak(Dγk,x,t),Duk−Dγk⟩dxdt−∫τ0⟨⟨∂tγk,uk−γk⟩⟩Ωkdt, $ |
for any $ \tau \in [0, T] $. So by Poincaré's inequality and Lemma 2.7,
$ sup0≤τ≤T∫Ωk|(uk−γk)(⋅,τ)|2dx+∫ΩkT|Duk−Dγk|pdxdt≤c[‖Fk‖Lp(ΩkT)+‖fk‖Lp′(0,T;W−1,p′(Ωk))+‖Dγk‖Lp(ΩkT)+‖∂tγk‖Lp′(0,T;W−1,p′(Ωk))]. $ |
Here, the constant $ c > 0 $ for Poincaré's inequality only depends on the size of the domain and $ 1 < p < \infty $, see [5, Theorem 6.30]. By taking $ \bar{u}_{k} = u_{k} - \gamma_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) \cap L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) $,
$ sup0≤τ≤T∫Ωk|ˉuk(⋅,τ)|2dx+∫ΩkT|Dˉuk|pdxdt≤c[‖|Fk|p−2Fk‖Lp′(ΩkT)+‖fk‖Lp′(0,T;W−1,p′(Ωk))+‖Dγk‖Lp(ΩkT)+‖∂tγk‖Lp′(0,T;W−1,p′(Ωk))]. $ | (3.2) |
The domain $ \Omega^{k} $ depends on the function $ \bar{u}_{k} $ $ (k \in \mathbb{N}) $. To deal with the convergence of the functions, we need to consider the domain of the functions. It is the main reason why we adapted Definitions 1.2–1.5.
To use the compactness method, we need to show that the right-hand side of (3.2) is bounded uniformly. To do it, we use the zero extensions to $ \mathbb{R}^{n}_{T} $, which makes the domain of the functions independent of $ k \in \mathbb{N} $.
Let $ \bar{v}_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ be the zero extensions of $ v_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) $ from $ \Omega_{T}^{k} $ to $ \mathbb{R}^{n}_{T} $. Also for $ h_{k} \in W^{-1, p'}(\Omega^{k}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $, we define $ \bar{h}_{k} \in W^{-1, p'}(\mathbb{R}^{n}) $ which corresponds to the zero extension in Corollary 3.3. Under the assumption (1.7), we obtain the following results.
$ (1) $ [Lemma 3.1] If $ v_{k} \in L^{q}(\Omega_{T}^{k}) \ \overset{\ast}{\to} \ v_{\infty} \in L^{q}(\Omega_{T}^{\infty}) $ $ (1 < q < \infty) $ then
$ ˉvk → ˉv∞ in Lq(RnT). $ |
$ (2) $ [Lemma 3.4] If $ h_{k} \in W^{-1, p'}(\Omega^{k}) \ \overset{\ast}{\to} \ h_{\infty} \in W^{-1, p'}(\Omega^{\infty}) $ then
$ ˉhk ∗→ ˉh∞ in W−1,p′(Rn). $ |
$ (3) $ [Lemma 3.5] If $ h_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) \ \overset{\ast}{\to} \ h_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $ then
$ ˉhk ∗→ ˉh∞ in Lp′(0,T;W−1,p′(Rn)). $ |
$ (4) $ [Lemma 3.6] If the sequence $ \| v_{k} \|_{L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) } $ $ (k \in \mathbb{N}) $ is bounded then there exists $ v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $ with
$ ˉvk ∗⇀ ˉv∞ in Lp′(0,T;W−1,p′(Rn)). $ |
$ (5) $ [Lemma 3.7] If the sequence $ \| v_{k} \|_{ L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) } $ $ (k \in \mathbb{N}) $ is bounded then there exists $ v_{\infty} \in L^{\infty} \big(0, T; L^{2}(\Omega^{\infty}) \big) $ with
$ ˉvk ∗⇀ ˉv∞ in L∞(0,T;L2(Rn)). $ |
We apply Lemmas 3.1–3.7 to (3.2) as follows. By using Lemma 3.1, we will show that the zero extensions of $ |F_{k}|^{p-2}F_{k} $, $ \gamma_{k} $ and $ D\gamma_{k} $ converge strongly-$ \ast $. By using Lemma 3.5, we will show that the zero extensions of $ f_{k} $ and $ \partial_{t} \gamma_{k} $ converge strongly-$ \ast $. With Lemma 3.6, the existence of weakly-$ \ast $ converging subsequence of $ \partial_{t} \bar{u}_{k} $ in $ L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) $ will be obtained. Also with Lemma 3.7, the existence of weakly-$ \ast $ converging subsequence of $ \bar{u}_{k} $ in $ L^{\infty} \big(0, T; L^{2}(\mathbb{R}^{n}) \big) $ will be obtained.
We prove our main tools for convergence lemmas. From now on, we denote $ 1_{E} $ as the indicator function on the set $ E $.
Lemma 3.1. With the assumption (1.7), suppose that $ 1 < q < \infty $ and $ N \geq 1 $. If
$ Vk∈Lq′(ΩkT,RN) ∗→ V∞∈Lq′(Ω∞T,RN), $ |
then
$ ˉVk → ˉV∞ in Lq′(RnT,RN), $ |
where $ \bar{V}_{k} \in L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $ is the zero extension of $ V_{k} \in L^{q'}(\Omega^{k}_{T}, \mathbb{R}^{N}) $.
Proof. Suppose that $ V_{k} \in L^{q'}(\Omega_{T}^{k}, \mathbb{R}^{N}) \ \overset{\ast}{\to} \ V_{\infty} \in L^{q'}(\Omega_{T}^{\infty}, \mathbb{R}^{N}) $. By (1.7),
$ ˉη1ΩkT → ˉη1Ω∞T in Lq(RnT,RN), $ |
for any $ \bar{\eta} \in L^{q}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $. So by Definition 1.2, we have that
$ ∫RnT⟨ˉVk,ˉη⟩dxdt=∫ΩkT⟨Vk,ˉη1ΩkT⟩dxdt→∫Ω∞T⟨V∞,ˉη1Ω∞T⟩dxdt=∫RnT⟨ˉV∞,ˉη⟩dxdt, $ |
which implies that
$ ˉVk⇀ˉV∞ in Lq′(RnT,RN). $ | (3.3) |
Suppose the lemma does not hold. Then there exist $ \delta > 0 $ and a subsequence (which will be still denoted as $ \{ \bar{V}_{k} \}_{k = 1}^{\infty} $) such that
$ ∫RnT|ˉVk−ˉV∞|q′dxdt>δ(k∈N). $ | (3.4) |
Choose $ \bar{\eta}_{k} = |\bar{V}_{k} - \bar{V}_{\infty}|^{q'-2}(\bar{V}_{k} - \bar{V}_{\infty}) $ then
$ ‖ˉηk‖Lq(RnT,RN)=‖ˉVk−ˉV∞‖1q−1Lq′(RnT,RN).(k∈N). $ |
Since $ (\bar{V}_{k} - \bar{V}_{\infty}) \rightharpoonup 0 $ in $ L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $ and any weakly convergent sequence is bounded, we see that $ \{ \bar{\eta}_{k} \}_{k = 1}^{\infty} $ is bounded in $ L^{q}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $. So there exists a subsequence (which will be still denoted as $ \{ \bar{\eta}_{k} \}_{k = 1}^{\infty} $) such that
$ ˉηk ⇀ ˉη∞ in Lq(RnT,RN), $ |
for some $ \bar{\eta}_{\infty} \in L^{q}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $. By (1.7) and that $ (\bar{V}_{k} - \bar{V}_{\infty}) \rightharpoonup 0 $ in $ L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $,
$ ˉη∞=0 in RnT∖Ω∞T. $ |
Also we have that
$ ˉηk⋅1ΩkT⇀ˉη∞⋅1Ω∞T in Lp(RnT,RN), $ | (3.5) |
because for any $ \tilde{V} \in L^{q'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{N}) $,
$ ∫RnT⟨˜V,ˉηk1ΩkT⟩dxdt=∫RnT⟨˜V⋅1Ω∞T,ˉηk⟩dxdt+∫RnT⟨˜V(1ΩkT−1Ω∞T),ˉηk⟩dxdt→∫RnT⟨˜V,ˉη∞1Ω∞T⟩dxdt, $ |
which holds from $ |\Omega^{k} \setminus \Omega| \to 0 $ and $ |\Omega \setminus \Omega^{k}| \to 0 $ by (1.7). From (3.5) and that $ V_{k} \in L^{q'}(\Omega_{T}^{k}, \mathbb{R}^{N}) \ \overset{\ast}{\to} \ V_{\infty} \in L^{q'}(\Omega_{T}^{\infty}, \mathbb{R}^{N}) $, we use Definition 1.2 to find that
$ ∫RnT⟨ˉVk,ˉηk⟩dxdt=∫ΩkT⟨Vk,ˉηk⋅1ΩkT⟩dxdt→∫Ω∞T⟨V∞,ˉη∞⋅1Ω∞T⟩dxdt=∫RnT⟨ˉV∞,ˉη∞⟩dxdt, $ |
which implies that
$ ∫RnT⟨ˉVk−ˉV∞,ˉηk⟩dxdt=∫RnT⟨ˉVk,ˉηk⟩dxdt−∫RnT⟨ˉV∞,ˉηk⟩dxdt→0. $ | (3.6) |
On the other-hand, by (3.4), we find that
$ ∫RnT⟨ˉVk−ˉV∞,ˉηk⟩dxdt=∫RnT|ˉVk−ˉV∞|q′dxdt>δ>0(k∈N), $ |
which contradicts (3.6). So the lemma follows.
We have the following characterization for $ h \in W^{-1, p'}(\Omega) $.
Lemma 3.2. With the assumption (1.7), suppose that $ h \in W^{-1, p'}(\Omega) $ $ (1 < p < \infty) $. Then there exists $ v \in W^{1, p}_{0}(\Omega) $ such that
$ ∫Ω⟨(|v|p−2v,|Dv|p−2Dv),(φ,Dφ)⟩dx=⟨⟨h,φ⟩⟩⟨W−1,p′(Ω),W1,p0(Ω)⟩, $ |
for any $ \varphi \in W^{1, p}_{0}(\Omega) $. In addition, we have that $ \| h \|_{W^{-1, p'}(\Omega)} = \| v \|_{W^{1, p}_{0}(\Omega)}^{p-1} $.
Proof. Since $ h \in W^{-1, p'}(\Omega) $, there exists $ H = (H_{0}, H_{1}, \cdots, H_{n}) \in L^{p'} (\Omega, \mathbb{R}^{n+1}) $ satisfying
$ ⟨⟨h,φ⟩⟩⟨W−1,p′(Ω),W1,p0(Ω)⟩=∫Ω⟨H,(φ,Dφ)⟩dx for any φ∈W1,p0(Ω), $ |
by Proposition 2.5. Let $ v \in W^{1, p}_{0}(\Omega) $ be the weak solution of
$ {|v|p−2v−div|Dv|p−2Dv=H0−div[(H1,⋯,Hn)] in Ω,v=0 on ∂Ω. $ |
Then for any $ \varphi \in W^{1, p}(\Omega) $, we get
$ ∫Ω⟨(|v|p−2v,|Dv|p−2Dv),(φ,Dφ)⟩dx=∫Ω⟨H,(φ,Dφ)⟩dx=⟨⟨h,φ⟩⟩⟨W−1,p′(Ω),W1,p0(Ω)⟩. $ |
So by the definition of $ \| \cdot \|_{W^{-1, p'}(\Omega)} $,
$ ‖h‖W−1,p′(Ω)=sup‖φ‖W1,p0(Ω)=1⟨⟨h,φ⟩⟩⟨W−1,p′(Ω),W1,p0(Ω)⟩≤‖v‖p−1W1,p0(Ω). $ |
By taking $ \varphi = \frac{ v }{ \| v \|_{W^{1, p}_{0}(\Omega)} } \in W^{1, p}_{0}(\Omega) $, we get
$ ‖v‖p−1W1,p0(Ω)≤‖h‖W−1,p′(Ω). $ |
By combining the above two estimates, we get $ \| h \|_{W^{-1, p'}(\Omega)} = \| v \|_{W^{1, p}_{0}(\Omega)}^{p-1} $.
