Citation: Davies Banda. Sport for Development and Global Public Health Issues: A Case Study of National Sports Associations[J]. AIMS Public Health, 2017, 4(3): 240-257. doi: 10.3934/publichealth.2017.3.240
[1] | Andrew Brinkley, Josie Freeman, Hilary McDermott, Fehmidah Munir . What are the Facilitators and Obstacles to Participation in Workplace Team Sport? A Qualitative Study. AIMS Public Health, 2017, 4(1): 94-126. doi: 10.3934/publichealth.2017.1.94 |
[2] | Pamela Payne Foster, Martina Thomas, Dwight Lewis . Reverse Migration, the Black Church and Sexual Health: Implications for Building HIV/AIDS Prevention Capacity in the Deep South. AIMS Public Health, 2016, 3(2): 242-254. doi: 10.3934/publichealth.2016.2.242 |
[3] | Leapetswe Malete, Lucky Mokgatlhe, Maria Nnyepi, Jose Jackson, Fujun Wen, Maurice Bennink, Gabriel Anabwani, Jerry Makhanda, Ibou Thior, Philemon Lyoka, Lorraine Weatherspoon . Effects of a High Protein Food Supplement on Physical Activity, Motor Performance and Health Related Quality of Life of HIV Infected Botswana Children on Anti-Retroviral Therapy (ART). AIMS Public Health, 2017, 4(3): 258-277. doi: 10.3934/publichealth.2017.3.258 |
[4] | Amy M. Gayman, Jessica Fraser-Thomas, Jamie E. L. Spinney, Rachael C. Stone, Joseph Baker . Leisure-time Physical Activity and Sedentary Behaviour in Older People: The Influence of Sport Involvement on Behaviour Patterns in Later Life. AIMS Public Health, 2017, 4(2): 171-188. doi: 10.3934/publichealth.2017.2.171 |
[5] | Margaret Henning, Sunil K. Khanna . Overburden, Stigma, and Perceived Agency: Teachers as HIV Prevention Educators in Urban Zambia. AIMS Public Health, 2016, 3(2): 265-273. doi: 10.3934/publichealth.2016.2.265 |
[6] | Andrew Brinkley, Hilary McDermot, Fehmidah Munir . Team Sport in the Workplace? A RE-AIM Process Evaluation of ‘Changing the Game’. AIMS Public Health, 2017, 4(5): 466-489. doi: 10.3934/publichealth.2017.5.466 |
[7] | Maha Hamad Mohammed Ali, Osman Babiker Osman, Mohamed AE. M. Ibrahim, Waled Amen Mohammed Ahmed . The effect of AIDS peer health education on knowledge, attitudes, and practices of secondary school students in Khartoum, Sudan. AIMS Public Health, 2015, 2(4): 718-726. doi: 10.3934/publichealth.2015.4.718 |
[8] | Aditi Tomar, Mandy N Spadine, Taylor Graves-Boswell, Lisa T Wigfall . COVID-19 among LGBTQ+ individuals living with HIV/AIDS: psycho-social challenges and care options. AIMS Public Health, 2021, 8(2): 303-308. doi: 10.3934/publichealth.2021023 |
[9] | Paulina Januszko, Ewa Lange . Nutrition, supplementation and weight reduction in combat sports: a review. AIMS Public Health, 2021, 8(3): 485-498. doi: 10.3934/publichealth.2021038 |
[10] | Ana Gama, Maria O. Martins, Sónia Dias . HIV Research with Men who Have Sex with Men (MSM): Advantages and Challenges of Different Methods for Most Appropriately Targeting a Key Population. AIMS Public Health, 2017, 4(3): 221-239. doi: 10.3934/publichealth.2017.3.221 |
During the past decades, the exact solutions of nonlinear partial differential equations have been investigated by many authors. Meanwhile, many powerful methods have been proposed by them, such as Backlund transformation method [1], multiple exp-function method [2], homogeneous balance principle [3], tanh-sech method [4], G′/G-expansion method [5,6,7], the first integral method [8,9] and so on.
The G′/G-expansion method was first presented by Wang [5] which can be used to deal with all types of nonlinear evolution equations. The first integral method was first proposed by Feng [8] for obtaining the exact solutions of Burgers-KdV equation which is based on the ring theory of commutative algebra. The basic idea of the first integral method is to construct a first integral with polynomial coefficients of an explicit form to an equivalent autonomous planer system by using the division theorem. Both the G′/G-expansion method and the first integral method are powerful methods for computing the exact solutions of nonlinear partial differential equations. They are direct, elementary and effective algebraic methods.
In this paper, we consider the following generalized (2+1)-dimensional BKP equation [10]
{(wn)t+(wm)xxx+(wm)yyy+α(uw)x+β(vw)y=0,uy=wx,vx=wy, | (1.1) |
where α,β are arbitrary constants and α+β≠0,m,n are integers and m,n≥2. In [10], authors studied traveling wave solutions in the parameter space of this system by bifurcation theory of dynamical systems and they obtained some exact explicit parametric representations of periodic cusp wave solutions, solitary wave solutions and compacton solutions. In this paper, we continue to consider the problem of solving system (1.1) by using the G′/G-expansion method and the first integral method and we obtain the rational function solutions, periodic function solutions and the hyperbolic function solutions of (1.1) under some parametric conditions and the values of m, n in several cases.
Specially, when m=1,n=1,α=β=6, (1.1) becomes
{wt+wxxx+wyyy+6(uw)x+6(vw)y=0,uy=wx,vx=wy. |
It is the famous (2+1)-dimensional BKP equation which was introduced by Date et al. [11] and describes the processes of interaction of exponentially localized structures. It is one of a hierarchy of integrable systems emerging from a bilinear identity related to a Clifford algebra which is generated by two neutral fermion fields [12]. This equation has been studied by using many methods, such as the sine-cosine method [13], the G′/G-expansion method [6], the improved G′/G-expansion method [14] and so on.
The aim of this paper is to extract the exact solutions of the generalized (2+1)-dimensional BKP equation by using the G′/G-expansion method and the first integral method. The paper is arranged as follows: In section 2, we apply the G′/G-expansion method to this equation. In section 3, we apply the first integral method to solve this equation. In section 4, we give the conclusion of the paper.
We suppose the wave transformations
w(x,y,t)=w(ξ),u(x,y,t)=u(ξ),v(x,y,t)=v(ξ), ξ=k1x+l1y+λ1t | (2.1) |
where k1,l1,λ1 are constants. By using the wave transformations (2.1), (1.1) can be converted into ODEs
{λ1(wn)′+(k31+l31)(wm)′′′+αk1(u′w+uw′)+βl1(v′w+vw′)=0,l1u′=k1w′,k1v′=l1w′, | (2.2) |
where "′" is the derivative with respect to ξ. Integrating the second and third equation of (2.2) and neglecting integral constants, we obtain
{l1u=k1w,k1v=l1w. |
Substituting the above equations into the first equation of (2.2) and integrating it, then it becomes
λ1wn+(k31+l31)(wm)′′+(αk21l1+βl21k1)w2=g, | (2.3) |
where g is an integral constant. We assume that (2.3) has the following formal solutions [7,15]:
w(ξ)=D(G′G)N, D≠0, | (2.4) |
where D is a constant to be determined later. N is determined by balancing the linear term of the highest order derivatives with the highest order nonlinear term in (2.3) and G satisfies a second order constant coefficient ODE which is
G″(ξ)+λG′(ξ)+μG(ξ)=0, | (2.5) |
where λ, μ are constants and will be determined later. Next, we will obtain the exact solutions of (1.1) by considering the values of m and n in several cases.
