Citation: Masami Kojima, Pusit Mitsomwang, Shigeru Nagasawa. Effect of cutter tip angle on cutting characteristics of acrylic worksheet subjected to punch/die shearing[J]. AIMS Materials Science, 2016, 3(4): 1728-1747. doi: 10.3934/matersci.2016.4.1728
[1] | Muhammad Amir Raza, M. M. Aman, Abdul Ghani Abro, Muhammad Shahid, Darakhshan Ara, Tufail Ahmed Waseer, Mohsin Ali Tunio, Nadeem Ahmed Tunio, Shakir Ali Soomro, Touqeer Ahmed Jumani . The role of techno-economic factors for net zero carbon emissions in Pakistan. AIMS Energy, 2023, 11(2): 239-255. doi: 10.3934/energy.2023013 |
[2] | Kharisma Bani Adam, Jangkung Raharjo, Desri Kristina Silalahi, Bandiyah Sri Aprilia, IGPO Indra Wijaya . Integrative analysis of diverse hybrid power systems for sustainable energy in underdeveloped regions: A case study in Indonesia. AIMS Energy, 2024, 12(1): 304-320. doi: 10.3934/energy.2024015 |
[3] | Jorge Morel, Yuta Morizane, Shin'ya Obara . Seasonal shifting of surplus renewable energy in a power system located in a cold region. AIMS Energy, 2014, 2(4): 373-384. doi: 10.3934/energy.2014.4.373 |
[4] | O. Corigliano, G. De Lorenzo, P. Fragiacomo . Techno-energy-economic sensitivity analysis of hybrid system Solid Oxide Fuel Cell/Gas Turbine. AIMS Energy, 2021, 9(5): 934-990. doi: 10.3934/energy.2021044 |
[5] | Jin H. Jo, Zachary Rose, Jamie Cross, Evan Daebel, Andrew Verderber, John C. Kostelnick . Application of Airborne LiDAR Data and Geographic Information Systems (GIS) to Develop a Distributed Generation System for the Town of Normal, IL. AIMS Energy, 2015, 3(2): 173-183. doi: 10.3934/energy.2015.2.173 |
[6] | Abanda F.Henry, Nkeng G.Elambo, Tah J.H.M., Ohandja E.N.Fabrice, Manjia M.Blanche . Embodied Energy and CO2 Analyses of Mud-brick and Cement-block Houses. AIMS Energy, 2014, 2(1): 18-40. doi: 10.3934/energy.2014.1.18 |
[7] | Amal Herez, Hassan Jaber, Hicham El Hage, Thierry Lemenand, Mohamad Ramadan, Mahmoud Khaled . A review on the classifications and applications of solar photovoltaic technology. AIMS Energy, 2023, 11(6): 1102-1130. doi: 10.3934/energy.2023051 |
[8] | Rim BOUKHCHINA, Mohamed HAMDI, Souheil EL ALIMI . Power-to-hydrogen: A review of applications, market development, and policy landscape. AIMS Energy, 2025, 13(3): 696-731. doi: 10.3934/energy.2025025 |
[9] | Albert K. Awopone, Ahmed F. Zobaa . Analyses of optimum generation scenarios for sustainable power generation in Ghana. AIMS Energy, 2017, 5(2): 193-208. doi: 10.3934/energy.2017.2.193 |
[10] | Poritosh Roy, Animesh Dutta, Bill Deen . Miscanthus: a promising feedstock for lignocellulosic ethanol industry in Ontario, Canada. AIMS Energy, 2015, 3(4): 562-575. doi: 10.3934/energy.2015.4.562 |
In applied sciences, many important functions are defined via improper integrals or series (or finite products). The general name of these important functions knows as special functions. In special function, one of the most important function (Bessel function) has gained importance and popularity due to its applications in the problem of cylindrical coordinate system, wave propagation, heat conduction in cylindrical object and static potential etc. In the recent years, some generalizations (unification) and number of integral transforms of Bessel functions have been given by many mathematicians and physicist as well as engineers. The Bessel-Maitland function Jτϑ(z) is a generalization of Bessel function, defined in [7] through a series representation as:
Jτϑ(z)=∞∑n=0(−z)nΓ(τn+ϑ+1)n! | (1.1) |
In fact, the application of Bessel-Maitland function are found in the diverse field of mathematical physics, engineering, biological, chemical in the book of Watson [26].