We extend $ h \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) $ to $ \bar{h} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) $ in Corollary 3.3, which can be viewed as a natural zero extension because of (3.7).
Corollary 3.3. With the assumption (1.7), suppose that $ h \in W^{-1, p'}(\Omega) $ $ (1 < p < \infty) $. Then for $ v \in W^{1, p}_{0}(\Omega) $ in Lemma 3.2, one can define $ \bar{h} \in W^{-1, p'}(\mathbb{R}^{n}) $ as
$ ⟨⟨ˉh,ˉφ⟩⟩⟨W−1,p′(Rn),W1,p0(Rn)⟩=∫Rn⟨(|ˉv|p−2ˉv,|Dˉv|p−2Dˉv),(ˉφ,Dˉφ)⟩dx, $ | (3.7) |
for any $ \bar{\varphi} \in W^{1, p}_{0}(\mathbb{R}^{n}) $, where $ \bar{v} \in W^{1, p}_{0}(\mathbb{R}^{n}) $ is the zero extension of $ v \in W^{1, p}_{0}(\Omega) $. Moreover, we have that
$ ⟨⟨ˉh,ˉφ⟩⟩⟨W−1,p′(Rn),W1,p0(Rn)⟩=⟨h,φ⟩⟨W−1,p′(Ω),W1,p0(Ω)⟩ $ | (3.8) |
for any $ \varphi \in W^{1, p}_{0}(\Omega) $ and the zero extension $ \bar{\varphi} \in W^{1, p}_{0}(\mathbb{R}^{n}) $ of $ \varphi \in W^{1, p}_{0}(\Omega) $. In addition,
$ ‖ˉh‖W−1,p′(Rn)=‖ˉv‖p−1W1,p0(Rn)=‖v‖p−1W1,p0(Ω)=‖h‖W−1,p′(Ω). $ |
In Definition 1.4, we defined a convergence for a sequence of the domains, say $ h_{k} \in W^{-1, p'}(\Omega^{k}) \overset{\ast}{\to} h_{\infty} \in W^{-1, p'}(\Omega^{\infty}) $. But this convergence implies strong convergence by considering the zero extension in Corollary 3.3 as in the next lemmas.
Lemma 3.4. Under the assumption (1.7) and $ 1 < p < \infty $, if $ h_{k} \in W^{-1, p'}(\Omega^{k}) \, \overset{\ast}{\to} \, h_{\infty} \in W^{-1, p'}(\Omega^{\infty}) $ then
$ ˉhk ∗→ ˉh∞ in W−1,p′(Rn), $ |
and
$ {∫Rn(|ˉvk|2+|ˉv∞|2)p−22|ˉvk−ˉv∞|2dx→0,∫Rn(|Dˉvk|2+|Dˉv∞|2)p−22|Dˉvk−Dˉv∞|2dx→0, $ | (3.9) |
for $ \bar{v}_{k} \in W^{1, p}_{0}(\mathbb{R}^{n}) $ and $ \bar{h}_{k} \in W^{-1, p'}(\mathbb{R}^{n}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ in Corollary 3.3.
Proof. By using Corollary 3.3, define $ \bar{h}_{k} \in W^{-1, p'}(\mathbb{R}^{n}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ as
$ ⟨⟨ˉhk,ˉφ⟩⟩⟨W−1,p′(Rn),W1,p0(Rn)⟩=∫Rn⟨(|ˉvk|p−2ˉvk,|Dˉvk|p−2Dˉvk),(ˉφ,Dˉφ)⟩dx, $ | (3.10) |
for any $ \bar{\varphi} \in W^{1, p}_{0}(\mathbb{R}^{n}) $. Here, $ v_{k} \in W^{1, p}_{0}(\Omega^{k}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ is defined in Lemma 3.2 and $ \bar{v}_{k} \in W^{1, p}_{0}(\mathbb{R}^{n}) $ the zero extension of $ v_{k} \in W^{1, p}_{0}(\Omega^{k}) $. Moreover,
$ ‖ˉhk‖W−1,p′(Rn)=‖ˉvk‖p−1W1,p0(Rn)=‖vk‖p−1W1,p0(Ω)=‖hk‖W−1,p′(Ω)(k∈N∪{∞}). $ |
For $ k \in \mathbb{N} \cup \{ \infty \} $, let $ V_{k} = \left(|v_{k}|^{p-2} v_{k}, |Dv_{k}|^{p-2} Dv_{k} \right) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) $ and $ \bar{V}_{k} \in L^{p'} (\mathbb{R}^{n}, \mathbb{R}^{n+1}) $ be the zero extension of $ V_{k} $.
Suppose that (3.9) does not hold. Then there exist $ \delta > 0 $ and a subsequence, which will be still denoted as $ \{ \bar{v}_{k} \}_{k = 1}^{\infty} $, such that
$ ∫Rn(|ˉvk|2+|ˉv∞|2)p−22|ˉvk−ˉv∞|2dx+∫Rn(|Dˉvk|2+|Dˉv∞|2)p−22|Dˉvk−Dˉv∞|2dx>δ(k∈N). $ | (3.11) |
Since $ \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})} ^{-1} $ is bounded in $ W^{1, p}_{0}(\mathbb{R}^{n}) $, there exists a subsequence, which will be still denoted as $ \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})} ^{-1} $ $ (k \in \mathbb{N}) $, such that
$ ˉvk‖ˉvk‖−1W1,p0(Rn) ⇀ ˜v0 in W1,p0(Rn), $ |
for some $ v_{0} \in W^{1, p}_{0}(\Omega^{\infty}) $ and the zero extension $ \bar{v}_{0} \in W^{1, p}_{0}(\mathbb{R}^{n}) $ of $ v_{0} \in W^{1, p}_{0}(\Omega^{\infty}) $. By taking $ \bar{\varphi} = \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{W^{1, p}_{0}(\mathbb{R}^{n})} ^{-1} $ in (3.10), we find from Definition 1.4 that
$ ‖ˉvk‖p−1W1,p0(Rn)=1‖ˉvk‖W1,p0(Rn)∫Rn⟨(|ˉvk|p−2ˉvk,|Dˉvk|p−2Dˉvk),(ˉvk,Dˉvk)⟩dx=⟨⟨ˉhk,ˉvk‖ˉvk‖−1W1,p0(Rn)⟩⟩⟨W−1,p′(Rn),W1,p0(Rn)⟩=⟨⟨hk,vk‖ˉvk‖−1W1,p0(Rn)⟩⟩⟨W−1,p′(Ωk),W1,p0(Ωk)⟩k→∞⟶⟨h∞,v0⟩⟨W−1,p′(Ω∞),W1,p0(Ω∞)⟩. $ |
So $ \bar{v}_{k} $ is bounded in $ W^{1, p}_{0}(\mathbb{R}^{n}) $, and there exist $ \bar{v}_{0} \in W^{1, p}_{0}(\mathbb{R}^{n}) $, $ \bar{V}_{0} \in L^{p'}(\mathbb{R}^{n}, \mathbb{R}^{n+1}) $ and a subsequence, which will be still denoted as $ \{ \bar{v}_{k} \}_{k = 1}^{\infty} $, such that
$ {Dˉvk ⇀ Dˉv0 in Lp(Rn,Rn),ˉvk ⇀ ˉv0 in Lp(Rn),ˉVk ⇀ ˉV0 in Lp′(Rn,Rn+1). $ | (3.12) |
Recall that $ \bar{V}_{k} = \left(|\bar{v}_{k}|^{p-2} \bar{v}_{k}, |D\bar{v}_{k}|^{p-2} D\bar{v}_{k} \right) \in L^{p'} (\mathbb{R}^{n}, \mathbb{R}^{n+1}) $ is the zero extension of $ V_{k} = \left(|v_{k}|^{p-2} v_{k}, |Dv_{k}|^{p-2} Dv_{k} \right) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) $. Because of the assumption (1.7), one can also show that
$ ˉv0=0 a.e. in Rn∖Ω∞andˉV0=0 a.e. in Rn∖Ω∞. $ | (3.13) |
Also by (1.7),
$ there exists K∈N such that suppφ⊂⊂Ωk(k≥K) for any φ∈C∞c(Ω∞). $ | (3.14) |
From (3.13), (3.14) and Definition 1.4, we obtain that
$ ∫Rn⟨ˉVk,(ˉφ,Dˉφ)⟩dx=∫Ωk⟨Vk,(φ,Dφ)⟩dx→∫Ω∞⟨V∞,(φ,Dφ)⟩dx, $ |
for any $ \varphi \in C_{c}^{\infty}(\Omega^{\infty}) $ and the zero extension $ \bar{\varphi} \in C_{c}^{\infty}(\mathbb{R}^{n}) $ of $ \varphi \in C_{c}^{\infty}(\Omega^{\infty}) $. Also from (3.12), (3.13) and (3.14), we obtain that
$ ∫Rn⟨ˉVk,(ˉφ,Dˉφ)⟩dx→∫Rn⟨ˉV0,(ˉφ,Dˉφ)⟩dx=∫Ω∞⟨V0,(φ,Dφ)⟩dx, $ |
for any $ \varphi \in C_{c}^{\infty}(\Omega^{\infty}) $ and the zero extension $ \bar{\varphi} \in C_{c}^{\infty}(\mathbb{R}^{n}) $ of $ \varphi \in C_{c}^{\infty}(\Omega^{\infty}) $. Thus
$ ∫Rn⟨ˉV∞−ˉV0,(φ,Dφ)⟩dx=0 $ |
for any $ \varphi \in C_{c}^{\infty}(\Omega^{\infty}) $. For any $ \varphi \in W^{1, p}_{0}(\Omega^{\infty}) $, there exists $ \varphi_{\epsilon} \in C_{c}^{\infty}(\Omega^{\infty}) $ with $ \| \varphi - \varphi_{\epsilon} \|_{W^{1, p}_{0}(\Omega^{\infty})} < \epsilon $, which implies that
$ |∫Ω∞⟨ˉV∞−ˉV0,(φ,Dφ)⟩dx|≤ϵ(‖ˉV0‖Lp′(Ω∞)+‖ˉV∞‖Lp′(Ω∞)). $ |
Since $ \epsilon > 0 $ was arbitrary chosen, we find that
$ ∫Rn⟨ˉV∞−ˉV0,(φ,Dφ)⟩dx=∫Ω∞⟨ˉV∞−ˉV0,(φ,Dφ)⟩dx=0 $ | (3.15) |
for any $ \varphi \in W^{1, p}_{0}(\Omega^{\infty}) $.