Balancing (wm)′′ with wn of (2.3), we have mN+2=nN, i.e., N=2/(n−m). Thus, we assume
w(ξ)=D1(G′G)2n−m, D1≠0 | (2.6) |
where D1 is a constant to be determined later. Then, we have
wn=Dn1(G′G)2nn−m, w2=D21(G′G)4n−m,(wm)″=2mn−mDm1[(2mn−m+1)(G′G)2mn−m+2+(4mn−m+1)λ(G′G)2mn−m+1+2mn−m(2μ+λ2)(G′G)2mn−m+(4mn−m−1)λμ(G′G)2mn−m−1+(2mn−m−1)μ2(G′G)2mn−m−2]. |
Substituting the above formulas into (2.3) and collecting all terms with the same order of G′/G together, we can convert the left-hand side of (2.3) into a polynomial in G′/G. Then, setting each coefficient of each polynomial to zero, we can derive a set of algebraic equation for λ,μ and D1:
(G′G)2mn−m+2 coeff:
(k31+l31)(2mn−m+1)2mn−mDm1+λ1Dn1=0, | (2.7) |
(G′G)2mn−m+1 coeff:
(k31+l31)(4mn−m+1)2mn−mλDm1=0. | (2.8) |
Here, we need to consider the value of 4/(n−m) in the following cases:
Case 1. 4n−m=2mn−m−1
(G′G)2mn−m coeff:
(k31+l31)(2mn−m)2(2μ+λ2)Dm1=0, | (2.9) |
(G′G)2mn−m−1 coeff:
(k31+l31)(4mn−m−1)2mn−mλμDm1+(αk21l1+βl21k1)D21=0, | (2.10) |
(G′G)2mn−m−2 coeff:
(k31+l31)(2mn−m−1)2mn−mμ2Dm1=0. | (2.11) |
Solving the set of (2.7)-(2.11), we obtain
λ=μ=0, g=0, αk21l1+βl21k1=0, D1=(−(k31+l31)(2mn−m+1)2mn−mλ1)1/(n−m). | (2.12) |
Case 2. 4n−m=2mn−m−2
(G′G)2mn−m coeff:
(k31+l31)(2mn−m)2(2μ+λ2)Dm1=0, | (2.13) |
(G′G)2mn−m−1 coeff:
(k31+l31)(4mn−m−1)2mn−mλμDm1=0, | (2.14) |
(G′G)2mn−m−2 coeff:
(k31+l31)(2mn−m−1)2mn−mμ2Dm1+(αk21l1+βl21k1)D21=0. | (2.15) |
Solving the set of (2.7)-(2.8) and (2.13)-(2.15), we get the same results as those of Case 1.
Case 3. \frac{4}{n-m}\neq\frac{2m}{n-m}-1 } and \frac{4}{n-m}\neq\frac{2m}{n-m}-2
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{2m}{n-m}} coeff:
(k^{3}_{1}+l^{3}_{1})(\frac{2m}{n-m})^{2}(2\mu+\lambda^{2})D^{m}_{1}=0, | (2.16) |
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{2m}{n-m}-1} coeff:
(k^{3}_{1}+l^{3}_{1})(\frac{4m}{n-m}-1)\frac{2m}{n-m}\lambda\mu D^{m}_{1}=0, | (2.17) |
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{2m}{n-m}-2} coeff:
(k^{3}_{1}+l^{3}_{1})(\frac{2m}{n-m}-1)\frac{2m}{n-m}\mu^{2} D^{m}_{1}=0, | (2.18) |
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{4}{n-m}} coeff:
(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})D^{2}_{1}=0. | (2.19) |
Solving the set of (2.7)-(2.8) and (2.16)-(2.19), we obtain the same results as those of former cases. Substituting (2.12) into (2.5) and (2.6), then, we can get the rational function solutions
\begin{eqnarray*} w(x, y, t)&=&{\bigg(}-\frac{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{n-m}+1)\frac{2m}{n-m}}{\lambda_{1}} {\bigg)}^{\frac{1}{n-m}}{\bigg(}\frac{C_{1}}{C_{1}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{2}}{\bigg)}^{\frac{2}{n-m}}, \\ v(x, y, t)&=&\frac{l_{1}}{k_{1}}{\bigg(}-\frac{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{n-m}+1)\frac{2m}{n-m}}{\lambda_{1}} {\bigg)}^{\frac{1}{n-m}}{\bigg(}\frac{C_{1}}{C_{1}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{2}}{\bigg)}^{\frac{2}{n-m}}, \\ u(x, y, t)&=&\frac{k_{1}}{l_{1}}{\bigg(}-\frac{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{n-m}+1)\frac{2m}{n-m}}{\lambda_{1}} {\bigg)}^{\frac{1}{n-m}}{\bigg(}\frac{C_{1}}{C_{1}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{2}}{\bigg)}^{\frac{2}{n-m}}, \end{eqnarray*} |
where C_{1}, C_{2} are arbitrary constants and \alpha k^{3}_{1}+\beta l^{3}_{1}=0.
(2.3) becomes
\lambda_{1}w^n+(k^{3}_{1}+l^{3}_{1})(w^{2})^{\prime\prime}+(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})w^{2}=g. | (2.20) |
Balancing (w^{2})^{\prime\prime} with w^{n}, we have N=2/(n-2). Thus, (2.20) has the following formal solutions
w(\xi)=D_{2}{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{2}{n-2}}, ~~~~D_{2}\neq0, | (2.21) |
where D_{2} is a constant to be determined later and G satisfies (2.5). Similarly, we can get a set of algebraic equations:
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{4}{n-2}+2} coeff:
(k^{3}_{1}+l^{3}_{1})(\frac{4}{n-2}+1)\frac{4}{n-2}D^{2}_{2}+\lambda_{1}D^{n}_{2}=0, | (2.22) |
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{4}{n-2}+1} coeff:
(k^{3}_{1}+l^{3}_{1})(\frac{8}{n-2}+1)\frac{4}{n-2}\lambda D^{2}_{2}=0, | (2.23) |
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{4}{n-2}} coeff:
(k^{3}_{1}+l^{3}_{1})(\frac{4}{n-2})^{2}(2\mu+\lambda^{2})D^{2}_{2}+(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})D^{2}_{2}=0, | (2.24) |
Ⅰ. The case g=0
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{4}{n-2}-1} coeff:
(k^{3}_{1}+l^{3}_{1})(\frac{8}{n-2}-1)\frac{4}{n-2}\lambda\mu D^{2}_{2}=0, | (2.25) |
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{4}{n-2}-2} coeff:
(k^{3}_{1}+l^{3}_{1})(\frac{4}{n-2}-1)\frac{4}{n-2}\mu^{2} D^{2}_{2}=0. | (2.26) |
Solving that set of (2.22)-(2.26), we obtain
\lambda=\mu=0, ~~~~~ \frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}=0, ~~~~~ D_{2}={\bigg(}-\frac{(k^{3}_{1}+l^{3}_{1})(\frac{4}{n-2}+1)\frac{4}{n-2}}{\lambda_{1}} {\bigg)}^{1/(n-2)}. | (2.27) |
Specially, when \frac{4}{n-2}-1=0, i.e., n=6, we obtain
\lambda=0, ~~~~ ~ \mu=-\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}, ~~~~~ D_{2}={\bigg(}\frac{-2(k^{3}_{1}+l^{3}_{1})}{\lambda_{1}} {\bigg)}^{1/4}. | (2.28) |
Substituting (2.27) into (2.5) and (2.21), then, we can get the rational function solutions
\begin{eqnarray*} w(x, y, t)&=&{\bigg(}-\frac{(k^{3}_{1}+l^{3}_{1})(\frac{4}{n-2}+1)\frac{4}{n-2}}{\lambda_{1}} {\bigg)}^{\frac{1}{n-2}}{\bigg(}\frac{C_{3}}{C_{3}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{4}}{\bigg)}^{\frac{2}{n-2}}, \\ v(x, y, t)&=&\frac{l_{1}}{k_{1}}{\bigg(}-\frac{(k^{3}_{1}+l^{3}_{1})(\frac{4}{n-2}+1)\frac{4}{n-2}}{\lambda_{1}} {\bigg)}^{\frac{1}{n-2}}{\bigg(}\frac{C_{3}}{C_{3}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{4}}{\bigg)}^{\frac{2}{n-2}}, \\ u(x, y, t)&=&\frac{k_{1}}{l_{1}}{\bigg(}-\frac{(k^{3}_{1}+l^{3}_{1})(\frac{4}{n-2}+1)\frac{4}{n-2}}{\lambda_{1}} {\bigg)}^{\frac{1}{n-2}}{\bigg(}\frac{C_{3}}{C_{3}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{4}}{\bigg)}^{\frac{2}{n-2}}, \end{eqnarray*} |
where C_{3}, C_{4} are arbitrary constants and \alpha k^{3}_{1}+\beta l^{3}_{1}=0. Substituting (2.28) into (2.5) and (2.21), then, we have
G''+\bigg{(}-\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}G=0. |
Case 1. \frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}>0
We obtain the hyperbolic function solutions
\begin{eqnarray*} w(x, y, t)=&&\bigg{(} \frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})^{2}}{2\lambda_{1}(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/4}\\ &&\left\{ \frac{C_{5}\sinh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{6}\cosh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}{C_{5}\cosh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{6}\sinh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}\right\}^{1/2}, \\ v(x, y, t)=&&\frac{l_{1}}{k_{1}}\bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})^{2}}{2\lambda_{1}(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/4}\\ &&\left\{ \frac{C_{5}\sinh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{6}\cosh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}{C_{5}\cosh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{6}\sinh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}\right\}^{1/2}, \\ u(x, y, t)=&&\frac{k_{1}}{l_{1}}\bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})^{2}}{2\lambda_{1}(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/4}\\ &&\left\{ \frac{C_{5}\sinh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{6}\cosh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}{C_{5}\cosh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{6}\sinh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}\right\}^{1/2}, \end{eqnarray*} |
where C_{5}, C_{6} are arbitrary constants.