Further, generalization of the generalized Bessel-Maitland function defined by Pathak [13] is as follow:
Jτ,ςϑ,q(z)=∞∑n=0(ς)nqΓ(τn+ϑ+1)(−z)nn! | (1.2) |
where τ,ϑ,ς∈C;ℜ(τ)≥0,ℜ(ϑ)≥−1,ℜ(ς)≥0,q∈(0,1)∪N.
Motivated by the established potential for application of these Bessel-Maitland functions, we introduce here another interesting extension of the generalized Bessel-Maitland function as follow:
Jτ,ς,s;ωϑ,q(z;p)=∞∑n=0Bω(ς+nq,s−ς;p)B(ς,s−ς)(s)nqΓ(τn+ϑ+1)(−z)nn! | (1.3) |
where τ,ϑ,ς,ω∈C;p>0,ℜ(τ)>0,ℜ(ϑ)≥−1,ℜ(ς)>0,ℜ(s)>0,q∈(0,1)∪N, which will be known as extended generalized Bessel Maitland function (EGBMF).
Here, Bω(x,y;p) is an extension of extended beta function introduced by Parmar et al. [12] in the following way:
Bω(x,y;p)=√2pπ∫10tx−32(1−t)y−32Kω+12(pt(1−t))dt | (1.4) |
where Kω+12(.) is the modified Bessel's function. The special case of (1.4) corresponding to ω=0 be easily seen to reduce to the extended beta function
B(x,y;p)=∫10tx−1(1−t)y−1exp(−pt(1−t))dt | (1.5) |
upon making use of ([9], Eq (10.39.2)). If p=0 in Eq (1.5), reduces in to the classical beta function. For a detailed account of various properties, generalizations and applications of Bessel-Maitland functions, the readers may refer to the recent work of the researchers [3,15,21,22,23,24,25] and the references cited therein.
Theorem 2.1. The extended generalized Bessel Maitland function will be able to depict:
Jτ,ς,s;ωϑ,q(z;p)=1B(ς,ω−ς)√2pπ∫10tς−32(1−t)s−ς−32 |
×Kω+12(pt(1−t))Jτ,sϑ,q(tqz)dt | (2.1) |
where τ,ϑ,ς,ω∈C;p>0,ℜ(τ)>0,ℜ(ϑ)≥−1,ℜ(ς)>0,ℜ(s)>0,q∈(0,1)∪N.
Proof. Using Eq (1.4) in Eq (1.3), we obtain
Jτ,ς,s;ωϑ,q(z;p)=∞∑n=0{√2pπ∫10tς+nq−32(1−t)s−ς−32Kω+12(pt(1−t))dt} |
×(s)nq(−z)nB(ς,s−ς)Γ(τn+ϑ+1)n! | (2.2) |
Reciprocate the order of summation and integration, that is surd under the presumption given in the description of Theorem 2.1, we get
Jτ,ς,s;ωϑ,q(z;p)=1B(ς,s−ς)∞∑n=0√2pπ∫10tς+nq−32(1−t)s−ς−32 |
×Kω+12(pt(1−t))(s)nq(−z)nΓ(τn+ϑ+1)n!dt | (2.3) |
Using Eq (1.2) in Eq (2.3), we obtain the desired result Eq (2.1).
Corollary 2.2. Let the condition of Theorem 2.1 be satisfied, the following integral representation holds:
Jτ,ς,s;ωϑ,q(z;p)=1B(ς,s−ς)√2pπ∫∞0rς−32(1+r)2−sKω+12(−p(1+r)2r) |
×Jτ,sϑ,q((r1+r)qz)dr. | (2.4) |
Proof. By taking t=r1+r in Theorem 2.1, After simplification, we obtain the desired result Eq (2.4).
Corollary 2.3. Assume the state of Theorem 2.1 is satisfied, the following integral representation holds:
Jτ,ς,s;ωϑ,q(z;p)=2B(ς,s−ς)√2pπ∫π20(sinθ)2(ς−1)(cosθ)2(ω−ς−1) |
×Kω+12(−psin2θcos2θ)Jτ,sϑ,q(zsin2qθ)dθ. | (2.5) |
Proof. If we set t=sin2θ in Theorem 2.1, we acquire the above result.