Fix $ \varphi \in C_{c}^{\infty}(\Omega^{\infty}) $. By (3.14), there exists $ K \in \mathbb{N} $ with
$ ˉvk−ˉv∞φ∈W1,p0(Ωk)∩W1,p0(Rn)(k≥K). $ |
By a direct calculation, it follows that
$ ∫Rn⟨ˉVk−ˉV∞,(ˉvk−ˉv∞,D[ˉvk−ˉv∞])⟩dx=∫Rn⟨ˉVk−ˉV∞,((ˉvk−ˉv∞φ),D[(ˉvk−ˉv∞φ)])⟩dx−∫Rn⟨ˉVk−ˉV∞,(ˉv∞(1−φ),D[ˉv∞(1−φ)])⟩dx. $ | (3.16) |
for any $ k \geq K $. By (3.12) and (3.14), $ (\bar{v}_{k} - \bar{v}_{\infty} \varphi) \rightharpoonup (\bar{v}_{0} - \bar{v}_{\infty} \varphi) $ in $ W^{1, p}_{0}(\mathbb{R}^{n}) $. So by Definition 1.4,
$ ∫Rn⟨ˉVk,((ˉvk−ˉv∞φ),D(ˉvk−ˉv∞φ))⟩dx→∫Rn⟨ˉV∞,((ˉv0−ˉv∞φ),D(ˉv0−ˉv∞φ))⟩dx, $ |
and
$ ∫Rn⟨ˉV∞,((ˉvk−ˉv∞φ),D(ˉvk−ˉv∞φ))⟩dx→∫Rn⟨ˉV∞,((ˉv0−ˉv∞)φ,D(ˉv0−ˉv∞φ))⟩dx, $ |
which implies that
$ ∫Rn⟨ˉVk−ˉV∞,((ˉvk−ˉv∞φ),D(ˉvk−ˉv∞φ))⟩dx→0. $ | (3.17) |
By (3.12),
$ ∫Rn⟨ˉVk−ˉV∞,(ˉv∞(1−φ),D[ˉv∞(1−φ)])⟩dx→∫Rn⟨ˉV0−ˉV∞,(ˉv∞(1−φ),D[ˉv∞(1−φ)])⟩dx. $ | (3.18) |
By combining (3.17) and (3.18), we use (3.15) to find that
$ ∫Rn⟨ˉVk−ˉV∞,(ˉvk−ˉv∞,D[ˉvk−ˉv∞])⟩dx→∫Rn⟨ˉV0−ˉV∞,(ˉv∞(1−φ),D[ˉv∞(1−φ)])⟩dx=0, $ | (3.19) |
because of that $ \bar{v}_{\infty} (1-\varphi) \in W^{1, p}_{0}(\Omega^{\infty}) $. Then by Lemma 2.11,
$ ∫Rn(|ˉvk|2+|ˉv∞|2)p−22|ˉvk−ˉv∞|2+(|Dˉvk|2+|Dˉv∞|2)p−22|Dˉvk−Dˉv∞|2dx→0, $ |
but this contradicts (3.11) and we find that (3.9) holds. So by Lemma 2.12,
$ ∫Rn|ˉVk−ˉV∞|p′dx≤c[∫Rn(|Dˉvk|2+|Dˉv∞|2)p−22|Dˉvk−Dˉv∞|2dx]12[∫Rn|Dˉvk|p+|Dˉv∞|pdx]12+c[∫Rn(|ˉvk|2+|ˉv∞|2)p−22|ˉvk−ˉv∞|2dx]12[∫Rn|ˉvk|p+|ˉv∞|pdx]12→0. $ |
This implies that
$ ‖ˉhk−ˉh∞‖W−1,p′(Rn)=sup‖ˉφ‖W1,p0(Rn)=1⟨⟨ˉhk−ˉh∞,ˉφ⟩⟩W−1,p′(Rn),W1,p0(Rn)=sup‖ˉφ‖W1,p0(Rn)=1∫Rn⟨ˉVk−ˉV∞,(ˉφ,Dˉφ)⟩dx→0, $ |
and the lemma follows.
Lemma 3.5. Under the assumption (1.7) and $ 1 < p < \infty $, suppose that $ h_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) \ \overset{\ast}{\to} \ h_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $. Then
$ ˉhk → ˉh∞ in Lp′(0,T;W−1,p′(Rn)), $ |
and
$ {∫RnT(|ˉvk|2+|ˉv∞|2)p−22|ˉvk−ˉv∞|2dx→0,∫RnT(|Dˉvk|2+|Dˉv∞|2)p−22|Dˉvk−Dˉv∞|2dx→0, $ | (3.20) |
for $ \bar{v}_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $ and $ \bar{h}_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ in Corollary 3.3.
Proof. For any $ t \in [0, T] $, by using Corollary 3.3, define $ \bar{h}_{k}(\cdot, t) \in W^{-1, p'}(\mathbb{R}^{n}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ as
$ ⟨⟨ˉhk(⋅,t),ˉφ(⋅,t)⟩⟩⟨W−1,p′(Rn),W1,p0(Rn)⟩=∫Rn⟨(|ˉvk(⋅,t)|p−2ˉvk(⋅,t),|Dˉvk(⋅,t)|p−2Dˉvk(⋅,t)),(ˉφ(⋅,t),Dˉφ(⋅,t))⟩dx, $ | (3.21) |
for any $ \bar{\varphi} (\cdot, t) \in W^{1, p}_{0}(\mathbb{R}^{n}) $. Here, $ v_{k} (\cdot, t) \in W^{1, p}_{0}(\Omega^{k}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ is defined in Lemma 3.2 and $ \bar{v}_{k} (\cdot, t) \in W^{1, p}_{0}(\mathbb{R}^{n}) $ is the zero extension of $ v_{k} (\cdot, t) \in W^{1, p}_{0}(\Omega^{k}) $.
For any $ t \in [0, T] $, let $ \bar{V}_{k}(\cdot, t) \in L^{p'} (\mathbb{R}^{n}, \mathbb{R}^{n+1}) $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ be the zero extension of
$ Vk(⋅,t):=(|vk(⋅,t)|p−2vk(⋅,t),|Dvk(⋅,t)|p−2Dvk(⋅,t))∈Lp′(Ωk,Rn+1). $ | (3.22) |
Suppose that (3.20) does not hold. Then there exist $ \delta > 0 $ and a subsequence, which will be still denoted as $ \{ \bar{v}_{k} \}_{k = 1}^{\infty} $, such that
$ ∫RnT(|ˉvk|2+|ˉv∞|2)p−22|ˉvk−ˉv∞|2dxdt+∫RnT(|Dˉvk|2+|Dˉv∞|2)p−22|Dˉvk−Dˉv∞|2dxdt>δ(k∈N). $ | (3.23) |
Since $ \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} $ $ (k \in \mathbb{N}) $ is bounded in $ L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $, there exist $ v_{0} \in L^{p} \big(0, T; W^{1, p}_{0} (\Omega^{\infty}) \big) $ and a subsequence, which will be still denoted as $ \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} $ $ (k \in \mathbb{N}) $, such that
$ (ˉvk,Dˉvk)‖ˉvk‖−1Lp(0,T;W1,p0(Rn))⇀(˜v0,D˜v0) in Lp(RnT,Rn+1), $ |
where $ \tilde{v}_{0} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $ is the zero extension of $ v_{0} \in L^{p} \big(0, T; W^{1, p}_{0} (\Omega^{\infty}) \big) $. By a direct calculation and Corollary 3.3,
$ ‖ˉvk‖p−1Lp(0,T;W1,p0(Rn))=1‖ˉvk‖Lp(0,T;W1,p0(RnT))∫RnT⟨(|ˉvk|p−2ˉvk,|Dˉvk|p−2Dˉvk),(ˉvk,Dˉvk)⟩dxdt=∫T0⟨⟨ˉhk(⋅,t),ˉvk(⋅,t)‖ˉvk‖−1Lp(0,T;W1,p0(Rn))⟩⟩⟨W−1,p′(Rn),W1,p0(Rn)⟩dt. $ |
Since $ v_{k}(\cdot, t) \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big)} ^{-1} \in W^{1, p}_{0}(\Omega^{k}) $ $ (k \in \mathbb{N}) $, we find from (3.8) in Corollary 3.3 and Definition 1.5 that
$ ∫T0⟨⟨ˉhk(⋅,t),ˉvk(⋅,t)‖ˉvk‖−1Lp(0,T;W1,p0(Rn))⟩⟩⟨W−1,p′(Rn),W1,p0(Rn)⟩dt=∫T0⟨⟨hk(⋅,t),vk(⋅,t)‖ˉvk‖−1Lp(0,T;W1,p0(Rn))⟩⟩⟨W−1,p′(Ωk),W1,p0(Ωk)⟩dt→∫T0⟨⟨h∞(⋅,t),v0(⋅,t)⟩⟩⟨W−1,p′(Ω∞),W1,p0(Ω∞)⟩dt. $ |
By taking $ \varphi = \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} $ in (3.21), we combine the above equality and limit to find that
$ ‖ˉvk‖p−1Lp(0,T;W1,p0(Rn))→∫T0⟨⟨h∞(⋅,t),v0(⋅,t)⟩⟩⟨W−1,p′(Ω∞),W1,p0(Ω∞)⟩dt. $ |
So $ \bar{v}_{k} $ is bounded in $ L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $, and there exists a subsequence, which will be still denoted as $ \{ \bar{v}_{k} \}_{k = 1}^{\infty} $, such that
$ {Dˉvk ⇀ Dˉv0 in Lp(RnT,Rn),ˉvk ⇀ ˉv0 in Lp(RnT),ˉVk ⇀ ˉV0 in Lp′(RnT,Rn+1), $ | (3.24) |
where $ \bar{v}_{0} \in L^{p}(\mathbb{R}^{n}_{T}) $ is weakly differentiable in $ \mathbb{R}^{n}_{T} $ with respect to $ x $-variable. Because of the assumption (1.7), one can also show that
$ ˉv0=0 a.e. in RnT∖Ω∞TandˉV0=0 a.e. in RnT∖Ω∞T. $ | (3.25) |
Let $ [w]_{h}(\cdot, t) = \frac{1}{h} \int_{0}^{h} w(\cdot, t + \tau) \, d\tau $ be Steklov average of $ w $. In view of (1.7),
$ there exists K∈N such that suppφ⊂⊂Ωk(k≥K) for any φ∈C∞c(Ω∞). $ | (3.26) |
By (3.21) and Definition 1.5, it follows that
$ ∫Rn⟨[ˉVk]h(x,t),(ˉφ(x,t),Dˉφ(x,t))⟩dx=1h∫t+ht∫Ωk⟨Vk(x,τ),(φ(x,t),Dφ(x,t))⟩dxdτ→1h∫t+ht∫Ω∞⟨V∞(x,τ),(φ(x,t),Dφ(x,t))⟩dxdτ=∫Rn⟨[ˉV∞]h(x,t),(ˉφ(x,t),Dˉφ(x,t))⟩dx, $ |
for any $ \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) $. By (3.24) and (3.26),
$ ∫Rn⟨[ˉVk]h(x,t),(ˉφ(x,t),Dˉφ(x,t))⟩dx=1h∫t+ht∫Rn⟨ˉVk(x,τ),(φ(x,t),Dφ(x,t))⟩dxdτ→1h∫t+ht∫Rn⟨ˉV0(x,τ),(φ(x,t),Dφ(x,t))⟩dxdτ=∫Rn⟨[ˉV0]h(x,t),(ˉφ(x,t),Dˉφ(x,t))⟩dx, $ |
for any $ \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) $. Thus
$ \begin{equation*} \begin{aligned} \label{} \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{\infty} - \bar{V}_{0}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx = 0 \end{aligned} \end{equation*} $ |
for any $ \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) $. For any $ \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) $, there exists $ \varphi_{\epsilon} (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) $ with $ \| \varphi (\cdot, t) - \varphi_{\epsilon} (\cdot, t) \|_{W^{1, p}_{0}(\Omega^{\infty})} < \epsilon $. So we find that
$ \begin{equation*} \begin{aligned} \label{} & \left| \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{\infty} - \bar{V}_{0}]_{h} (x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx \right| \leq \epsilon \left[ \| [\bar{V}_{\infty}]_{h}(\cdot, t) \|_{L^{p'}(\mathbb{R}^{n})} + \| [\bar{V}_{0}]_{h} (\cdot, t) \|_{L^{p'}(\mathbb{R}^{n})} \right], \end{aligned} \end{equation*} $ |
for any $ \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) $ and the zero extension $ \bar{\varphi} (\cdot, t) \in W^{1, p}_{0}(\mathbb{R}^{n}) $ of $ \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) $. Since $ \epsilon > 0 $ was arbitrary chosen, we find from (3.25) that
$ \begin{equation*} \begin{aligned} \label{} 0 & = \int_{\mathbb{R}^{n}} \left \langle [\bar{V}_{\infty} - \bar{V}_{0}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx = \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}]_{h}(x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx \end{aligned} \end{equation*} $ |
for any $ \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) $. We now integrate it with respect to time variable $ t $ to find that
$ \begin{equation*} \begin{aligned} \label{} 0 & = \int_{\epsilon}^{T-\epsilon} \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}]_{h}(x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx dt \end{aligned} \end{equation*} $ |
for any $ 0 < h < \epsilon < T $ and $ \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega) \big) $. Since $ V_{\infty} - V_{0} \in L^{p'}(\Omega_{T}^{\infty}) $, we use [26, Lemma 3.2] to find that
$ \begin{equation*} \begin{aligned} \label{} 0 & = \int_{\epsilon}^{T-\epsilon} \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}](x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx dt, \end{aligned} \end{equation*} $ |
for any $ 0 < \epsilon < T $ and $ \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) $. Thus
$ \begin{equation} \begin{aligned} 0 & = \int_{0}^{T} \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}](x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx dt, \end{aligned} \end{equation} $ | (3.27) |
for any $ \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) $.