Case 2. \frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})} < 0
We obtain the hyperbolic function solutions
\begin{eqnarray*} w(x, y, t)=&&\bigg{(} \frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})^{2}}{2\lambda_{1}(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/4}\\ &&\left\{ \frac{-C_{7}\sin \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{8}\cos \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}{C_{7}\cos \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{8}\sin \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}\right\}^{1/2}, \\ v(x, y, t)=&&\frac{l_{1}}{k_{1}}\bigg{(} \frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})^{2}}{2\lambda_{1}(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/4}\\ &&\left\{ \frac{-C_{7}\sin \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{8}\cos \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}{C_{7}\cos \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{8}\sin \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}\right\}^{1/2}, \\ u(x, y, t)=&&\frac{k_{1}}{l_{1}}\bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})^{2}}{2\lambda_{1}(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/4}\\ &&\left\{ \frac{-C_{7}\sin \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{8}\cos \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}{C_{7}\cos \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{8}\sin \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}\right\}^{1/2}, \end{eqnarray*} |
where C_{7}, C_{8} are arbitrary constants.
Case 3. \frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}=0
We obtain the rational function solutions
\begin{eqnarray*} w(x, y, t)=&&{\bigg(}\frac{-2(k^{3}_{1}+l^{3}_{1})}{\lambda_{1}} {\bigg)}^{1/4}\left\{ \frac{C_{9}}{C_{9}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{10}} \right\}^{1/2}, \\ v(x, y, t)=&&\frac{l_{1}}{k_{1}}{\bigg(}\frac{-2(k^{3}_{1}+l^{3}_{1})}{\lambda_{1}} {\bigg)}^{1/4}\left\{ \frac{C_{9}}{C_{9}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{10}} \right\}^{1/2}, \\ u(x, y, t)=&&\frac{k_{1}}{l_{1}}{\bigg(}\frac{-2(k^{3}_{1}+l^{3}_{1})}{\lambda_{1}} {\bigg)}^{1/4}\left\{ \frac{C_{9}}{C_{9}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{10}} \right\}^{1/2}, \end{eqnarray*} |
where C_{9}, C_{10} are arbitrary constants.
Ⅱ. The case g\neq0
When \frac{4}{n-2}-2=0, i.e, n=4.
{\bigg(}\frac{G^{\prime}}{G}{\bigg)} coeff:
6(k^{3}_{1}+l^{3}_{1})\lambda\mu D^{2}_{2}=0, | (2.29) |
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{0} coeff:
2(k^{3}_{1}+l^{3}_{1})\mu^{2} D^{2}_{2}=g. | (2.30) |
Solving the set of (2.22)-(2.24) and (2.29)-(2.30), we obtain
\lambda=0, ~~~ \mu=-\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}, ~~~D_{2}={\bigg(}\frac{-6(k^{3}_{1}+l^{3}_{1})}{\lambda_{1}} {\bigg)}^{1/2}, ~~~ \frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}\neq0, ~~~ \frac{-3(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})^{2}}{\lambda_{1}}=g. | (2.31) |
Similarly, we can obtain the hyperbolic function solutions and trigonometric function solutions
Case 1. \frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}>0
\begin{eqnarray} w(x, y, t)=&&\bigg{(} \frac{-3(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{\lambda_{1}}\bigg{)}^{1/2}\nonumber \\ &&\left\{ \frac{C_{11}\sinh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{12}\cosh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}{C_{11}\cosh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{12}\sinh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}\right\}, \\ v(x, y, t)=&&\frac{l_{1}}{k_{1}}\bigg{(} \frac{-3(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{\lambda_{1}}\bigg{)}^{1/2}\nonumber \\ &&\left\{ \frac{C_{11}\sinh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{12}\cosh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}{C_{11}\cosh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{12}\sinh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}\right\}, \nonumber\\ u(x, y, t)=&&\frac{k_{1}}{l_{1}}\bigg{(} \frac{-3(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{\lambda_{1}}\bigg{)}^{1/2}\nonumber \\ &&\left\{ \frac{C_{11}\sinh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{12}\cosh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}{C_{11}\cosh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{12}\sinh \bigg{(}\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}\right\}\nonumber, \end{eqnarray} | (2.32) |
where C_{11}, C_{12} are arbitrary constants and \lambda_{1}(k_{1}^{3}+l_{1}^{3}) < 0.
Case 2. \frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})} < 0
\begin{eqnarray} w(x, y, t)=&&\bigg{(} \frac{-3(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{\lambda_{1}}\bigg{)}^{1/2}\nonumber\\ &&\left\{ \frac{-C_{13}\sin \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{14}\cos \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}{C_{13}\cos \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{14}\sin \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}\right\}, \\ v(x, y, t)=&&\frac{l_{1}}{k_{1}}\bigg{(} \frac{-3(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{\lambda_{1}}\bigg{)}^{1/2}\nonumber\\ &&\left\{ \frac{-C_{13}\sin \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{14}\cos \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}{C_{13}\cos \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{14}\sin \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}\right\}, \nonumber\\ u(x, y, t)=&&\frac{k_{1}}{l_{1}}\bigg{(} \frac{-3(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{\lambda_{1}}\bigg{)}^{1/2}\nonumber\\ &&\left\{ \frac{-C_{13}\sin \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{14}\cos \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}{C_{13}\cos \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{14}\sin \bigg{(}\frac{-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})}{2(k_{1}^{3}+l_{1}^{3})}\bigg{)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}\right\}\nonumber, \end{eqnarray} | (2.33) |
where C_{13}, C_{14} are arbitrary constants and \lambda_{1}(k_{1}^{3}+l_{1}^{3}) < 0.