Theorem 3.1. Let ω,ς,τ,ϑ,∈C;ℜ(τ)>0,ℜ(ϑ)≥−1,ℜ(ς)>0,ℜ(s)>0,p>0,q∈(0,1)∪N, then the recurrence relation holds true:
Jτ,ς,s;ωϑ,q(z;p)=(ϑ+1)Jτ,ς,s;ωϑ+1,q(z;p)+τzddzJτ,ς,s;ωϑ+1,q(z;p) | (3.1) |
Proof. Employing Eq (1.3) in right hand side of Eq (3.1), we obtain
(ϑ+1)Jτ,ς,s;ωϑ+1,q(z;p)+τzddzJτ,ς,s;ωϑ+1,q(z;p)=(ϑ+1)∞∑n=0Bω(ς+nq,s−ς;p)B(ς,s−ς)(s)nq(−z)nΓ(τn+ϑ+2)n!+τzddz∞∑n=0Bω(ς+nq,s−ς;p)B(ς,s−ς)(s)nq(−z)nΓ(τn+ϑ+2)n!=∞∑n=0Bω(ς+nq,s−ς;p)B(ς,s−ς)(s)nq(τn+ϑ+1)(−z)nΓ(τn+ϑ+2)n!=Jτ,ς,s;ωϑ,q(z;p). |
Theorem 4.1. For the extended generalized Bessel Maitland function, we have the following higher derivative formula:
dndznJτ,ς,s;ωϑ,q(z;p)=(s)q(s+q)q...(s+(n−1)q)qJτ,ς+nq,s+nq;ωϑ+nτ,q(z;p). | (4.1) |
Proof. Taking the derivative with respect to z in Eq (2.1), we get
ddzJτ,ς,s;ωϑ,q(z;p)=(s)qJτ,ς+q,s+q;ωϑ+τ,q(z;p) | (4.2) |
Again taking the derivative with respect to z in Eq (6.5), we get
d2dz2Jτ,ς,s;ωϑ,q(z;p)=(s)q(s+q)qJτ,ς+2q,s+2q;ωϑ+2τ,q(z;p) | (4.3) |
Ongoing the repetition of this technique n times, we get the desired result Eq (4.1).
Theorem 4.2. For the extended generalized Bessel Maitland function, the following differentiation holds:
dndzn{zϑJτ,ς,s;ωϑ,q(σzτ;p)}=zϑ−nJτ,ς,s;ωϑ−n,q(σzτ;p). | (4.4) |
Proof. Replace z by σzτ in Eq (2.1) and take its product with zϑ, then taking z-derivative n times. We obtain our result.
Definition 5.1. The Beta transform [19] of a function f(z) is defined as:
B{f(z); a,b}=∫10za−1(1−z)b−1f(z)dz | (5.1) |
(a,b∈C,ℜ(a)>0,ℜ(b)>0). |
Theorem 5.2. Let ω,ς,τ,ϑ,∈C;ℜ(τ)>0,ℜ(ϑ)≥−1,ℜ(ς)>0,ℜ(s)>0,p>0,q∈(0,1)∪N, Then the Beta transform of extended generalized Bessel Maitland function holds true:
B{Jτ,ς,s;ωϑ,q(λzτ;p);ϑ+1,1}=Jτ,ς,s;ωϑ+1,q(λ;p). | (5.2) |
Proof. By definition of Beta transform (5.1) and (1.3), we get
B(Jτ,ς,s;ωϑ,q(zτ;p);ϑ+1,1) |
=∫10zϑ(1−z)∞∑n=0Bω(ς+nq,s−ς;p)B(ς,s−ς)(s)nqΓ(τn+ϑ+1)(−λzτ)nn!dz, | (5.3) |
Upon interchanging the order of summation and integration in Eq (5.3), which can easily verified by uniform convergence under the constraint with Theorem 5.2, we get
B(Jτ,ς,s;ωϑ,q(zτ;p);ϑ+1,1)=∞∑n=0Bω(ς+nq,s−ς;p)B(ς,s−ς)(s)nqΓ(τn+ϑ+1)(−λ)nn! |
×∫10zϑ+τn(1−z)dz, |
Using the familiar definition of beta function, and interpreting with Eq (1.3), we get the desired representation Eq (5.2).