Fix $ \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) $. By (3.26), there exists $ K \in \mathbb{N} $ with
$ \begin{equation*} \label{} (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) (\cdot, t) \in W^{1, p}_{0}(\Omega^{k}) \cap W^{1, p}_{0}(\Omega^{\infty}) \qquad ( k \geq K). \end{equation*} $ |
By a direct calculation,
$ \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty}, D [ \bar{v}_{k} - \bar{v}_{\infty} ] \right) \right \rangle \, dx dt \\ & \quad = \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( (\bar{v}_{k} - \bar{v}_{\infty} \varphi ), D [\bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \\ & \qquad - \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt . \end{aligned} \end{equation} $ | (3.28) |
Also by (3.24), $ (\bar{v}_{k} - \bar{v}_{\infty} \varphi, D [\bar{v}_{k} - \bar{v}_{\infty} \varphi]) \rightharpoonup (\bar{v}_{0} - \bar{v}_{\infty} \varphi, D[\bar{v}_{0} -\bar{v}_{\infty} \varphi]) $ in $ L^{p}(\mathbb{R}^{n}_{T}) $. So by Definition 1.5,
$ \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} , \left( \bar{v}_{k} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{\infty} , \left( \bar{v}_{0} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{0} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt , \end{aligned} \end{equation*} $ |
and
$ \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{\infty} , \left( \bar{v}_{0} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{0} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt , \end{aligned} \end{equation*} $ |
which implies that
$ \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \to 0. \end{aligned} \end{equation} $ | (3.29) |
By (3.24),
$ \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty}, \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt \\ & \quad \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{0} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt. \end{aligned} \end{equation} $ | (3.30) |
By combining (3.28), (3.29) and (3.30), we use (3.27) to find that
$ \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty}, D [ \bar{v}_{k} - \bar{v}_{\infty} ] \right) \right \rangle \, dx dt \\ & \quad \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{0} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt = 0, \end{aligned} \end{equation} $ | (3.31) |
because of that $ \bar{v}_{\infty} (1-\varphi) \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) $. So by Lemma 2.11 and (3.22),
$ \begin{equation*} \begin{aligned} \label{} & \int_{ \mathbb{R}^{n}_{T} } \left( |\bar{v}_{k}|^{2} + |\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx dt + \int_{ \mathbb{R}^{n}_{T} } \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx dt \to 0, \end{aligned} \end{equation*} $ |
but this contradicts (3.23) and we find that (3.20) holds. Then by Lemma 2.12
$ \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}_{T}} |\bar{V}_{k} - \bar{V}_{\infty}|^{p'} \, dx dt \to 0, \end{aligned} \end{equation*} $ |
which implies that
$ \begin{equation*} \begin{aligned} \label{} \| \bar{h}_{k} - \bar{h}_{\infty} \|_{L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big)} & = \int_{0}^{T} \sup\limits_{ \| \bar{\varphi} \|_{ L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} = 1 } \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} - \bar{h}_{\infty} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\langle W^{-1, p'}(\mathbb{R}^{n}), W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \, dt \\ & = \int_{0}^{T} \sup\limits_{ \| \bar{\varphi} \|_{ L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} = 1 } \int_{\mathbb{R}^{n}} \left\langle {\left\langle {} \right.} \right. [\bar{V}_{k} - \bar{V}_{\infty}] , (\bar{\varphi}, D\bar{\varphi}) \left. {\left. {} \right\rangle } \right\rangle \, dx dt \\ & \to 0, \end{aligned} \end{equation*} $ |
and the lemma follows.
To obtain a weak convergence for $ \partial_{t} u_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) $ $ (k \in \mathbb{N}) $, we consider the zero extension in Corollary 3.3. We remark that
$ \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. h, \eta \left. {\left. {} \right\rangle } \right\rangle_{\Omega} \, dt = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{h}, \bar{\eta} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt, \end{equation*} $ |
for any $ \eta \in W^{1, p}_{0}(\Omega) $ and the zero extension $ \bar{\eta} \in W^{1, p}_{0}(\mathbb{R}^{n}) $ of $ \eta \in W^{1, p}_{0}(\Omega) $, where $ \bar{h} $ is defined in Corollary 3.3.
Lemma 3.6. Under the assumption (1.7) and $ 1 < p < \infty $, let $ \Omega^{k} \subset \mathbb{R}^{n} $ $ (k \in \mathbb{N}) $ be a sequence of open bounded domains. If $ v_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) $ $ (k \in \mathbb{N}) $ satisfy
$ \begin{equation*} \label{} \| v_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \leq M \qquad (k \in \mathbb{N}), \end{equation*} $ |
for some $ M > 0 $, then there exists $ v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $ such that
$ \begin{equation*} \label{} \bar{v}_{k} \ \overset{*}{\rightharpoonup} \ \bar{v}_{\infty} {{\ in \ }} L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \end{equation*} $ |
where $ \bar{v}_{k} $ $ (k \in \mathbb{N} \cup \{ \infty \}) $ is defined in Corollary 3.3, which implies that
$ \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{v}_{k} (\cdot, t) , \bar{\eta} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt & \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{v}_{\infty} (\cdot, t) , \bar{\eta} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt \end{aligned} \end{equation*} $ |
for any $ \bar{\eta} \in L^{p} \big(0, T; W^{1, p}_{0} (\mathbb{R}^{n}) \big) $.
Proof. Since $ v_{k} \in L^{p'} \big(0, T; W^{-1, p'}_{0}(\Omega^{k}) \big) $ $ (k \in \mathbb{N}) $, for each $ t \in [0, T] $, there exists $ V_{k}(\cdot, t) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) $ such that
$ \begin{equation} \left\langle {\left\langle {} \right.} \right. v_{k}(\cdot, t) , \varphi(\cdot) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} = \int_{\Omega^{k}} \langle V_{k} (\cdot, t), (\varphi, D\varphi) (\cdot) \rangle \, dx \text{ for any } \varphi \in W^{1, p}_{0}(\Omega^{k}), \end{equation} $ | (3.32) |
by Proposition 3.2. Moreover,
$ \begin{equation*} \label{} \| v_{k} (\cdot, t) \|_{W^{-1, p'}(\Omega^{k}) } = \inf \left \{ \| V_{k}(\cdot, t) \|_{L^{p'} (\Omega^{k}, \mathbb{R}^{n+1})} : V_{k} (\cdot, t) \text{ satisfies } (3.32) \right\}, \end{equation*} $ |
for any $ t \in [0, T] $. So for $ t \in [0, T] $, choose $ V_{k}(\cdot, t) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) $ $ (k \in \mathbb{N}) $ so that
$ \begin{equation*} \label{} \| V_{k}(\cdot, t) \|_{L^{p'} (\Omega^{k}, \mathbb{R}^{n+1})} \leq 2\| v_{k} (\cdot, t) \|_{W^{-1, p'}(\Omega^{k}) } \qquad (k \in \mathbb{N}), \end{equation*} $ |
which implies that
$ \begin{equation*} \| V_{k} \|_{L^{p'}(\Omega_{T}^{k} , \mathbb{R}^{n+1})} = \| V_{k} \|_{L^{p'} \big( 0, T ; L^{p'}(\Omega^{k} , \mathbb{R}^{n+1}) \big)} \leq 2\| v_{k} \|_{L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \leq 2M. \end{equation*} $ |
for any $ k \in \mathbb{N} $.
Let $ \bar{V}_{k} $ be the zero extension of $ V_{k} $ from $ \Omega_{T}^{k} $ to $ \mathbb{R}^{n}_{T} $. Since $ \| \bar{V}_{k} \|_{ L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}) } \leq 2M $ $ (k \in \mathbb{N}) $, by Proposition 2.3, there exists a weakly convergent subsequence, which will be still denoted by $ \{ \bar{V}_{k} \}_{k = 1}^{\infty} $, which converges to $ \bar{V}_{\infty} \in L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}) $, say
$ \begin{equation*} \label{} \bar{V}_{k} \ \rightharpoonup \ \bar{V}_{\infty} \ \text{in }\ L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}), \end{equation*} $ |
which implies that
$ \begin{equation} \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{k}, (\bar{\eta}, D\bar{\eta}) \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{\infty}, (\bar{\eta}, D\bar{\eta} ) \rangle \, dx dt, \end{equation} $ | (3.33) |
for any $ \bar{\eta} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $. Then one can check from (1.7) that $ \bar{V}_{\infty} = 0 $ a.e. in $ \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty} $. So define $ v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) $ as
$ \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \langle v_{\infty} (\cdot, t) , \eta (\cdot, t) \rangle _{\Omega^{\infty}} \, dt & = \int_{\Omega_{T}^{\infty}} \langle \bar{V}_{\infty}, (\eta , D\eta ) \rangle\, dx dt, \end{aligned} \end{equation*} $ |
for any $ \eta \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) $. Then by Corollary 3.3,
$ \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \langle \bar{v}_{\infty} (\cdot, t) , \bar{\eta} (\cdot, t) \rangle_{\mathbb{R}^{n}} \, dt & = \int_{\mathbb{R}^{n}_{T}} \langle \bar{V}_{\infty}, (\bar{\eta}, D\bar{\eta}) \rangle\, dx dt, \end{aligned} \end{equation*} $ |
and
$ \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \langle \bar{v}_{k}(\cdot, t), \bar{\eta} (\cdot, t) \rangle_{\Omega^{k}} \, dt & = \int_{ \mathbb{R}^{n}_{T} } \langle \bar{V}_{k}, (\bar{\eta} , D\bar{\eta} ) \rangle \, dx dt, \end{aligned} \end{equation*} $ |
for any $ \bar{\eta} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) $. So the lemma follows from (3.33).
Lemma 3.7. Under the assumption (1.7) and $ 1 < p < \infty $, let $ \Omega^{k} \subset \mathbb{R}^{n} $ $ (k \in \mathbb{N}) $ be a sequence of open bounded domains. If $ v_{k} \in L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) $ $ (k \in \mathbb{N}) $ satisfy
$ \begin{equation*} \label{} \| v_{k} \|_{ L^{\infty} \big( 0, T ; L^{2}(\Omega^{k}) \big) } \leq M \qquad (k \in \mathbb{N}), \end{equation*} $ |
for some $ M > 0 $, then there exists $ v_{\infty} \in L^{\infty} \big(0, T; L^{2}(\Omega^{\infty}) \big) $ such that
$ \begin{equation*} \label{} \bar{v}_{k} \ \overset{\ast}{\rightharpoonup} \ \bar{v}_{\infty}\; \mathit{\text{in}}\; L^{\infty} \big( 0, T ;L^{2}(\mathbb{R}^{n}) \big) \end{equation*} $ |
where $ \bar{v}_{k} $ is the zero extension of $ v_{k} $ to $ L^{\infty} \big(0, T; L^{2}(\mathbb{R}^{n}) \big) $ for $ k \in \mathbb{N} \cup \{ \infty \} $.
Proof. $ L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) $ is dual of $ L^{1} \big(0, T; L^{2}(\Omega^{k}) \big) $ for $ k \in \mathbb{N} \cup \{ \infty \} $. We denote $ \bar{v}_{k} $ as the zero extensions of $ v_{k} $ to $ L^{\infty} \big(0, T; L^{2} (\mathbb{R}^{n}) \big) $ for $ k \in \mathbb{N} \cup \{ \infty \} $. Since
$ \begin{equation*} \label{} \| \bar{v}_{k} \|_{ L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big) } = \| v_{k} \|_{ L^{\infty} \big( 0, T ; L^{2}(\Omega^{k}) \big) } \leq M \qquad (k \in \mathbb{N}), \end{equation*} $ |
by Proposition 2.3 we find that there exists a weakly convergent subsequence, which will be still denoted as $ \{ \bar{v}_{k} \}_{k = 1}^{\infty} $, which converges as
$ \begin{equation*} \label{} \bar{v}_{k} \ \overset{\ast}{\rightharpoonup} \ \bar{v}_{\infty} \text{ in } L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big). \end{equation*} $ |
We remark that weak-$ \ast $ convergence was used instead of weak convergence, because $ (L^{\infty})^{\ast} \not = L^{1} $. One can easily check from (1.7) that $ \bar{v}_{\infty} = 0 $ a.e. in $ \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty} $. So the lemma follows by taking $ v_{\infty} = \bar{v}_{\infty} \cdot1_{\Omega_{T}^{\infty} } $.