(2.3) becomes
{\bigg(}\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}{\bigg)}w^{2}+(k^{3}_{1}+l^{3}_{1})(w^{m})^{\prime\prime}=g. | (2.34) |
Balancing (w^{m})^{\prime\prime} with w^{2}, we have N=2/(2-m). Thus, (2.34) has the following formal solution
w(\xi)=D_{3}{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{2}{2-m}}, ~~~~D_{3}\neq0, | (2.35) |
where D_{3} is a constant to be determined later and G satisfies (2.5). Similarly, we can get a set of algebraic equations:
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{2m}{2-m}+2} coeff:
(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)(\frac{2m}{2-m})D^{m}_{3}+{\bigg(}\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}{\bigg)}D^{2}_{3}=0, |
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{2m}{2-m}+1} coeff:
(k^{3}_{1}+l^{3}_{1})(\frac{4m}{2-m}+1)\frac{2m}{2-m}\lambda D^{m}_{3}=0, |
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{2m}{2-m}} coeff:
(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m})^{2}(2\mu+\lambda^{2})D^{m}_{3}=0, |
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{2m}{2-m}-1} coeff:
(k^{3}_{1}+l^{3}_{1})(\frac{4m}{2-m}-1)\frac{2m}{2-m}\lambda\mu D^{m}_{3}=0, |
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{2m}{2-m}-2} coeff:
(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}-1)\frac{2m}{2-m}\mu^{2} D^{m}_{3}=0. |
Solving the above algebraic equations, we obtain
\lambda=\mu=0, ~~~~ g=0, ~~~~D_{3}={\bigg(}-\frac{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}} {\bigg)}^{1/(2-m)}. | (2.36) |
Substituting (2.36) into (2.5) and (2.35), then, when m\neq n=2, we have the rational function solutions
\begin{eqnarray*} w(x, y, t)&=&{\bigg(}-\frac{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}} {\bigg)}^{\frac{1}{2-m}}{\bigg(}\frac{C_{15}}{C_{15}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{16}}{\bigg)}^{\frac{2}{2-m}}, \\ v(x, y, t)&=&\frac{l_{1}}{k_{1}}{\bigg(}-\frac{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}} {\bigg)}^{\frac{1}{2-m}}{\bigg(}\frac{C_{15}}{C_{15}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{16}}{\bigg)}^{\frac{2}{2-m}}, \\ u(x, y, t)&=&\frac{k_{1}}{l_{1}}{\bigg(}-\frac{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}} {\bigg)}^{\frac{1}{2-m}}{\bigg(}\frac{C_{15}}{C_{15}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{16}}{\bigg)}^{\frac{2}{2-m}}, \end{eqnarray*} |
where C_{15}, C_{16} are arbitrary constants and \lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}\neq0.
Now, (2.3) can be converted into a second order ODE
{\bigg(}\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}{\bigg)}w^{2}+(k^{3}_{1}+l^{3}_{1})(w^{2})^{\prime\prime}=g. | (2.37) |
Obviously, the characteristic equation of (2.37) is r^{2}+{\bigg(}\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}=0, r is the characteristic value.
Case 1. \frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}} < 0
We can obtain the exact solution
\begin{eqnarray} w(x, y, t)&=&{\bigg(}C_{17}e^{{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}+C_{18}e^{-{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}+\frac{g}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{\bigg)}^{1/2}, \\ v(x, y, t)&=&\frac{l_{1}}{k_{1}}{\bigg(}C_{17}e^{{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}+C_{18}e^{-{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}+\frac{g}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{\bigg)}^{1/2}, \nonumber\\ u(x, y, t)&=&\frac{k_{1}}{l_{1}}{\bigg(}C_{17}e^{{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}+C_{18}e^{-{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}+\frac{g}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{\bigg)}^{1/2}\nonumber, \end{eqnarray} | (2.38) |
where C_{17}, C_{18} are arbitrary constants.
Case 2. \frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}>0
We can obtain the periodic function solutions
\begin{eqnarray} w(x, y, t)&=&\bigg{(}C_{19}\cos\bigg{[}{\bigg(}\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)\bigg{]}\nonumber\\ &&+C_{20}\sin\bigg{[}{\bigg(}\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)\bigg{]}+\frac{g}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}\bigg{)}^{1/2}, \\ v(x, y, t)&=&\frac{l_{1}}{k_{1}}\bigg{(}C_{19}\cos\bigg{[}{\bigg(}\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)\bigg{]}\nonumber\\ &&+C_{20}\sin\bigg{[}{\bigg(}\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)\bigg{]}+\frac{g}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}\bigg{)}^{1/2}, \nonumber\\ u(x, y, t)&=&\frac{k_{1}}{l_{1}}\bigg{(}C_{19}\cos\bigg{[}{\bigg(}\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)\bigg{]}\nonumber\\ &&+C_{20}\sin\bigg{[}{\bigg(}\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)\bigg{]}+\frac{g}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}\bigg{)}^{1/2}\nonumber, \end{eqnarray} | (2.39) |
where C_{19}, C_{20} are arbitrary constants.
Case 3. \frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}=0
We can obtain the rational function solutions
\begin{eqnarray} w(x, y, t)&=&\bigg{(}\frac{g}{2(k_{1}^{3}+l_{1}^{3})}(k_{1}x+l_{1}y+\lambda_{1}t)^{2}+C_{21}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{22}\bigg{)}^{1/2}, \\ v(x, y, t)&=&\frac{l_{1}}{k_{1}}\bigg{(}\frac{g}{2(k_{1}^{3}+l_{1}^{3})}(k_{1}x+l_{1}y+\lambda_{1}t)^{2}+C_{21}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{22}\bigg{)}^{1/2}, \nonumber\\ u(x, y, t)&=&\frac{k_{1}}{l_{1}}\bigg{(}\frac{g}{2(k_{1}^{3}+l_{1}^{3})}(k_{1}x+l_{1}y+\lambda_{1}t)^{2}+C_{21}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{22}\bigg{)}^{1/2}, \nonumber \end{eqnarray} | (2.40) |
where C_{21}, C_{22} are arbitrary constants.