Definition 6.1. The Mellin transform [19] of the function f(z) is defined as
M(f(z);ξ)=∫∞0zξ−1f(z)dz=f∗(ξ),(ℜ(ξ)>0) | (6.1) |
then inverse Mellin transform
f(z)=M−1[f∗(ξ);x]=12πi∫λ+i∞λ−i∞f∗(ξ)x−ξdξ. | (6.2) |
In the next theorem, we give Mellin transform of the extended generalized Bessel Maitland function. Therefore, we require the definition of Wright generalized hypergeometric function [20] as:
pψq(z)=pψq[(c1,C1),(c2,C2),...,(cp,Cp);(d1,D1),(d2,D2),...,(dq,Dq);z]=∞∑n=0∏pi=1Γ(ci,Cin)zn∏qj=1Γ(di,Din)n! | (6.3) |
where the coefficients Ci(i=1,2,...,p) and Dj(j=1,2,...,q) are positive real numbers such that
1+q∑j=1Dj−p∑i=1Ci≥0. |
Theorem 6.2. The Mellin transform of the extended generalized Bessel Maitland function is given by
M{Jτ,ς,s;ωϑ,q(z;p);ξ}=2ξ−1Γ(ξ+s−ς)√πΓ(ς)Γ(s−ς)Γ(ξ−ω2)Γ(ξ+ω+12) |
×2ψ2[(s,q),(ς+ξ,q);(ϑ+1,τ),(s+2ξ,q);−z] | (6.4) |
where ω,ς,τ,ϑ,ξ,∈C;ℜ(τ)>0,ℜ(ϑ)≥−1,ℜ(ς)>0,ℜ(s)>0,ℜ(ξ)>0,p>0,q∈(0,1)∪N, and 2ψ2 is the Wright generalized hypergeometric function.
Proof. Using the definition of Melllin transform (6.1) and (1.3), we obtain
M{Jτ,ς,s;ωϑ,q(z;p);ξ}=1B(ς,s−ς)∫∞0pξ−1{√2pπ∫10tς−32(1−t)s−ς−32 |
×Kω+12(pt(1−t))Jτ,sϑ,q(tqz)dt}dp, | (6.5) |
Interchanging the order of integration in Eq (6.5), which is admittable because of the conditions in the statement of the Theorem 3.4, we get
M{Jτ,ς,s;ωϑ,q(z;p);ξ}=1B(ς,s−ς)√2π∫10tς−32(1−t)s−ς−32Jτ,sϑ,q(tqz)dt, |
×{∫∞0pξ−12Kω+12(pt(1−t))dp}dt | (6.6) |
Now taking u=pt(1−t) in Eq (6.6), we get
M{Jτ,ς,s;ωϑ,q(z;p);ξ}=1B(ς,s−ς)√2π∫10tς+ξ−1(1−t)s−ς+ξ−1Jτ,sϑ,q(tqz)dt |
×∫∞0uξ−12Kω+12(u)du, | (6.7) |
From Olver et al. [9]:
∫∞0uξ−12Kω+12(u)du=2ξ−32Γ(ξ−ω2)Γ(ξ+ω+12), | (6.8) |
Applying Eq (6.8) in Eq (6.7), we obtain
M{Jτ,ς,s;ωϑ,q(z;p);ξ}=1B(ς,s−ς)2ξ−1√π∫10tς+ξ−1(1−t)s−ς+ξ−1Jτ,sϑ,q(tqz)dt |
×Γ(ξ−ω2)Γ(ξ+ω+12), |
Using Eq (1.2), and interchanging the order of summation and integration which is valid for ℜ(τ)>0,ℜ(ϑ)>0,ℜ(s)>0,ℜ(s)>ℜ(ς)>0,ℜ(s+ξ−ς)>0, we obtain
M{Jτ,ς,s;ωϑ,q(z;p);ξ}=2ξ−1B(ς,s−ς)√π∞∑n=0(s)nqΓ(τn+ϑ+1)(−z)nn! |
×Γ(ξ−ω2)Γ(ξ+ω+12)∫10tς+ξ+nq−1(1−t)ξ+s−ς−1dt, | (6.9) |
Using the relation between Beta function and Gamma function, we obtain
M{Jτ,ς,s;ωϑ,q(z;p);ξ}=2ξ−1B(ς,s−ς)√π∞∑n=0(s)nqΓ(τn+ϑ+1)Γ(ξ−ω2) |
×Γ(ξ+ω+12)Γ(ς+ξ+nq)Γ(s+ξ−ς)Γ(s+2ξ+nq)(−z)nn!, |
After simplification, we obtain
M{Jτ,ς,s;ωϑ,q(z;p);ξ}=2ξ−1Γ(ξ+s−ς)Γ(ξ−ω2)Γ(ξ+ω+12)√πΓ(ς)Γ(s−ς) |
×∞∑n=0Γ(s+nq)Γ(ς+ξ+nq)(−z)nΓ(τn+ϑ+1)Γ(s+2ξ+nq)n!, | (6.10) |
In view of Eq (6.3), we arrived at our result Eq (6.4).