Now recall the energy estimate (3.2).
$ \begin{equation} \begin{aligned} & \sup\limits_{ 0 \leq \tau \leq T } \int_{\Omega^{k}} \left| \bar{u}_{k} (\cdot, \tau) \right|^{2} \, dx + \int_{\Omega_{T}^{k}} |D\bar{u}_{k}|^{p} \, dx dt \\ & \quad \leq c \left[ \| |F_{k}|^{p-2}F_{k} \|_{L^{p'}(\Omega_{T}^{k})} + \| f_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } + \| D\gamma_{k} \|_{L^{p}(\Omega_{T}^{k})} + \| \partial_{t} \gamma_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \right]. \end{aligned} \end{equation} $ | (3.34) |
Let $ \bar{F}_{k}, \bar{\gamma}_{k}, D\bar{\gamma}_{k} \in L^{p}(\mathbb{R}^{n}_{T}) $ be the zero extension of $ F_{k}, \gamma_{k}, D\gamma_{k} \in L^{p}(\Omega_{T}^{k}) $, respectively. (We remark that $ \bar{\gamma}_{k} $ might not be weakly differentiable in $ \mathbb{R}^{n}_{T} $, but we abuse the notation for the simplicity of the computation.) We apply Lemma 3.1 to (1.9). Then
$ \begin{equation} \left\{\begin{array}{rcll} |\bar{F}_{k}|^{p-2}\bar{F}_{k} & \to & |\bar{F}|^{p-2}\bar{F} & \text{in } L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{\gamma}_{k} & \to & \bar{\gamma} & \text{in } L^{p}(\mathbb{R}^{n}_{T}), \\ D\bar{\gamma}_{k} & \to & D\bar{\gamma} & \text{in } L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \end{array}\right. \end{equation} $ | (3.35) |
which implies that
$ \begin{equation*} \begin{aligned} \label{} \lim\limits_{k \to \infty} \| |F_{k}|^{p-2}F_{k} \|_{L^{p'}(\Omega_{T}^{k})} = \lim\limits_{k \to \infty} \| |\bar{F}_{k}|^{p-2}\bar{F}_{k} \|_{L^{p'}(\mathbb{R}^{n}_{T})} = \| |\bar{F}|^{p-2}\bar{F} \|_{L^{p'}(\mathbb{R}^{n}_{T})}, \end{aligned} \end{equation*} $ |
and
$ \begin{equation*} \begin{aligned} \label{} \lim\limits_{k \to \infty} \| D\gamma_{k} \|_{L^{p}(\Omega_{T}^{k})} = \lim\limits_{k \to \infty} \| D\bar{\gamma}_{k} \|_{L^{p}(\mathbb{R}^{n}_{T})} = \| D\bar{\gamma} \|_{L^{p}(\mathbb{R}^{n}_{T})}. \end{aligned} \end{equation*} $ |
Let $ \bar{f}_{k} $, $ \partial_{t} \bar{\gamma}_{k} $, $ \bar{f} $ and $ \partial_{t} \bar{\gamma} $ be the zero extension of $ f_{k}, \partial_{t} \gamma_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) $ and $ f, \partial_{t} \gamma \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) $ in Corollary 3.3 respectively. By Corollary 3.3 and Lemma 3.5, we find from (1.8) that
$ \begin{equation} \left\{\begin{array}{rcll} \bar{f}_{k} & \overset{\ast}{\to} & \bar{f} & \text{in } L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \\ \partial_{t}\bar{\gamma}_{k} & \overset{\ast}{\to} & \partial_{t} \bar{\gamma} & \text{in } L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \end{array}\right. \end{equation} $ | (3.36) |
which implies that
$ \begin{equation*} \label{} \lim\limits_{k \to \infty} \| f_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } = \lim\limits_{k \to \infty} \| \bar{f}_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big) } = \| \bar{f} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big) }, \end{equation*} $ |
and
$ \begin{equation*} \begin{aligned} \label{} \lim\limits_{k \to \infty} \| \partial_{t} \gamma_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big) } = \lim\limits_{k \to \infty} \| \partial_{t} \bar{\gamma}_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big) } = \| \partial_{t} \bar{\gamma} \|_{L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big)}. \end{aligned} \end{equation*} $ |
So the right-hand side of (3.34) is bounded, and one can apply Aubin-Lions Lemma, Lemma 3.7 and the zero extension to find that there exists a subsequence of $ \{ \bar{u}_{k} \}_{k = 1}^{\infty} $, which will be still denote by $ \{ \bar{u}_{k} \}_{k = 1}^{\infty} $, and $ \bar{u}_{0} \in L^{p} \big(0, T; W^{1, p}_{0} (\mathbb{R}^{n}) \big) \cap L^{\infty}\big(0, T; L^{2}(\mathbb{R}^{n}) \big) $ such that
$ \begin{equation} \left\{\begin{array}{rcll} D\bar{u}_{k} & \rightharpoonup & D\bar{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{u}_{k} & \to & \bar{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n}_{T}) , \\ \bar{u}_{k} & \overset{\ast}{\rightharpoonup} & \bar{u}_{0} & \text{in } L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big). \end{array}\right. \end{equation} $ | (3.37) |
Here, the compactness method is applied to some ball satisfying $ B \supset \Omega^{k} $ $ (k \in \mathbb{N}) $ and $ B \supset \Omega $ by using the zero extensions.
By (1.10),
$ \begin{equation*} \begin{aligned} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt = \int_{\Omega^{k}_{T} } \langle |F_{k}|^{p-2}F_{k}, D\varphi \rangle + f_{k} \varphi - \langle a_{k}(Du_{k}, x, t) , D\varphi \rangle\; dx dt, \end{aligned} \end{equation*} $ |
for any $ \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) $. Then we see that $ \| \partial_{t} u_{k} \|_{L^{p'} \big(0, T; W^{-1, p'} (\Omega^{k}) \big)} $ is bounded. We denote the zero extension of $ \partial_{t} u_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) $ in Corollary 3.3 as $ \partial_{t} \bar{u}_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) $. Then we find from Corollary 3.3 that
$ \begin{equation} \| \partial_{t} \bar{u}_{k} \|_{L^{p'} \big( 0, T ; W^{-1, p'} (\mathbb{R}^{n}) \big)} = \| \partial_{t} u_{k} \|_{L^{p'} \big( 0, T ; W^{-1, p'} (\Omega^{k}) \big)} \ (k \in \mathbb{N}) \text{ is bounded.} \end{equation} $ | (3.38) |
So by Lemma 3.6, there exist $ \partial_{t} u_{0} \text{ in } L^{p'} \big(0, T; W^{-1, p'} (\Omega) \big) $ and a subsequence of $ \{ \bar{u}_{k} \}_{k = 1}^{\infty} $, which will be still denoted by $ \{ \bar{u}_{k} \}_{k = 1}^{\infty} $ such that
$ \begin{equation} \partial_{t} \bar{u}_{k} \ \overset{\ast}{\rightharpoonup} \ \partial_{t} \bar{u}_{0} \ \text{in }\ L^{p'} \big( 0, T ; W^{-1, p'} ( \mathbb{R}^{n} ) \big). \end{equation} $ | (3.39) |
Here, we denoted the zero extension of $ \partial_{t} u_{0} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) $ in Corollary 3.3 as $ \partial_{t} \bar{u}_{0} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) $. Define $ u_{0} = \bar{u}_{0} + \gamma $ in $ \Omega_{T} $. Then we have that following lemma. We remark that a different proof is shown in Step 4 in the proof of [30, Lemma 5.1].
Lemma 3.8. For $ u_{0} = \bar{u}_{0} + \gamma $ in $ \Omega_{T} $, we have that
$ \begin{equation*} \label{} \lim\limits_{h \searrow 0} \frac{1}{h} \int_{0}^{h} \int_{\Omega} |u_{0}(x, t) - \gamma(x, 0)|^{2} \, dx dt = 0. \end{equation*} $ |
Proof. Let $ \hat{u}_{k} $ be the zero extension of $ \bar{u}_{k} $ from $ \mathbb{R}^{n} \times [0, T] $ to $ \mathbb{R}^{n} \times [-T, T] $, which means that $ \hat{u}_{k} = 0 $ in $ (\mathbb{R}^{n} \times [-T, T]) \setminus (\mathbb{R}^{n} \times [0, T]) $. Also define $ \partial_{t} \hat{u}_{k} $ as
$ \begin{equation*} \left\langle {\left\langle {} \right.} \right. \partial_{t} \hat{u}_{k}, \varphi \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} = \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{k}, \varphi \, \chi_{\Omega_{T}} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \text{ for any } \varphi \in L^{p} \big( -T, T ; W^{1, p} (\mathbb{R}^{n}) \big). \end{equation*} $ |
Then we see that $ \partial_{t} \hat{u}_{k} \in L^{p'} \big(-T, T; W^{-1, p'} (\mathbb{R}^{n}) \big) $, because
$ \begin{equation*} \begin{aligned} \int_{-T}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \hat{u}_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt & = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt = - \int_{0}^{T} \int_{ \mathbb{R}^{n} }\bar{u}_{k} \, \varphi_{t} \, dx dt = - \int_{-T}^{T} \int_{ \mathbb{R}^{n} } \hat{u}_{k} \, \varphi_{t} \, dx dt \end{aligned} \end{equation*} $ |
for any $ \varphi \in C_{c}^{\infty}(\mathbb{R}^{n} \times [-T, T]) $. Here, we used that $ \bar{u}_{k} = 0 $ on $ \mathbb{R}^{n} \times \{ 0 \} $.
By (3.37) and (3.39), there exists a subsequence, which will be still denoted as $ \hat{u}_{k} $ and $ \partial_{t} \hat{u}_{k} $ $ (k \in \mathbb{N}) $, such that
$ \begin{equation} \left\{\begin{array}{rcll} D\hat{u}_{k} & \rightharpoonup & D\hat{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n} \times (-T, T), \mathbb{R}^{n}), \\ \hat{u}_{k} & \to & \hat{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n} \times (-T, T)) , \\ \hat{u}_{k} & \overset{\ast}{\rightharpoonup} & \hat{u}_{0} & \text{in } L^{\infty} \big( -T, T ; L^{2}(\mathbb{R}^{n}) \big). \end{array}\right. \end{equation} $ | (3.40) |
and
$ \begin{equation*} \label{} \partial_{t} \hat{u}_{k} \ \overset{\ast}{\rightharpoonup} \ \partial_{t} \hat{u}_{0} \ \text{in }\ L^{p'} \big( -T, T ; W^{-1, p'} ( \mathbb{R}^{n} ) \big), \end{equation*} $ |
for some $ \hat{u}_{0} \in L^{p} \big(-T, T; W^{1, p}_{0} (\mathbb{R}^{n}) \big) \cap L^{\infty}\big(-T, T; L^{2}(\mathbb{R}^{n}) \big) $ and $ \partial_{t} \hat{u}_{0} \in L^{p'} \big(-T, T; W^{-1, p'} (\mathbb{R}^{n}) \big) $. Then by Proposition 2.6, we have that $ \hat{u}_{0} \in C \big([-T, T]; L^{2}(\mathbb{R}^{n}) \big) $, which implies that
$ \begin{equation*} 0 = \lim\limits_{h \nearrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}} |\hat{u}_{0}|^{2} \, dx dt = \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}} |\hat{u}_{0}|^{2} \, dx dt = \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}} |\bar{u}_{0}|^{2} \, dx dt , \end{equation*} $ |
where we used that $ \hat{u}_{0} = \bar{u}_{0} $ in $ \mathbb{R}^{n}_{T} $, which holds from (3.37), (3.40) and that $ \hat{u}_{k} $ is the zero extension of $ \bar{u}_{k} $ from $ \mathbb{R}^{n}_{T} $ to $ \mathbb{R}^{n} \times [-T, T] $. Since $ \bar{u}_{0} = u_{0} - \gamma $ in $ \Omega $, we get
$ \begin{equation*} \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\Omega} |u_{0}(x, t) - \gamma(x, t)|^{2} \, dx dt = 0. \end{equation*} $ |
Since $ \gamma \in C\big([0, T]; L^{2}(\Omega) \big) $, we find that
$ \begin{equation*} \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\Omega} |\gamma(x, t) - \gamma(x, 0)|^{2} \, dx dt = 0, \end{equation*} $ |
and the lemma follows.