For simplicity, we let g=0 and propose a transformation w=\varphi^{\frac{2}{n-m}}. Then, (2.3) is converted to
\lambda_{1}\varphi^{4}+(k^{3}_{1}+l^{3}_{1})(\frac{2m}{n-m}-1)\frac{2m}{n-m}(\varphi')^{2}+(k^{3}_{1}+l^{3}_{1})\frac{2m}{n-m}\varphi\varphi''+{\bigg(}\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}{\bigg)}\varphi^{2-\frac{2m-4}{n-m}}=0. | (3.1) |
Let x=\varphi, y=\frac{\mathrm {d}\varphi}{\mathrm {d}\xi}, thus (3.1) is equivalent to the two dimensional autonomous system
\begin{cases} x'=y, \\ y'=-{\bigg(}\frac{ \lambda_{1}x^{4}+(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})x^{2-\frac{2m-4}{n-m}}+(k^{3}_{1}+l^{3}_{1})(\frac{2m}{n-m}-1)\frac{2m}{n-m}y^{2}}{(k^{3}_{1}+l^{3}_{1})\frac{2m}{n-m}x} {\bigg)}. \end{cases} | (3.2) |
Making the transformation d\eta=\frac{d\xi}{(k^{3}_{1}+l^{3}_{1})\frac{2m}{n-m}x}, then, (3.2) becomes
\begin{cases} \frac{dx}{d\eta}=(k^{3}_{1}+l^{3}_{1})\frac{2m}{n-m}xy, \\ \frac{dy}{d\eta}=-\left(\lambda_{1}x^{4}+(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})x^{2-\frac{2m-4}{n-m}}+(k^{3}_{1}+l^{3}_{1})(\frac{2m}{n-m}-1)\frac{2m}{n-m}y^{2}\right). \end{cases} | (3.3) |
Then, we will apply the Division Theorem to seek the first integral of system (3.3). Suppose that x=x(\eta), y=y(\eta) are the nontrivial solutions to (3.3), and p(x, y)=\sum^{M}_{i=0}a_{i}(x)y^{i} is an irreducible polynomial in C[x, y], where a_{i}(x) (i=0, 1..., M) are polynomials of x and a_{i}(x)\neq0. Let p(x(\eta), y(\eta))=0 be the first integral to system (3.3). \frac{dp}{d\eta} is a polynomial in x, y and \frac{dp}{d\eta}\big|_{(3.3)}=0. According to the Division Theorem, there exists a polynomial g(x)+h(x)y in C[x, y], such that
\begin{eqnarray} \frac{dp}{d\eta}\bigg|_{(3.3)}&=&\left( \frac{\partial p}{\partial x}\frac{dx}{d\eta}+\frac{\partial p}{\partial y}\frac{dy}{d\eta} \right)\bigg|_{(3.3)} \nonumber \\ &=&\sum^{M}_{i=0}[a^{\prime}_{i}(x)y^{i}\cdot (k^{3}_{1}+l^{3}_{1})\frac{2m}{n-m}xy]\nonumber\\ &&-\sum^{2}_{i=0}\left[ia_{i}(x)y^{i-1}(\lambda_{1}x^{4}+(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})x^{2-\frac{2m-4}{n-m}}+(k^{3}_{1}+l^{3}_{1})(\frac{2m}{n-m}-1)\frac{2m}{n-m}y^{2})\right] \nonumber \\ &=&[g(x)+h(x)y] \bigg{[}\sum^{M}_{i=0}a_{i}(x)y^{i}\bigg{]}. \end{eqnarray} | (3.4) |
Here, let M=1, thus, p(x, y)=a_{0}(x)+a_{1}(x)y. By comparing with the coefficients of y^{i} of both sides of (3.4), we have
(k^{3}_{1}+l^{3}_{1})\frac{2m}{n-m}xa'_{1}(x)=h(x)a_{1}(x)+(k^{3}_{1}+l^{3}_{1})(\frac{2m}{n-m}-1)\frac{2m}{n-m}a_{1}(x), | (3.5) |
(k^{3}_{1}+l^{3}_{1})\frac{2m}{n-m}xa_{0}'(x)=g(x)a_{1}(x)+h(x)a_{0}(x), | (3.6) |
g(x)a_{0}(x)=-\left(\lambda_{1}x^{4}+(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})x^{2-\frac{2m-4}{n-m}}\right)a_{1}(x). | (3.7) |
Since a_{i}(x)(i=0, 1) are polynomials, then from (3.5), we deduce that h(x)=-(k^{3}_{1}+l^{3}_{1})(\frac{2m}{n-m}-1)\frac{2m}{n-m} and a_{1}(x) is a constant. For simplicity, take a_{1}(x)=1. Balancing the degrees of g(x) and a_{0}(x), we conclude that \deg(g(x))=\deg(a_{0}(x)). Then, we derive \deg(g(x))=\deg(a_{0}(x))=j, (j\in Z^{+}, j\geq2).
When 2-\frac{2m-4}{n-m}=4 (n=2) and \deg(g(x))=\deg(a_{0}(x))=2, we suppose that
\begin{eqnarray} g(x)&=&A_{0}+A_{1}x+A_{2}x^{2}, \nonumber\\ a_{0}(x)&=&B_{0}+B_{1}x+B_{2}x^{2}, ~~(A_{2}\neq0, B_{2}\neq0), \end{eqnarray} | (3.8) |
where A_{i}, B_{i}, (i=0, 1, 2) are all constants to be determined. Substituting (3.8) into (3.6), we obtain
g(x)=(k^{3}_{1}+l^{3}_{1})\frac{2m}{2-m}\left[(\frac{2m}{2-m}-1)B_{0}+\frac{2m}{2-m}B_{1}x+(\frac{2m}{2-m}+1)B_{2}x^{2}\right]. |
Substituting a_{0}(x), a_{1}(x) and g(x) into (3.7), and setting all the coefficients of powers x to be zero, we can get a system of nonlinear algebraic equations. After solving it, we can get the following solutions
B_{0}=B_{1}=0, ~~~~~~B_{2}=\pm{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}} {\bigg)}^{1/2}. | (3.9) |
Using the conditions (3.9) in p(x, y)=a_{0}(x)+a_{1}(x)y=0, we obtain
y\pm{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}} {\bigg)}^{1/2}x^{2}=0. | (3.10) |
Combining (3.3) with (3.10), we find
\frac{dx}{d\eta}=\pm(k_{1}^{3}+l_{1}^{3})\frac{2m}{n-m}{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}} {\bigg)}^{1/2}x^{3}. |
Thus, (3.10) can be reduced to
\frac{d\varphi}{d\xi}=\pm{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}} {\bigg)}^{1/2}\varphi^{2}. |
Then, we have
\varphi(\xi)=\bigg{[}\pm{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}} {\bigg)}^{1/2}\xi+C_{23}\bigg{]}^{-1}. |
Thus, we can have the rational function solutions
\begin{eqnarray*} w(x, y, t)&=&\bigg{[}\pm{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}} {\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{23}\bigg{]}^{2/(m-2)}, \\ v(x, y, t)&=&\frac{l_{1}}{k_{1}}\bigg{[}\pm{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}} {\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{23}\bigg{]}^{2/(m-2)}, \\ u(x, y, t)&=&\frac{k_{1}}{l_{1}}\bigg{[}\pm{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}} {\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{23}\bigg{]}^{2/(m-2)}, \end{eqnarray*} |
where C_{23} is an arbitrary constant and k^{3}_{1}+l^{3}_{1}\neq0.
Remark 1: When \deg(g(x))=\deg(a_{0}(x))=2 and 2-\frac{2m-4}{n-m}=i, (i\in Z, i < 4), there is no solution for them by using the method as that of 2-\frac{2m-4}{n-m}=4.
Remark 2: When \deg(g(x))=\deg(a_{0}(x))=j, (j\in Z, j>2), there is no exact solution of (1.1) by using the method as that of \deg(g(x))=\deg(a_{0}(x))=2.