Corollary 6.3. Taking ξ=1 in Theorem 6.2, we get
Jτ,ς,s;ωϑ,q(z;p)=Γ(1+s−ς)√πΓ(ς)Γ(s−ς)Γ(1−ω2)Γ(ω+22) |
×2ψ2[(s,q),(ς+1,q);(ϑ+1,τ),(s+2,q);−z]. | (6.11) |
In recent years, the fractional calculus has become a significant instrument for the modeling analysis and assumed a significant role in different fields, for example, material science, science, mechanics, power, science, economy and control theory. In addition, research on fractional differential equations (ordinary or partial) and other analogous topics is very active and extensive around the world. One may refer to the books [28,31], and the recent papers [1,2,6,16,18,27,29,30,32,33,34,35] on the subject. In this portion, we derive a slight interesting properties of EMBMF associated with the right hand sided of Riemann-Liouville (R-L) fractional integral operator Iζa+ and the right sided of R-L fractional derivative operatorDζa+, which are defined for ζ∈C,(ℜ(ζ)>0), x>0 (See, for details [5,17]):
(Iζa+f)(x)=1Γ(ζ)∫xaf(t)(x−t)1−ζdt, | (7.1) |
and
(Dζa+f)(x)=(ddx)ℓ(Iℓ−ζa+f)(x)ℓ=[ℜ(ζ)+1]. | (7.2) |
where [ℜ(ζ)] is the integral part of ℜ(ζ).
A generalization of R-L fractional derivative operator (7.2) by introducing a right hand sided R-L fractional derivative operator Dζ,σa+ of order 0<ζ<1 and 0≤σ≤1with respect to x by Hilfer [4] is as follows:
(Dζ,σa+f)(x)=(Iσ(1−ζ)a+ddx)(I(1−σ)(1−ζ)a+f)(x). | (7.3) |
The generalization Eq (7.3) yields the R-L fractional derivative operator Dζa+ when σ=0 and moreover, in its special case when σ=1, the definition (7.3) would reduce to the familiar Caputo fractional derivative operator [5].
Theorem 7.1. Let ζ,λ,τ,ϑ,ς,s∈C be such that ℜ(ζ)>0, p≥0 and the conditions given in Eq (1.3) is satisfied, for x>a,the following relation holds:
(Iζa+{(z−a)ϑJτ,ς,s;ωϑ,q(λ(z−a)τ;p)})(x) |
=(x−a)ζ+ϑJτ,ς,s;ωϑ+ζ,q(λ(x−a)τ;p). | (7.4) |
(Dζa+{(z−a)ϑJτ,ς,s;ωϑ,q(λ(z−a)τ;p)})(x) |
=(x−a)ϑ−ζJτ,ς,s;ωϑ−ζ,q(λ(x−a)τ;p). | (7.5) |
(Dζ,σa+{(z−a)ϑJτ,ς,s;ωϑ,q(λ(z−a)τ;p)})(x) |
=(x−a)ϑ−ζJτ,ς,s;ωϑ−ζ,q(λ(x−a)τ;p). | (7.6) |
Proof. By virtue of the formulas Eq (7.1) and Eq (1.3), the term by term fractional integration and use of the relation [4]
(Iζa+(z−a)ϑ−1)(x)=Γ(ϑ)Γ(ζ+ϑ)(x−a)ζ+ϑ−1(ϑ,ζ∈C,ℜ(ζ)>0,ℜ(ϑ)>0) | (7.7) |
yield for x>a.