Lemma 3.9. For the weak solutions $ u \in \gamma + L^{p} \big(0, T; W^{1, p}_{0}(\Omega) \big) \cap C \big([0, T]; L^{2}(\Omega) \big) $ of (1.6) and $ u_{k} \in \gamma_{k} + L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) \cap C \big([0, T]; L^{2}(\Omega^{k}) \big) $ in (1.10), we have that
$ \begin{equation*} \label{} \lim\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \varphi^{p} \; dx dt = 0 {{\; for\; any \; }} \varphi \in C_{c}^{\infty}(\Omega)\; \mathit{\text{with}} \;0 \leq \varphi \leq 1, \end{equation*} $ |
and
$ \begin{equation} \lim\limits_{k \to \infty} \int_{ U_{T}} |D\bar{u}_{k} - D\bar{u}|^{p} \; dx dt = 0 \quad {{for \;any}} \;\quad U \subset \subset \Omega. \end{equation} $ | (3.41) |
Moreover, we have that
$ \begin{equation*} \label{} \left\{\begin{array}{rcll} D\bar{u}_{k} & \rightharpoonup & D\bar{u} & \mathit{\text{in}} \; L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{u}_{k} & \to & \bar{u} & \mathit{\text{in}} \;L^{p}(\mathbb{R}^{n}_{T}) , \\ \bar{u}_{k} & \overset{\ast}{\rightharpoonup} & \bar{u} & \mathit{\text{in}}\; L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big). \end{array}\right. \end{equation*} $ |
Proof. Recall from (1.7) that
$ \begin{equation} \lim\limits_{k \to \infty} d_{H} \left( \partial \Omega^{k}, \partial \Omega \right) = 0, \end{equation} $ | (3.42) |
which implies that
$ \begin{equation} \text{there exists } K \in \mathbb{N}{\text{ such that }} \mathop{supp} \varphi \subset \subset \Omega^{k} \, (k \geq K) \text{ for any } \varphi \in C_{c}^{\infty}(\Omega). \end{equation} $ | (3.43) |
Fix $ \varphi(x) \in C_{c}^{\infty}(\Omega) $ with $ 0 \leq \varphi \leq 1 $, which is independent of $ t $-variable. Choose $ K \in \mathbb{N} $ in (3.43). Test (1.10) by $ \left(\bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} $ to find that
$ \begin{equation*} \begin{aligned} \label{} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt + \int_{ \Omega_{T}^{k} } \left \langle a_{k}(Du_{k}, x, t) , (D\bar{u}_{k} - D\bar{u}_{0})\varphi^{p} + p (\bar{u}_{k} - \bar{u}_{0} )\varphi^{p-1} D\varphi \right \rangle \; dx dt\\ & \quad = \int_{ \Omega_{T}^{k} } \left \langle |F_{k}|^{p-2}F_{k}, (D\bar{u}_{k} - D\bar{u}_{0} )\varphi^{p} + p (\bar{u}_{k} - \bar{u}_{0} )\varphi^{p-1} D\varphi \right \rangle + f_{k} (\bar{u}_{k} - \bar{u}_{0}) \varphi^{p} \, dx dt, \end{aligned} \end{equation*} $ |
for any $ k \geq K $. Recall that $ \bar{u}_{k} = u_{k} - \gamma_{k} $, $ \bar{u}_{0} = u_{0} - \gamma $ and $ \varphi \in C_{c}^{\infty}(\Omega) \cap C_{c}^{\infty}(\Omega^{k}) $ for any $ k \geq K $. For $ (\mathop{supp } \varphi)_{T} = \mathop{supp } \varphi \times [0, T] $, we discover that
$ \begin{equation*} \begin{aligned} \label{} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \left( \bar{u}_{k} - \bar{u}_{0}\right), \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle a_{k}(Du_{k}, x, t) - a_{k}(Du_{0}, x, t) , (Du_{k} - Du_{0})\varphi^{p} \right \rangle \; dx dt \\ & \quad = I_{k} + II_{k} + III_{k} + IV_{k}, \end{aligned} \end{equation*} $ |
where
$ \begin{equation*} \begin{aligned} I_{k} & = \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle a_{k}(Du_{k}, x, t) , (D\bar{\gamma}_{k} - D\bar{\gamma}) \varphi^{p} - p (\bar{u}_{k} - \bar{u}_{0})\varphi^{p-1} D\varphi \right \rangle \; dx dt, \\ II_{k} & = \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2} \bar{F}_{k}, (D\bar{u}_{k} - D\bar{u}_{0} ) \varphi^p \right \rangle \, dx dt \\ & \quad + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2}\bar{F}_{k}, p (\bar{u}_{k} - \bar{u}_{0})\varphi^{p-1} D\varphi \right \rangle + \bar{f}_{k} (\bar{u}_{k} - \bar{u}_{0} ) \varphi^{p} \; dx dt, \\ III_{k} & = - \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \langle a_{k}(Du_{0}, x, t) , (Du_{k} - Du_{0}) \varphi^p \rangle \; dx dt, \\ IV_{k} & = - \int_{0}^{T} \left \langle \partial_{t} \bar{\gamma}_{k} + \partial_{t} \bar{u}_{0} , \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \right \rangle_{\mathbb{R}^{n}} \, dt, \end{aligned} \end{equation*} $ |
for $ k \geq K $. One can easily check from (3.35) and (3.37) that
$ \begin{equation} \lim\limits_{k \rightarrow \infty} I_{k} = 0. \end{equation} $ | (3.44) |
By a direct calculation, we have
$ \begin{equation*} \begin{aligned} II_{k} & = \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}|^{p-2} \bar{F}, (D\bar{u}_{k} - D\bar{u}_{0} ) \varphi^p \right \rangle \, dx dt \\ & \quad + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2} \bar{F}_{k} - |\bar{F}|^{p-2}\bar{F}, (D\bar{u}_{k} - D\bar{u}_{0} ) \varphi^p \right \rangle \, dx dt \\ & \quad + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2} \bar{F}_{k}, p (\bar{u}_{k} - \bar{u}_{0})\varphi^{p-1} D\varphi \right \rangle + \bar{f}_{k} (\bar{u}_{k} - \bar{u}_{0} ) \varphi^{p} \; dx dt. \end{aligned} \end{equation*} $ |
By (3.35)–(3.37),
$ \begin{equation} \limsup\limits_{k \rightarrow \infty} II_{k} = 0. \end{equation} $ | (3.45) |
We handle $ III_{k} $. By Lemma 2.14,
$ \begin{equation*} \begin{aligned} \label{} & \lim\limits_{ k \to \infty } \left\| a_{k}(Du_{0}, \cdot) - a(Du_{0}, \cdot) \right\|_{L^{p'} \big( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} \big)} \leq \lim\limits_{ k \to \infty } \left\| a_{k}(Du_{0}, \cdot) - a(Du_{0}, \cdot) \right\|_{L^{p'}(\Omega_{T})} = 0. \end{aligned} \end{equation*} $ |
So by (3.37),
$ \begin{equation} \limsup\limits_{k \rightarrow \infty} III_{k} = 0. \end{equation} $ | (3.46) |
By (3.36) and (3.37),
$ \begin{equation} \limsup\limits_{k \rightarrow \infty} IV_{k} = 0. \end{equation} $ | (3.47) |
Since $ \varphi = \varphi(x) $ and $ 0 \leq \varphi \leq 1 $, one can easily show that
$ \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \left( \bar{u}_{k} - \bar{u}_{0} \right), \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt = \int_{\mathbb{R}^{n}} \frac{ \left| \left[ \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{\frac{p}{2}} \right] \left( x, T \right) \right|^{2} }{2} \, dx \geq 0. \end{equation*} $ |
because $ \bar{u}_{k} = 0 = \bar{u}_{0} $ on $ \mathbb{R}^{n} \times \{ 0 \} $, which holds from Lemma 3.8. So by (3.44), (3.45), (3.46) and (3.47),
$ \begin{equation*} \begin{aligned} \label{} \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle a_{k}(Du_{k}, x, t) - a_{k}(Du_{0}, x, t) , (Du_{k} - Du_{0})\varphi^{p} \right \rangle \; dx dt \to 0, \end{aligned} \end{equation*} $ |
because $ \left \langle a_{k}(Du_{k}, x, t) - a_{k}(Du_{0}, x, t), (Du_{k} - Du_{0})\varphi^{p} \right \rangle \geq 0 $ in $ \mathbb{R}^{n}_{T} \cap (\mathop{supp } \varphi)_{T} $, which implies that
$ \begin{equation*} \label{} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{k}|^{2} + |Du_{0}|^{2} + s^{2})^{\frac{p-2}{2}} |Du_{k} - Du_{0}|^{2} \varphi^{p} dx dt \to 0. \end{equation*} $ |
For any $ \kappa \in (0, \kappa_{1}] $, we have from Lemma 2.7 that
$ \begin{equation*} \begin{aligned} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } |Du_{k} - Du_{0}|^{p} \varphi^{p} \; dx dt & \leq c \kappa^{p} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{0}|^{2}+s^{2})^{\frac{p}{2}} \varphi^{p} \, dx dt\\ &\quad + c \kappa^{p-2} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{k}|^{2} + |Du_{0}|^{2} + s^{2})^{\frac{p-2}{2}} |Du_{k} - Du_{0}|^{2} \varphi^{p} dx dt. \end{aligned} \end{equation*} $ |
So we find that
$ \begin{equation*} \begin{aligned} \label{} 0 & \leq \limsup\limits_{k \rightarrow \infty} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } |Du_{k} - Du_{0}|^{p} \varphi^{p} \; dx dt \leq c \kappa^{p} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{0}|^{2}+s^{2})^{\frac{p}{2}} \varphi^{p} \; dx dt. \end{aligned} \end{equation*} $ |
Since $ \kappa \in (0, \kappa_{1}] $ and $ \varphi \in C_{c}^{\infty}(\Omega) $ were arbitrary chosen, we discover that
$ \begin{equation*} \label{} \lim\limits_{k \rightarrow \infty} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } |Du_{k} - Du_{0}|^{p} \varphi^{p} \; dx dt = 0 \text{ for any } \varphi \in C_{c}^{\infty}(\Omega) \text{ with } 0 \leq \varphi \leq 1. \end{equation*} $ |
So by (3.35),
$ \begin{equation} \lim\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}_{0}|^{p} \varphi^{p} \; dx dt = 0 \text{ for any } \varphi \in C_{c}^{\infty}(\Omega) \text{ with } 0 \leq \varphi \leq 1. \end{equation} $ | (3.48) |
For any $ U \subset \subset \Omega $, there exists a cut-off function $ \eta \in C_{c}^{\infty} (\Omega) $ such that $ 0 \leq \eta \leq 1 $ in $ \Omega $ and $ \eta = 1 $ on $ U $. Moreover, by (3.42), there exists $ K \in \mathbb{N} $ such that
$ \begin{equation} U \subset \subset \Omega^{k} \qquad (k \geq K). \end{equation} $ | (3.49) |
So by (3.48),
$ \begin{equation} \lim\limits_{k \to \infty} \int_{ U_{T} } |D\bar{u}_{k} - D\bar{u}_{0}|^{p} \; dx dt = 0 \quad \text{ for any } \quad U \subset \subset \Omega. \end{equation} $ | (3.50) |
By Corollary 3.3 and (3.39),
$ \begin{equation} \begin{aligned} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{k} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt \, \overset{\ast}{\to} \, \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{0} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{0} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\Omega} \, dt, \end{aligned} \end{equation} $ | (3.51) |
for any $ \varphi \in C_{0 }^{\infty} (\Omega_{T}) $.