Similarly, we propose a transformation denoted by w=\phi^{\frac{2}{2-m}}. Then, (2.3) can be converted to
\lambda_{1}\phi^{2}+{\bigg(}\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}{\bigg)}\phi^{4}+(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}-1)\frac{2m}{2-m}(\phi')^{2}+(k^{3}_{1}+l^{3}_{1})\frac{2m}{2-m}\phi\phi''-g\phi^{2-\frac{2m}{2-m}}=0. | (3.11) |
Let x=\phi, y=\frac{\mathrm {d}\phi}{\mathrm {d}\xi}, thus (3.11) is equivalent to the two dimensional autonomous system
\begin{cases} x'=y, \\ y'=-\bigg{(}\frac{\lambda_{1}x^{2}+(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})x^{4}-gx^{2-\frac{2m}{2-m}}+(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}-1)\frac{2m}{2-m}y^{2}}{(k^{3}_{1}+l^{3}_{1})\frac{2m}{2-m}x} {\bigg)}. \end{cases} | (3.12) |
Making the transformation d\eta=\frac{d\xi}{(k^{3}_{1}+l^{3}_{1})\frac{2m}{n-m}x}, then, (3.12) becomes
\begin{cases} \frac{dx}{d\eta}=(k^{3}_{1}+l^{3}_{1})\frac{2m}{2-m}xy, \\ \frac{dy}{d\eta}=-\left(\lambda_{1}x^{2}+(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})x^{4}-gx^{2-\frac{2m}{2-m}}+(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}-1)\frac{2m}{2-m}y^{2}\right). \end{cases} | (3.13) |
Similarly, let M=1, we have
(k^{3}_{1}+l^{3}_{1})\frac{2m}{2-m}xa'_{1}(x)=h(x)a_{1}(x)+(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}-1)\frac{2m}{2-m}a_{1}(x), | (3.14) |
(k^{3}_{1}+l^{3}_{1})\frac{2m}{2-m}xa_{0}'(x)=g(x)a_{1}(x)+h(x)a_{0}(x), | (3.15) |
g(x)a_{0}(x)=-\left(\lambda_{1}x^{2}+(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})x^{4}-gx^{2-\frac{2m}{2-m}}\right)a_{1}(x). | (3.16) |
According to m\neq n, we have h(x)=-(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}-1)\frac{2m}{2-m}, a_{1}(x)=1 and \deg(g(x))=\deg(a_{0}(x))=j, (j\in Z^{+}, j\geq2). Considering all cases, only when \deg(g(x))=\deg(a_{0}(x))=3, i.e., 2-\frac{2m}{2-m}=6 (m=n=4), there exist solutions of (1). We suppose that
\begin{eqnarray} g(x)&=&a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}, \nonumber\\ a_{0}(x)&=&b_{0}+b_{1}x+b_{2}x^{2}+b_{3}x^{3}, ~~(a_{3}\neq0, b_{3}\neq0), \end{eqnarray} | (3.17) |
where a_{i}, b_{i}, (i=0, 1, 2, 3) are all constants to be determined. Substituting (3.17) into (3.15), we obtain
g(x)=4(k^{3}_{1}+l^{3}_{1})\left(5b_{0}+4b_{1}x+3b_{2}x^{2}+2b_{3}x^{3}\right). |
Substituting a_{0}(x), a_{1}(x) and g(x) into (3.16), and setting all the coefficients of powers x to be zero, we have
b_{0}=b_{2}=0, ~~ 16(k_{1}^{3}+l_{1}^{3})b_{1}^{2}=-\lambda_{1}, ~~ 8(k_{1}^{3}+l_{1}^{3})b_{3}^{2}=g, ~~ 24(k_{1}^{3}+l_{1}^{3})b_{1}b_{3}=-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}). |
Solving it, we find
b_{0}=b_{2}=0, ~~~ b_{1}=\pm\sqrt{\frac{-\lambda_{1}}{16(k_{1}^{3}+l_{1}^{3})}}, ~~~ b_{3}=\pm\sqrt{\frac{g}{8(k_{1}^{3}+l_{1}^{3})}}, ~~~-9\lambda_{1}g=2(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})^{2}. | (3.18) |
Using the conditions (3.18) in p(x, y)=a_{0}(x)+a_{1}(x)y=0, we obtain
y=\pm\sqrt{\frac{-\lambda_{1}}{16(k_{1}^{3}+l_{1}^{3})}}x\pm\sqrt{\frac{g}{8(k_{1}^{3}+l_{1}^{3})}}x^{3}. | (3.19) |
Then, (3.19) can be reduced to
\frac{d\phi}{d\xi}=\pm\sqrt{\frac{-\lambda_{1}}{16(k_{1}^{3}+l_{1}^{3})}}\xi\pm\sqrt{\frac{g}{8(k_{1}^{3}+l_{1}^{3})}}\xi^{3}. | (3.20) |
Solving (3.20), we obtain
\phi(\xi)=\pm\left( \pm\sqrt{\frac{-2g}{\lambda_{1}}}+C_{24}e^{\pm\frac{1}{2}\sqrt{\frac{-\lambda_{1}}{k_{1}^{3}+l_{1}^{3}}}\xi} \right)^{-1/2}. |
Thus, we can have the exact solution
\begin{eqnarray*} w(x, y, t)=&&\pm\left(\pm\sqrt{\frac{-2g}{\lambda_{1}}}+C_{24}e^{\pm\frac{1}{2}\sqrt{\frac{-\lambda_{1}}{k_{1}^{3}+l_{1}^{3}}}(k_{1}x+l_{1}y+\lambda_{1}t)} \right)^{1/2}, \\ v(x, y, t)=&&\pm\frac{l_{1}}{k_{1}}\left( \pm\sqrt{\frac{-2g}{\lambda_{1}}}+C_{24}e^{\pm\frac{1}{2}\sqrt{\frac{-\lambda_{1}}{k_{1}^{3}+l_{1}^{3}}}(k_{1}x+l_{1}y+\lambda_{1}t)} \right)^{1/2}, \\ u(x, y, t)=&&\pm\frac{k_{1}}{l_{1}}\left( \pm\sqrt{\frac{-2g}{\lambda_{1}}}+C_{24}e^{\pm\frac{1}{2}\sqrt{\frac{-\lambda_{1}}{k_{1}^{3}+l_{1}^{3}}}(k_{1}x+l_{1}y+\lambda_{1}t)} \right)^{1/2}, \end{eqnarray*} |
where C_{24} is an arbitrary constant and \alpha k_{1}^{3}+\beta l_{1}^{3}\neq0, \lambda_{1}(k_{1}^{3}+l_{1}^{3}) < 0.
This paper considered the generalized (2+1)-dimensional BKP equation, by the aid of the G'/G-expansion method and the first integral method. Rational function solutions, periodic function solutions and hyperbolic function solutions are obtained under some parametric conditions and the values of m and n in several cases. In [10], authors gave some exact solutions of system (1.1) under some parametric conditions by using the bifurcation theory of dynamical systems. Here, we make a simple comparison:
1. When m=2, n=3, g=0, in [10], authors gave the exact solution (3.20) in P2443 under the parametric conditions \alpha+\beta < 0, c < 0 and in this paper, we get w(x, y, t)=\frac{-20(k^{3}_{1}+l^{3}_{1})}{\lambda_{1}}{\bigg(}\frac{C_{1}}{C_{1}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{2}}{\bigg)}^{2} under the parametric condition \alpha k^{3}_{1}+\beta l^{3}_{1}=0.
2. When m=2, n=2(k+1), (k\in Z^{+}), g=0, in [10], authors gave the solitary wave solutions (3.9) in P2441 under the parametric conditions \alpha+\beta < 0, c < 0 and in this paper, we get w(x, y, t)=\bigg{(}\sqrt{\frac{-2(k+2)(k_{1}^{3}+l_{1}^{3})}{\lambda_{1}k^{2}}}\frac{C_{1}}{C_{1}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{2}}\bigg{)}^{1/k} under the parametric condition \alpha k^{3}_{1}+\beta l^{3}_{1}=0.
3. When m=3, n=4, g=0, in [10], authors gave the compacton solution (3.23) in P2443 under the parametric conditions \alpha+\beta < 0, c < 0 and in this paper, we get w(x, y, t)=\frac{-42(k_{1}^{3}+l_{1}^{3})}{\lambda_{1}}\bigg{(}\frac{C_{1}}{C_{1}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{2}}\bigg{)}^{2} under the parametric condition \alpha k^{3}_{1}+\beta l^{3}_{1}=0.
4. When m=3, n=5, g=0, in [10], authors gave the exact solution (3.27) in P2443 under the parametric conditions c < 0 and in this paper, we get w(x, y, t)=\sqrt{\frac{-12(k_{1}^{3}+l_{1}^{3})}{\lambda_{1}}}\frac{C_{1}}{C_{1}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{2}} under the parametric condition \alpha k^{3}_{1}+\beta l^{3}_{1}=0.