(Iζa+{(z−a)ϑJτ,ς,s;ωϑ,q(λ(z−a)τ;p)})(x) |
=(Iζa+{∞∑n=0Bω(ς+nq,s−ς;p)B(ς,s−ς)(s)nqΓ(τn+ϑ+1)(−λ)n(z−a)τn+ϑn!})(x), |
=(x−a)ζ+ϑJτ,ς,s;ωϑ+ζ,q(λ(x−a)τ;p). | (7.8) |
Consequent, by Eq (7.5) and Eq (1.3), we find that
(Dζa+{(z−a)ϑJτ,ς,s;ωϑ,q(λ(z−a)τ;p)})(x) |
=(ddx)ℓ(Iℓ−ζa+{(z−a)ϑJτ,ς,s;ωϑ,q(λ(z−a)τ;p)})(x) |
=(ddx)ℓ((x−a)ϑ+ℓ−ζ−1Jτ,ς,s;ωϑ+ℓ−ζ,q(λ(x−a)τ;p))(x), | (7.9) |
Applying Eq (4.4), we are led to the desired result Eq (7.5). Lastly, by Eq (7.3) and Eq (1.3), we becomes
(Dζ,σa+{(z−a)ϑJτ,ς,s;ωϑ,q(λ(z−a)τ;p)})(x) |
=(Dζ,σa+{∞∑n=0Bω(ς+nq,s−ς;p)B(ς,s−ς)(s)nqΓ(τn+ϑ+1)(−λ)n(z−a)τn+ϑn!})(x) |
=∞∑n=0Bω(ς+nq,s−ς;p)B(ς,s−ς)(s)nqΓ(τn+ϑ+1)(−λ)nn!(Dζ,σa+{(z−a)τn+ϑ})(x), | (7.10) |
Using the familiar relation of Srivatava and Tomovski [11]:
(Dζ,σa+{(z−a)ϑ−1})(x)=Γ(ϑ)Γ(ϑ−ζ)(x−a)ϑ−ζ−1 | (7.11) |
(x>a;0<ζ<1;0≤σ≤1,ℜ(ϑ)>0) |
In Eq (7.10), we are led to the result Eq (7.6).
In the present paper, The properties, integral transform and fractional calculus of the newly defined extended generalized Bessel-Maitland type function are investigated here and find their connection with other functions scattered in the literature of special function. Various special cases of the derived results in the paper can be evaluate by taking suitable values of parameters involved. For example if we set ω=0, β=β−1 and z=−z in (1.3), we immediately obtain the result due to Mittal et al [18]. For various other special cases we refer [19,21] and we left results for the interested readers.
The authors are thankful to the referee's for their valuable remarks and comments for the improvement of the paper.
The authors declare no conflict of interest in this paper.
[1] | Crawford RJ (1999) Plastics Engineering, 3 Eds., Burlington:Elsevier Butterworth-Heinemann, 1–40. |
[2] |
Al-Rifaiy MQ (2010) The effect of mechanical and chemical polishing techniques on the surface roughness of denture base acrylic resins. Saudi Dent J 22: 13–17. doi: 10.1016/j.sdentj.2009.12.006
![]() |
[3] |
Shimizu H, Tsue F, Chen Z, et al. (2008) Bonding of autopolymerizing acrylic resins to magnetic stainless steel alloys using metal conditioner. J Dent 36: 138–142. doi: 10.1016/j.jdent.2007.11.010
![]() |
[4] |
Klocke F, Sweeney K, Raedt HW (2001) Improved tool design for fine blanking through the application of numerical modeling techniques. J Mater Process Tech 115: 70–75. doi: 10.1016/S0924-0136(01)00771-3
![]() |
[5] |
Chen ZH, Tang CY, Lee TC (2004) An investigation of tearing failure in fine-blanking process using coupled thermo-mechanical method. Int J Mach Tool Manu 44: 155–165. doi: 10.1016/j.ijmachtools.2003.10.010
![]() |
[6] |
Thipprakmas S (2009) Finite-element analysis of V-ring indenter mechanism in fine-blanking process. Mater Design 30: 526–531. doi: 10.1016/j.matdes.2008.05.072
![]() |
[7] | Mitsomwang P, Nagasawa S (2013) Cutting Behavior of Acrylic Thick Sheet Subjected to Squared Punch Shearing. J Chem Chem En 7: 653–665. |
[8] |
Nagasawa S, Masaki Y, Fujikura M, et al. (2011) Analysis of Cutting Characteristic of Polycarbonate Sheet Subjected to Wedge Indentation by Knife Edge and Grooved Plate. Mach Sci Technol 15: 110–131. doi: 10.1080/10910344.2011.557973
![]() |
[9] | MSC Software Corp (2010) In: Marc 2010 Volume A: Theory and User Information, DEACT GLUE function, 567–569. |