Now, we show that $ u_{0} $ is the weak solution of (1.6), which implies that $ u = u_{0} $ by the uniqueness. Fix $ \varphi \in C_{0 }^{\infty} (\Omega_{T}) $ and choose $ U \subset \subset \Omega $ with $ \text{supp } \varphi \subset \overline{U_{T}} $. By (3.42), there exists $ K \in \mathbb{N} $ such that $ U \subset \subset \Omega^{k} $ $ (k \geq K) $. We have from (1.10) that
$ \begin{equation*} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt + \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) , D\varphi \rangle \; dx dt = \int_{\Omega_{T}^{k}} \langle |F_{k}|^{p-2}F_{k}, D\varphi \rangle + f_{k} \varphi \; dx dt, \end{equation*} $ |
for any $ k \geq K $. So by Lemma 2.10, Lemma 2.14, (3.35), (3.36), (3.50) and (3.51),
$ \begin{equation*} \begin{aligned} &\int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{0}, \varphi \left. {\left. {} \right\rangle } \right\rangle_{ \Omega } + \int_{ \Omega_{T} } \langle a(Du_{0}, x, t) , D\varphi \rangle \, dx dt = \int_{ \Omega_{T} } \langle |F|^{p-2}F, D\varphi \rangle + f \varphi \, dx dt. \end{aligned} \end{equation*} $ |
We find from Lemma 3.8 that $ u_{0} \in L^{\infty} \big(0, T; L^{2}(\Omega) \big) \cap L^{p} \big(0, T; W^{1, p}_{0} (\Omega) \big) $ is also the weak solution of (1.6). By uniqueness of the weak solution, we find that $ u_{0} = u $, and the lemma follows from (3.37), (3.48) and (3.50).
We next estimate the concentration of $ D\bar{u}_{k} $ near the boundary $ \partial \Omega \times [0, T] $.
Lemma 3.10. For any $ \varphi \in C_{c}^{\infty}(\Omega) $ with $ 0 \leq \varphi \leq 1 $, we have that
$ \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\mathbb{R}^{n}_{T}} |D\bar{u}_{k}|^{p} \left( 1- \varphi^{p} \right) \, dx dt\\ & \quad \leq c \left[ \int_{\Omega_{T}} (|Du|^{2} + |D\gamma|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt + \int_{ \Omega} \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}}] ( x , T) |^{2} }{2} \, dx \right]. \end{aligned} \end{equation*} $ |
Proof. Fix $ \varphi \in C_{c}^{\infty}(\Omega) $ with $ 0 \leq \varphi \leq 1 $. We have from (1.7) that
$ \begin{equation} \text{there exists $K \in \mathbb{N}$ such that } \mathop{supp} \varphi \subset \subset \Omega^{k} \, (k \geq K) \text{ for any } \varphi \in C_{c}^{\infty}(\Omega). \end{equation} $ | (3.52) |
We next take $ \kappa = \kappa_{1}(n, p, \lambda, \Lambda) $ in Lemma 2.7 to find that
$ \begin{equation} \begin{aligned} \int_{\Omega_{T}^{k}} |Du_{k} - D\gamma_{k}|^{p} \left( 1- \varphi^{p} \right) \, dx dt & \leq c \int_{\Omega_{T}^{k}} (|D\gamma_{k}|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt\\ &\quad + c \int_{\Omega_{T}^{k}} (|Du_{k}|^{2}+|D\gamma_{k}|^{2}+s^{2})^{\frac{p-2}{2}}|Du_{k}-D\gamma_{k}|^{2} \left( 1- \varphi^{p} \right) \, dx dt, \end{aligned} \end{equation} $ | (3.53) |
for any $ k \geq K $. In view of (1.2), we discover that
$ \begin{equation} \begin{aligned} &\int_{\Omega_{T}^{k}} (|Du_{k}|^{2}+|D\gamma_{k}|^{2}+s^{2})^{\frac{p-2}{2}}|Du_{k}-D\gamma_{k}|^{2} \left( 1- \varphi^{p} \right) \, dx dt\\ &\quad \leq c \int_{\Omega_{T}^{k}} \langle a(Du_{k}, x, t) - a(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \rangle \left( 1- \varphi^{p} \right) \; dx dt, \end{aligned} \end{equation} $ | (3.54) |
for any $ k \geq K $.
We will estimate the limit superior of the right-hand side of (3.54). We test (1.10) by $ (u_{k}- \gamma_{k}) \left(1-\varphi^{p} \right) $ to find that
$ \begin{equation} \begin{aligned} & \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt = I_{k} + II_{k} + III_{k} + IV_{k}, \end{aligned} \end{equation} $ | (3.55) |
where
$ \begin{equation*} \begin{aligned} \label{} & I_{k} = \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) , \left( u_{k} - \gamma_{k} \right) p\varphi^{p-1} D\varphi \rangle \; dx dt , \\ & II_{k} = - \int_{\Omega_{T}^{k}} \langle a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \; dx dt , \\ & III_{k} = \int_{\Omega_{T}^{k}} \langle |F_{k}|^{p-2}F_{k}, D[(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) ] \rangle + f_{k}(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \; dx dt , \\ & IV_{k} = - \int_{0}^{T} \langle \partial_{t} u_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \rangle_{\Omega^{k}} \, dt, \end{aligned} \end{equation*} $ |
for any $ k \geq K $.
We estimate the limit of the right-hand side as $ k \to \infty $. Without loss of generality, assume that $ k \geq K $. Then we have from (3.52) that
$ \begin{equation*} \label{} \varphi \in C_{c}^{\infty}(\Omega) \cap C_{c}^{\infty}(\Omega^{k}). \end{equation*} $ |
We first compute the limit of $ I_{k} $. By the triangle inequality,
$ \begin{equation*} \begin{aligned} & \left\| \left| a_{k}(Du_{k}, x, t) - a(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}}( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T})} \\ & \ \leq \left\| \left| a_{k}(Du_{k}, x, t) - a_{k}(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}}( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} )} + \left\| \left| a_{k}(Du, x, t) - a(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}} (\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T})}. \end{aligned} \end{equation*} $ |
Since $ \varphi \in C_{c}^{\infty}(\Omega) \cap C_{c}^{\infty}(\Omega^{k}) $, we have from Lemma 2.10, Lemma 2.14 and (3.41) in Lemma 3.9 that
$ \begin{equation} \lim\limits_{k \to \infty} \left\| \left| a_{k}(Du_{k}, x, t) - a(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}}( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} )} = 0. \end{equation} $ | (3.56) |
By Lemma 3.9, we have that $ \bar{u}_{k} \to \bar{u} $ in $ L^{p}(\mathbb{R}^{n}_{T}) $. Since $ u_{k} - \gamma_{k} = \bar{u}_{k} $ in $ \Omega_{T}^{k} $ and $ u - \gamma = \bar{u} $ in $ \Omega_{T} $, we find from (3.50) that
$ \begin{equation} \begin{aligned} I_{k} & = \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) , ( u_{k} - \gamma_{k}) p\varphi^{p-1} D\varphi \rangle \, dx dt \to \int_{\Omega_{T}} \langle a(Du, x, t) , \left( u - \gamma \right) p\varphi^{p-1} D\varphi \rangle \, dx dt. \end{aligned} \end{equation} $ | (3.57) |
Similarly, by the triangle inequality,
$ \begin{equation*} \begin{aligned} & \left\| a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} - a(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} ) } \\ & \quad \leq \left\| a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} - a_{k}(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} )} + \left\| a_{k}(D\gamma, x, t) \cdot 1_{\Omega_{T}} - a(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} )}. \end{aligned} \end{equation*} $ |
So we get from (3.35), Lemma 2.10 and Lemma 2.14 that
$ \begin{equation*} \lim\limits_{k \to \infty} \left\| a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} - a(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} ) } = 0, \end{equation*} $ |
and it follows from Lemma 3.9 that
$ \begin{equation} \begin{aligned} II_{k} & = - \int_{\Omega_{T}^{k}} \langle a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & = - \int_{\mathbb{R}^{n}_{T} } \langle a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} , D\bar{u}_{k} \left( 1-\varphi^{p} \right) \rangle \; dx dt \\ & \to - \int_{ \mathbb{R}^{n}_{T} } \langle a(D\gamma, x, t) \cdot 1_{\Omega_{T}}, D\bar{u} \left( 1-\varphi^{p} \right) \rangle \; dx dt \\ & = - \int_{\Omega_{T}} \langle a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \rangle \, dx dt. \end{aligned} \end{equation} $ | (3.58) |
Recall that
$ \begin{equation*} \begin{aligned} \label{} III_{k} & = \int_{\Omega_{T}^{k}} \langle |F_{k}|^{p-2}F_{k}, D[(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) ] \rangle + f_{k}(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \; dx dt. \end{aligned} \end{equation*} $ |
Then one can easily check from (3.35), (3.36) and Lemma 3.9 that
$ \begin{equation} \begin{aligned} III_{k} \to \int_{ \Omega_{T} } \langle |F|^{p-2} F, D[(u - \gamma) \left( 1-\varphi^{p} \right) ] \rangle + f(u - \gamma) \left( 1-\varphi^{p} \right) \; dx dt. \end{aligned} \end{equation} $ | (3.59) |
Now, we estimate $ IV_{k} $.
$ \begin{equation*} \begin{aligned} \label{} IV_{k} & = - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } \, dt \\ & = - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} - \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega_{T}^{k} } - \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } \, dt. \end{aligned} \end{equation*} $ |
Since $ \varphi = \varphi(x) $, $ 0 \leq \varphi \leq 1 $ and $ u_{k} - \gamma_{k} = 0 $ on $ \Omega^{k} \times \{ 0 \} $, we find that
$ \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} - \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } dt = \int_{\Omega^{k}} \frac{ | [(u_{k}-\gamma_{k}) (1-\varphi^{p})^{\frac{1}{2}}] ( x , T ) |^{2} }{2} \, dx \geq 0. \end{equation*} $ |
Since $ u_{k} - \gamma_{k} = \bar{u}_{k} $ in $ \Omega_{T}^{k} $ and $ u - \gamma = \bar{u} $ in $ \Omega_{T} $, we find from (3.36) and Lemma 3.9 that
$ \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } \, dt \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{equation*} $ |
Thus
$ \begin{equation} \begin{aligned} & \limsup\limits_{k \to \infty} IV_{k} \leq - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{aligned} \end{equation} $ | (3.60) |
In view of (3.55), we find from (3.57), (3.58), (3.59) and (3.60) that
$ \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & \quad \leq \int_{\Omega_{T}} \langle a(Du, x, t) , \left( u - \gamma \right) p\varphi^{p-1} D\varphi \rangle - \langle a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \rangle \; dx dt \\ & \qquad + \int_{ \Omega_{T} } \langle |F|^{p-2} F, D[(u - \gamma) \left( 1-\varphi^{p} \right) ] \rangle + f(u - \gamma) \left( 1-\varphi^{p} \right) \; dx dt \\ & \qquad - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{aligned} \end{equation*} $ |
By taking $ (u-\gamma) \left(1 - \varphi^{p} \right) $ in (1.6), we get that
$ \begin{equation*} \begin{aligned} \label{} &\int_{\Omega_{T}} \langle a(Du, x, t) , \left( u - \gamma \right) p \varphi^{p-1} D\gamma \rangle - \langle a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \rangle \; dx dt\\ &\quad + \int_{\Omega_{T}} \langle |F|^{p-2}F, D[(u - \gamma) \left( 1-\varphi^{p} \right) ] \rangle + g(u - \gamma) \left( 1-\varphi^{p} \right) \; dx dt\\ &\qquad = \int_{\Omega_{T}} \left \langle a(Du, x, t) - a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \right \rangle \; dx dt + \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{aligned} \end{equation*} $ |
Thus
$ \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & \quad \leq \int_{\Omega_{T}} \left \langle a(Du, x, t) - a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \right \rangle \; dx dt + \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u - \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt . \end{aligned} \end{equation*} $ |
Since $ \bar{u} = u-\gamma $, we find that
$ \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & \quad \leq \int_{\Omega_{T}} \left \langle a(Du, x, t) - a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \right \rangle \; dx dt + \int_{ \Omega } \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}} ] ( x , T) |^{2} }{2} \, dx. \end{aligned} \end{equation*} $ |
Since $ \bar{u}_{k} = u_{k} - \gamma_{k} $, by (3.35), (3.53) and (3.54),
$ \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\mathbb{R}^{n}_{T}} |D\bar{u}_{k}|^{p} \left( 1- \varphi^{p} \right) \, dx dt\\ & \quad \leq c \left[ \int_{\Omega_{T}} (|Du|^{2} + |D\gamma|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt + \int_{ \Omega } \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}}] ( x , T) |^{2} }{2} \, dx \right], \end{aligned} \end{equation*} $ |
and the lemma follows.