5. When m=4, n=6, g=0, in [10], authors gave the periodic cusp wave solutions (3.6) in P2441 under the parametric conditions \alpha+\beta < 0, c < 0 and in this paper, we get w(x, y, t)=\sqrt{\frac{-20(k_{1}^{3}+l_{1}^{3})}{\lambda_{1}}}\frac{C_{1}}{C_{1}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{2}} under the parametric condition \alpha k^{3}_{1}+\beta l^{3}_{1}=0.
6. When m=4, n=2k+1, (k\in Z^{+}), g=0, in [10], authors gave the exact solutions (3.17) and (3.18) in P2442 under the parametric conditions \alpha+\beta < 0, c < 0 and in this paper, we get w(x, y, t)=\bigg{(}\frac{-8(2k+5)(k_{1}^{3}+l_{1}^{3})}{\lambda_{1}(2k-3)^{2}}\bigg{)}^{\frac{1}{2k-3}}\bigg{(}\frac{C_{1}}{C_{1}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{2}}\bigg{)}^{\frac{2}{2k-3}} under the parametric condition \alpha k^{3}_{1}+\beta l^{3}_{1}=0.
7. When m=2, n=4, g\neq0, in [10], authors gave the exact solutions (3.30) in P2443 under the parametric conditions g < \frac{(\alpha+\beta)^{2}}{4c}, c>0, g>0, \alpha+\beta>0, (3.33) in P2444 under the parametric conditions g < \frac{(\alpha+\beta)^{2}}{4c}, c < 0, g>0, \alpha+\beta>0 or g>\frac{(\alpha+\beta)^{2}}{4c}, c < 0, g>0, \alpha+\beta < 0 and (3.41), (3.43) in P2445 under the parametric conditions g>\frac{(\alpha+\beta)^{2}}{4c}, c < 0, g < 0, \alpha+\beta < 0 and in this paper, we get (2.32) under the parametric conditions \lambda_{1}(k_{1}^{3}+l_{1}^{3}) < 0, ~ \frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}>0 and (2.33) under the parametric conditions \lambda_{1}(k_{1}^{3}+l_{1}^{3}) < 0, ~\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})} < 0.
8. When m=2, n=2, g\neq 0, in [10], authors gave the exact solutions (3.36) and (3.38) in P2444 under the parametric conditions \alpha+\beta-c>0, g>0 and in this paper, we get the exact solutions (2.38) under the parametric conditions \frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}} < 0, (2.39) under the parametric conditions \frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}>0 and (2.40) under the parametric conditions \frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}=0.
In addition, when let m, n be other values, we have got other exact solutions of (1.1) under some parametric conditions that haven't been given in [10]. Certainly, system (1.1) should be studied further, which will be left to a further discussion.
All authors declare no conflicts of interest in this paper.
[1] | Green BC (2008). Sport as an agent for social and personal change. In V. Girginov (Ed.), Management of sport development (129-146). Oxford, UK: Elsevier. |
[2] | Levermore R (2008) Sport: A New Engine of Development, Prog Dev Stud 8: 193-190 |
[3] | Black DR (2010) The Ambiguities of Development: Implications for Development through Sport. Sport in Soc 13: 121-129. |
[4] |
Darnell SC and Black DR (2011) Mainstreaming Sport into International Development Studies. Third World Quart 32: 367-378. doi: 10.1080/01436597.2011.573934
![]() |
[5] | Lindsey I, Kay T, Jeanes R, et al. (2017) Localizing Global Sport for Development. Manchester University Press. |
[6] |
Kidd B (2008) A New Social Movement: Sport for Development and Peace. Sport in Soc 11: 370-380. doi: 10.1080/17430430802019268
![]() |
[7] | United Nations Inter-Agency Task Force on Sport for Development and Peace (2003), Sport for Development and Peace: Towards Achieving the Millennium Development Goals, Geneva: United Nations. |
[8] | Commonwealth Secretariat (2014), Strengthening Sport for Development and Peace: National Policies and Strategies, London: Commonwealth Secretariat. |
[9] | Levermore R and Beacom A (2009) Sport and Development: Mapping the Field, in R. Levermore and A. Beacom (eds.), Sport and International Development, Basingstoke: Palgrave Macmillan. |
[10] | Coalter F (2006). Sport-in-Development: A monitoring and evaluation manual. Available from: http://www.sportanddev.org/en/toolkit/?uNewsID=17. |
[11] | Zakus D, Njelesani D, Darnell SC (2007) The use of sport and physical activity to achieve health objectives in Sport for Development and Peace International Working Group (ed.) Literature Reviews on Sport for Development and Peace. Toronto: University of Toronto , 7-47. |
[12] | National AIDS Council & Ministry of Health (NAC/MoH) (2008). Zambia Country Report: Multisectoral AIDS Response Monitoring and Evaluation Biennial Report 2006-2007. Declaration Of Commitment Submitted To The United Nations General Assembly Special Session On AIDS. Lusaka: National AIDS Council/Ministry of Health. |
[13] |
Spaaij R (2012) Building Social and Cultural Capital among Young People in Disadvantaged Communities: Lessons from a Brazilian Sport-based Intervention Program. Sport, Educ and Soc 17: 77-95. doi: 10.1080/13573322.2011.607913
![]() |
[14] | Cornelissen S (2011) More than a Sporting Chance? Appraising the Sport for Development Legacy of the 2010 FIFA World Cup. Third World Quart, 32: 503-529. |
[15] |
Coalter F (2010) The politics of sport-for-development: Limited focus programmes and broad gauge problems? Int Rev Soc Sport 45: 295–314. doi: 10.1177/1012690210366791
![]() |
[16] |
Lindsey I and Banda D (2011) Sport and the Fight against HIV/AIDS in Zambia: A Partnership Approach? Int Rev Sociol Sport 46: 90-107. doi: 10.1177/1012690210376020
![]() |
[17] | Jeanes R (2013) Educating through Sport? Examining HIV/AIDS Education and Sport-for-Development through the Perspectives of Zambian Young People. Sport, Educ and Soc 18: 388-406. |
[18] | Mwaanga O (2003) HIV/AIDS At-risk Adolescent Girls' Empowerment through Participation in Top Level Football and Edusport in Zambia, MSc Thesis, Institute of Social Science at the Norwegian University of Sport and PE, Oslo. |
[19] |
Dixey R (2014) After Nairobi: can the international community help to develop health promotion in Africa? Health Promotion Int 29: 185-194. doi: 10.1093/heapro/dat052
![]() |
[20] | Coalter F (2007) A Wider Role for Sport: Who's Keeping the Score? London: Routledge. |
[21] | McCormack JB and Chalip L (1988). Sport as socialization: A critique of methodological premises. Soc Sci J 25: 83–92. |
[22] | Collins M (2010) "Sport for good" to "sport for sport's sake"–not a good move for sports. Int J Sport Pol 2: 367-379. |
[23] | Jeanes R and Magee J (2014) Promoting Gender Empowerment through Sport? Exploring the Experiences of Zambian Female Footballers, In N. Schulenkorf and D. Adair (eds), Global Sport for Developmen: Critical Perspectives, Basingstoke: Palgrave Macmillan, 134-154. |
[24] | Banda D (2010) Zambia: Government's Role in Colonial and Modern Times, Int J Sport Pol 2: 237-252. |
[25] |
Kelly K and Birdsall K (2010) The effects of national and international HIV/AIDS funding and governance mechanisms on the development of civil society responses to HIV/AIDS in East and Southern Africa. AIDS Care 22: 1580-1587. doi: 10.1080/09540121.2010.524191