[10] | MSC Software Corp (2010) In: Marc 2010 Volume A: Theory and User Information, Remeshing Techniques, 91–93. |
[11] | MSC Software Corp (2010) In: Marc 2010 Volume C: ADAPT GLOBAL function, 263–265. |
1. |
Ankit Pal, R. K. Jana, A. K. Shukla,
Some Integral Representations of the pRq(α,β;z) Function,
2020,
6,
2349-5103,
10.1007/s40819-020-00808-3
|
|
2. | R. S. Ali, S. Mubeen, I. Nayab, Serkan Araci, G. Rahman, K. S. Nisar, Some Fractional Operators with the Generalized Bessel–Maitland Function, 2020, 2020, 1026-0226, 1, 10.1155/2020/1378457 | |
3. | Kelelaw Tilahun, Hagos Tadessee, D. L. Suthar, The Extended Bessel-Maitland Function and Integral Operators Associated with Fractional Calculus, 2020, 2020, 2314-4629, 1, 10.1155/2020/7582063 | |
4. | Muhammad Saqib, Abdul Rahman Mohd Kasim, Nurul Farahain Mohammad, Dennis Ling Chuan Ching, Sharidan Shafie, Application of Fractional Derivative Without Singular and Local Kernel to Enhanced Heat Transfer in CNTs Nanofluid Over an Inclined Plate, 2020, 12, 2073-8994, 768, 10.3390/sym12050768 | |
5. | K. Jangid, R. K. Parmar, R. Agarwal, Sunil D. Purohit, Fractional calculus and integral transforms of the product of a general class of polynomial and incomplete Fox–Wright functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03067-0 | |
6. | Sapna Meena, Sanjay Bhatter, Kamlesh Jangid, Sunil Dutt Purohit, Certain integral transforms concerning the product of family of polynomials and generalized incomplete functions, 2020, 6, 2351-8227, 243, 10.2478/mjpaa-2020-0019 | |
7. | Waseem Ahmad Khan, Hassen Aydi, Musharraf Ali, Mohd Ghayasuddin, Jihad Younis, Zakia Hammouch, Construction of Generalized k-Bessel–Maitland Function with Its Certain Properties, 2021, 2021, 2314-4785, 1, 10.1155/2021/5386644 | |
8. | Rana Safdar Ali, Saba Batool, Shahid Mubeen, Asad Ali, Gauhar Rahman, Muhammad Samraiz, Kottakkaran Sooppy Nisar, Roshan Noor Mohamed, On generalized fractional integral operator associated with generalized Bessel-Maitland function, 2022, 7, 2473-6988, 3027, 10.3934/math.2022167 | |
9. | D. L. Suthar, Mangesha Ayene, V. K. Vyas, Ali A. Al-Jarrah, 2022, Chapter 7, 978-981-19-5180-0, 93, 10.1007/978-981-19-5181-7_7 | |
10. | D. L. Suthar, Hafte Amsalu, M. Bohra, K. A. Selvakumaran, S. D. Purohit, 2023, Chapter 23, 978-981-19-0178-2, 385, 10.1007/978-981-19-0179-9_23 | |
11. | Umar Muhammad ABUBAKAR, Muhammad Lawan KAURANGİNİ, New extension of beta, Gauss and confluent hypergeometric functions, 2021, 42, 2587-2680, 663, 10.17776/csj.840774 | |
12. | Ankita Chandola, Rupakshi Mishra Pandey, Kottakkaran Sooppy Nisar, On the new bicomplex generalization of Hurwitz–Lerch zeta function with properties and applications, 2022, 0, 0174-4747, 10.1515/anly-2021-1032 | |
13. | Ghazi S. Khammash, Tariq O. Salim, Hassen Aydi, Noor N. Khattab, Choonkil Park, Integral transforms involving a generalized k-Bessel function, 2023, 56, 2391-4661, 10.1515/dema-2022-0246 | |
14. | Shahid Mubeen, Rana Safdar Ali, Yasser Elmasry, Ebenezer Bonyah, Artion Kashuri, Gauhar Rahman, Çetin Yildiz, A. Hussain, On Novel Fractional Integral and Differential Operators and Their Properties, 2023, 2023, 2314-4785, 1, 10.1155/2023/4165363 |