We are ready to prove Theorem 1.6.
Proof of Theorem 1.6. By Lemmas 3.9 and 3.10,
$ \begin{equation*} \begin{aligned} & \limsup\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \, dx dt \\ & \quad = \limsup\limits_{ k \to \infty}\left[ \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \varphi^{p} \, dx dt + \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} (1-\varphi^{p}) \, dx dt \right] \\ & \quad \leq c \left[ \int_{\Omega_{T}} (|Du|^{2} + |D\gamma|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt + \int_{ \Omega } \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}}] ( x , T) |^{2} }{2} \, dx \right], \end{aligned} \end{equation*} $ |
for any $ \varphi \in C_{c}^{\infty}(\Omega) $ with $ 0 \leq \varphi \leq 1 $. Since $ \varphi \in C_{c}^{\infty}(\Omega) $ with $ 0 \leq \varphi \leq 1 $ can be arbitrary chosen in the above estimates, one can choose a sequence of monotone increasing functions in $ C_{c}^{\infty}(\Omega) $ which converges to $ 1 $ a.e. in $ \Omega $. Then by Lebesgue's dominated convergence theorem, we get
$ \begin{equation*} \limsup\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \, dx dt \leq 0. \end{equation*} $ |
This contradicts (3.1). So we find that (1.11) holds.
Y. Kim was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. NRF-2020R1C1C1A01013363). S. Ryu was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1A01014310). P. Shin was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2020R1I1A1A01066850). The authors would like to thank the referee for the careful reading of this manuscript and for offering valuable comments.
The authors declare no conflict of interest.
[1] |
Hall MA, Dugan E, Zheng B, et al. (2001) Trust in physicians and medical institutions: what is it, can it be measured, and does it matter? Milbank Q 79: 613–639. doi: 10.1111/1468-0009.00223
![]() |
[2] |
Boulware LE, Cooper LA, Ratner LE, et al. (2003) Race and trust in the health care system. Public Health Rep 118: 358–365. doi: 10.1016/S0033-3549(04)50262-5
![]() |
[3] |
Armstrong K, Ravenell KL, McMurphy S, et al. (2007) Racial/ethnic differences in physician distrust in the United States. Am J Public Health 97: 1283–1289. doi: 10.2105/AJPH.2005.080762
![]() |
[4] |
Halbert CH, Armstrong K, Gandy OH, et al. (2006) Racial differences in trust in health care providers. Arch Intern Med 166: 896–901. doi: 10.1001/archinte.166.8.896
![]() |
[5] |
Jacobs EA, Rolle I, Ferrans CE, et al. (2006) Understanding African Americans' views of the trustworthiness of physicians. J Gen Intern Med 21: 642–647. doi: 10.1111/j.1525-1497.2006.00485.x
![]() |
[6] |
Street RL, O'Malley KJ, Cooper LA, et al. (2008) Understanding concordance in patient-physician relationships: personal and ethnic dimensions of shared identity. Ann Fam Med 6: 198–205. doi: 10.1370/afm.821
![]() |
[7] |
Cooper-Patrick L, Gallo JJ, Gonzales JJ, et al. (1999) Race, gender, and partnership in the patient-physician relationship. JAMA 282: 583–589. doi: 10.1001/jama.282.6.583
![]() |
[8] |
Malat J, Hamilton MA (2006) Preference for same-race health care providers and perceptions of interpersonal discrimination in health care. J Health Soc Behav 47: 173–187. doi: 10.1177/002214650604700206
![]() |
[9] |
LaVeist TA, Nuru-Jeter A, Jones KE (2003) The association of doctor-patient race concordance with heatlh services utilization. J Public Health Policy 24: 312–323. doi: 10.2307/3343378
![]() |
[10] |
Johnson RL, Roter D, Powe NR, et al. (2004) Patient race/ethnicity and quality of patient-physician communication during medical visits. Am J Public Health 94: 2084–2090. doi: 10.2105/AJPH.94.12.2084
![]() |
[11] |
Saha S, Komaromy M, Koepsell TD, et al. (1999) Patient-physician racial concordance and the perceived quality and use of health care. Arch Internal Med 159: 997–1004. doi: 10.1001/archinte.159.9.997
![]() |
[12] |
Chen FM, Fryer GE, Phillips RL, et al. (2005) Patients' beliefs about racism, preferences for physician race, and satisfaction with care. Ann Fam Med 3: 138–143. doi: 10.1370/afm.282
![]() |
[13] |
Benkert R, Hollie B, Nordstrom CK, et al. (2009) Trust, mistrust, racial identity and patient satisfaction in urban African American primary care patients of nurse practitioners. J Nurs Scholarsh 41: 211–219. doi: 10.1111/j.1547-5069.2009.01273.x
![]() |
[14] |
Meghani SH, Brooks JM, Gipson-Jones T, et al. (2009) Patient-provider race-concordance: does it matter in improving minority patients' health outcomes? Ethn Health 14: 107–130. doi: 10.1080/13557850802227031
![]() |
[15] | Saha S, Shipman S (2006) The rationale for diversity in the health professions: A review of the evidence. In: Administration HRaS, editor. Rockville, MD. |
[16] |
Traylor AH, Subramanian U, Uratsu CS, et al. (2010) Patient race/ethnicity and patient-physician race/ethnicity concordance in the management of cardiovascular disease risk factors for patients with diabetes. Diabetes care 33: 520–525. doi: 10.2337/dc09-0760
![]() |
[17] |
Chan KS, Bird CE, Weiss R, et al. (2006) Does patient-provider gender concordance affect mental health care received by primary care patients with major depression? Womens Health Issues 16: 122–132. doi: 10.1016/j.whi.2006.03.003
![]() |
[18] | Garcia JA, Paterniti DA, Romano PS, et al. (2003) Patient preferences for physician characteristics in university-based primary care clinics. Ethn Dis 13: 259–267. |
[19] |
Derose KP, Hays RD, McCaffrey DF, et al. (2001) Does Physician Gender Affect Satisfaction of Men and Women Visiting the Emergency Department? J Gen Intern Med 16: 218–226. doi: 10.1046/j.1525-1497.2001.016004218.x
![]() |
[20] |
Bertakis KD, Franks P, Epstein RM (2009) Patient-centered communication in primary care: physician and patient gender and gender concordance. J Women's Health 18: 539–545. doi: 10.1089/jwh.2008.0969
![]() |
[21] | Hall JA, Roter DL, Blanch-Hartigan D, et al. (2014) How patient-centered do female physicians need to be? Analogue patients' satisfaction with male and female physicians' identical behaviors. Health Commun 30: 1–7. |
[22] |
Saha S, Taggart SH, Komaromy M, et al. (2000) Do patients choose physicians of their own race? Health Aff 19: 76–83. doi: 10.1377/hlthaff.19.4.76
![]() |
[23] | Rossi PH, Nock SL (1982) Measuring social judgments: The factorial survey approach. Beverly Hills, CA: SAGE Publications. |
[24] |
Brown RL, Saunders LA, Castelaz CA, et al. (1997) Physicians' decisions to prescribe benzodiazepines for nervousness and insomnia. J Gen Intern Med 12: 44–52. doi: 10.1007/s11606-006-0006-2
![]() |
[25] |
Musa D, Schulz R, Harris R, et al. (2009) Trust in the health care system and the use of preventive health services by older black and white adults. Am J Public Health 99: 1293–1299. doi: 10.2105/AJPH.2007.123927
![]() |
[26] |
Mascarenhas OA, Cardozo LJ, Afonso NM, et al. (2006) Hypothesized predictors of patient-physician trust and distrust in the elderly: implications for health and disease management. Clin Interv Aging 1: 175–188. doi: 10.2147/ciia.2006.1.2.175
![]() |
[27] |
Lauder W (1999) A survey of self-neglect in patients living in the community. J Clin Nurs 8: 95–102. doi: 10.1046/j.1365-2702.1999.00231.x
![]() |
[28] | Atzmüller C, Steiner PM (2010) Experimental vignette studies in survey research. Methodol Eur J Res Methods Behav Soc Sci 6: 128–138. |
[29] |
Muller-Engelmann M, Krones T, Keller H, et al. (2008) Decision making preferences in the medical encounter--a factorial survey design. BMC Health Serv Res 8: 260. doi: 10.1186/1472-6963-8-260
![]() |
[30] |
Shlay AB (2010) African American, White and Hispanic child care preferences: A factorial survey analysis of welfare leavers by race and ethnicity. Soc Sci Res 39: 125–141. doi: 10.1016/j.ssresearch.2009.07.005
![]() |
[31] |
Reysen S (2005) Construction of a new scale: The Reysen Likability scale. Soc Behav Personal An Int J 33: 201–208. doi: 10.2224/sbp.2005.33.2.201
![]() |
[32] |
Cabral D, Napoles-Springer A, Miike R, et al. (2003) Population- and community-based recruitment of African Americans and Latinos: the San Francisco Bay Area Lung Cancer Study. Am J Epidemiol 158: 272–279. doi: 10.1093/aje/kwg138
![]() |
[33] | Lipsey MW (1990) Design sensitivity: statistical power for experimental research. Newbury Park, CA: Sage Publications. |
[34] |
Hall MA, Zheng B, Dugan E, et al. (2002) Measuring patients' trust in their primary care providers. Med Care Res Rev 59: 293–318. doi: 10.1177/1077558702059003004
![]() |
[35] | Babbie E (2009) The Practice of Social Research. CA: Wadsworth Publishing. |
[36] |
Hox JJ, Kreft IGG, Hermkens PLJ (1991) The analysis of factorial surveys. Sociol Methods Res 19: 493–510. doi: 10.1177/0049124191019004003
![]() |
[37] | Rabash J, Steele F, Browne WJ, et al. (2012) A User's Guide to MLwiN, v2.26. University of Bristol: Centre for Multilevel Modeling. |
[38] |
Brown RL, Brown RL, Edwards JA, et al. (1992) Variation in a medical faculty's decisions to transfuse: Implications for modifying blood product utilization. Med Care 30: 1083–1096. doi: 10.1097/00005650-199212000-00002
![]() |
[39] | Hintze J (2007) NCSS 2007. Kaysville, Utah, USA: NCSS, LLC. |
[40] |
Roter DL, Erby LH, Adams A, et al. (2014) Talking about depression: An analogue study of physician gender and communication style on patient disclosures. Patient Educ Couns 96: 339–348. doi: 10.1016/j.pec.2014.05.006
![]() |
[41] | Kumar D, Schlundt DG, Wallston KA (2009) Patient-physician race concordance and its relationship to perceived health outcomes. Ethn Dis 19: 345–351. |
[42] |
Cohen PN, Huffman ML (2003) Occupational segregation and the devaluation of women's work across U.S. labor markets. Soc Forces 81: 881–908. doi: 10.1353/sof.2003.0027
![]() |
[43] |
Hall JA, Blanch-Hartigan D, Roter DL (2011) Patients' satisfaction with male versus female physicians: a meta-analysis. Med Care 49: 611–617. doi: 10.1097/MLR.0b013e318213c03f
![]() |
[44] | Beavers FP, Satiani B (2010) Diversity in vascular surgery: Adapting to America's new face. Vasc Surg 51. |