![]() |
[26] |
Gilson L, Sen PD, Mohammed S, et al. (1994) The potential of health sector non-governmental organizations: policy options. Health Policy Plan 9: 14-24. doi: 10.1093/heapol/9.1.14
![]() |
[27] | Laird SE (2007) Rolling Back the African State: Implications for Social Development in Ghana. Sol Policy & Adm 41: 465-486. |
[28] | Bebbington A and Riddell R (1997) Heavy Hands, Hidden Hands, Holding Hands? Donors, Intermediary NGOs and Civil Society Organisations, In D. Hulme and M. Edwards (eds) NGOs, States and Donors: Too Close for Comfort? Basingstoke: MacMillan, 107-127. |
[29] | Zaidi SA (1999) NGO Failure and the Need to Bring Back the State, J Int Dev 11: 259-271. |
[30] | Hulme D and Edwards M (1997) NGOs, States and Donors: An Overview, in D. Hulme and M. Edwards (eds.), NGOs, States and Donors: Too Close for Comfort? Basingstoke: MacMillan. |
[31] |
Hershey M (2013) Explaining the Non-governmental Organization (NGO) Boom: the Case of HIV/AIDS NGOs in Kenya. J Eastern African Stu 7: 671-690, doi: 10.1080/17531055.2013.818776
![]() |
[32] |
Wilson B and Hayhurst L (2009) Digital Activism: Neoliberalism, the Internet, and Sport for Youth Development. Soc Sport J 26: 155-181. doi: 10.1123/ssj.26.1.155
![]() |
[33] |
Kidd B (2008) A new social movement: sport for development and peace. Sport in Soc 11: 370-380. doi: 10.1080/17430430802019268
![]() |
[34] | UNAIDS (2005) Three Ones' in Action: where are we and where we go from here. Geneva, Switzerland. |
[35] |
Morah E and Ihalainen M (2009) National AIDS Commissions in Africa: performance and emerging challenges. Dev Pol Rev 27: 185-214. doi: 10.1111/j.1467-7679.2009.00442.x
![]() |
[36] |
Houlihan B (2005) Public Sector Sport Policy: Developing a Framework for Analysis. Int Rev Sociol Sport 40: 163-185. doi: 10.1177/1012690205057193
![]() |
[37] | Lindsey I, Jeanes R, Lihaya H (2016) Sport development policy In Managing sport development: an international approach. Abingdon, Oxon: Routledge 45-60. |
[38] | Hein W, Bartsch S, Kohlmorgen L (Eds) (2007) Global health governance and the fight against HIV/AIDS. London, Palgrave Macmillan. |
[39] | Buse K and Walt G (2000) Global public private partnerships: Part I - a new development in health? Bull W H O 7: 549-561. |
[40] | Kooiman J (1993) Modern Governance. London, Sage Publications. |
[41] | Rose, N. Government (2005) In: T. Bennett., L. Grossberg and M. Morris (Eds) New Keywords: a revised vocabulary of culture and society. Oxford: Blackwell Publishing, 151-153. |
[42] | Rhodes RAW (1994) The hollowing-out of the state, Polit Q 65: 138-51. |
[43] | Bevir M and Rhodes RAW (2001) Decentring British Governance: From Bureaucracy To Networks, UC Berkeley, Institute of Governmental Studies. |
[44] | Rhodes RAW (2007) Understanding Governance: Ten Years On. Organ Stud 2: 1243-1264. |
[45] |
Klijn EH and Koppenjan JFM (2000) Public Management and Policy Networks: Foundations of a network approach to governance. Pub Manag 2: 135-158. doi: 10.1080/146166700411201
![]() |
[46] |
Bell S and Hindmoor A (2009) The governance of public affairs. J Pub Aff 9: 149-159. doi: 10.1002/pa.306
![]() |
[47] |
Poku N (2001) Africa's AIDS Crisis in Context: How the Poor are dying. Third World Q 22: 191-204. doi: 10.1080/01436590120037027
![]() |
[48] | Howlett M, Rayner J, Tollefson C (2009) From government to governance in forest planning? Lessons from the case of the British Columbia Great Bear Rainforest initiative. For Policy and Econ 11: 383-391. |
[49] | Adam S and Kriesi H (2007) The Network Approach in P.A. Sabatier (ed.), Theories of the Policy Process, Boulder, 143–146. |
[50] | Marsh D and Rhodes RAW (1992) Policy Communities and Issue Networks: Beyond Typology: In Marsh D, Rhodes RAW Policy Networks in British Government Oxford: Oxford University Press. |
[51] | Yin RK (2003) Case Study Research: Design and Methods. London, Sage. |
[52] | Fielding N and Thomas H (2001) Qualitative Interviewing, In: N. Gilbert, (Ed) Researching Social Life. London, Sage. |
[53] | National AIDS Council (2006) National HIV and AIDS Strategic Framework 2006-2010, Lusaka, NAC. |
[54] | National AIDS Council (2010) National HIV and AIDS Strategic Framework 2011-2015. Lusaka, NAC. |
[55] | Jupp V (2006) The SAGE dictionary of social research methods. London, Sage, 76-77. |
[56] | Patton MQ (1999). Enhancing the quality and credibility of qualitative analysis. Health Serv Res 34: 1189-1208 |
[57] | Glaser BG, Strauss, AL (1967) The Discovery of Grounded Theory: Strategies for Qualitative Research, Chicago: Aldine De Gruyter. |
[58] | UNAIDS (2001) Together we can: Leadership in a world of AIDS. UNAIDS. June 2001. |
[59] | Ministry of Sport, Youth and Child Development (MSYCD) (2009), National Sports Policy, Lusaka: Department of Sport. |
[60] | Heclo H (1978) Issue networks and the executive establishment. In A King The New American Political System Washington: American Enterprise Institute 87–124. |
[61] | FIFA Medical Assessment and Research Centre (F-MARC). (2012) FIFA 11 for Health Coach's Manual. Zurich, Switzerland. |
[62] | Forde SD (2013) Fear and Loathing in Lesotho: An Autoethnographic analysis of Sport for Development and Peace. Int Rev Sociol Sport 50: 958-973. |
1. | L. Keane, J. Negin, N. Latu, L. Reece, A. Bauman, J. Richards, ‘Governance’, ‘communication’, ‘capacity’, ‘champions’ and ‘alignment’: factors underpinning the integration of sport-for-development within national development priorities in Tonga, 2019, 1743-0437, 1, 10.1080/17430437.2019.1678590 | |
2. | Rizhong Liang, URBAN SPORTS SERVICE STRUCTURE FROM THE PUBLIC HEALTH CONTEXT, 2021, 27, 1806-9940, 108, 10.1590/1517-8692202127012020_0114 | |
3. | Iain Lindsey, Tony Chapman, Oliver Dudfield, Configuring relationships between state and non-state actors: a new conceptual approach for sport and development, 2020, 12, 1940-6940, 127, 10.1080/19406940.2019.1676812 | |
4. | Yvonne Vissing, 2023, Chapter 1, 978-3-031-38301-4, 1, 10.1007/978-3-031-38302-1_1 | |
5. | Yvonne Vissing, 2023, Chapter 1, 978-3-031-38456-1, 1, 10.1007/978-3-031-38457-8_1 | |
6. | Derrick Charway, Francis Asare, Allan Bennich Grønkjær, Leave No One Behind? Analysing Sport Inclusion Policy‐Implementation for Persons With Disabilities in Ghana, 2025, 13, 2183-2803, 10.17645/si.8866 | |
7. | Gonzalo Bravo, Peter Smolianov, Yvonne Vissing, 2025, Chapter 5, 978-3-031-80303-1, 87, 10.1007/978-3-031-80304-8_5 | |
8. | Liliya Satalkina, Nicole Hynek, Gerald Steiner, Implementing Multistage Transdisciplinary Modeling for Policy Interventions: An Approach to System Dynamics and Stakeholder Discourse to Maximize Impacts in Austrian Grassroots Sports, 2025, 1092-7026, 10.1002/sres.3159 |