In this paper, we study the well-established quasi-boundary value methods for regularizing inverse state-dependent source problems, where the convergence analysis of three typical cases is presented in the framework of filtering regularization method under suitable source conditions. Interestingly, the quasi-boundary value methods can be interpreted as certain Lavrentiev-type regularization, which was not known in literature. As another major contribution, efficient numerical implementation based on matrix exponential in time is developed, which shows much improved computational efficiency than MATLAB's backslash solver based on the all-at-once space-time discretization scheme. Numerical examples are reported to illustrate the promising computational performance of our proposed algorithms based on matrix exponential techniques.
Citation: Fermín S. V. Bazán, Luciano Bedin, Koung Hee Leem, Jun Liu, George Pelekanos. Fast matrix exponential-based quasi-boundary value methods for inverse space-dependent source problems[J]. Networks and Heterogeneous Media, 2023, 18(2): 601-621. doi: 10.3934/nhm.2023026
[1] | Yu Yang, Gang Huang, Yueping Dong . Stability and Hopf bifurcation of an HIV infection model with two time delays. Mathematical Biosciences and Engineering, 2023, 20(2): 1938-1959. doi: 10.3934/mbe.2023089 |
[2] | Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014 |
[3] | Jiawei Deng, Ping Jiang, Hongying Shu . Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2023, 20(2): 2937-2963. doi: 10.3934/mbe.2023139 |
[4] | Hongying Shu, Wanxiao Xu, Zenghui Hao . Global dynamics of an immunosuppressive infection model with stage structure. Mathematical Biosciences and Engineering, 2020, 17(3): 2082-2102. doi: 10.3934/mbe.2020111 |
[5] | Huan Kong, Guohong Zhang, Kaifa Wang . Stability and Hopf bifurcation in a virus model with self-proliferation and delayed activation of immune cells. Mathematical Biosciences and Engineering, 2020, 17(5): 4384-4405. doi: 10.3934/mbe.2020242 |
[6] | Haitao Song, Weihua Jiang, Shengqiang Liu . Virus dynamics model with intracellular delays and immune response. Mathematical Biosciences and Engineering, 2015, 12(1): 185-208. doi: 10.3934/mbe.2015.12.185 |
[7] | Yuting Ding, Gaoyang Liu, Yong An . Stability and bifurcation analysis of a tumor-immune system with two delays and diffusion. Mathematical Biosciences and Engineering, 2022, 19(2): 1154-1173. doi: 10.3934/mbe.2022053 |
[8] | LanJiang Luo, Haihong Liu, Fang Yan . Dynamic behavior of P53-Mdm2-Wip1 gene regulatory network under the influence of time delay and noise. Mathematical Biosciences and Engineering, 2023, 20(2): 2321-2347. doi: 10.3934/mbe.2023109 |
[9] | Juan Wang, Chunyang Qin, Yuming Chen, Xia Wang . Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays. Mathematical Biosciences and Engineering, 2019, 16(4): 2587-2612. doi: 10.3934/mbe.2019130 |
[10] | Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358 |
In this paper, we study the well-established quasi-boundary value methods for regularizing inverse state-dependent source problems, where the convergence analysis of three typical cases is presented in the framework of filtering regularization method under suitable source conditions. Interestingly, the quasi-boundary value methods can be interpreted as certain Lavrentiev-type regularization, which was not known in literature. As another major contribution, efficient numerical implementation based on matrix exponential in time is developed, which shows much improved computational efficiency than MATLAB's backslash solver based on the all-at-once space-time discretization scheme. Numerical examples are reported to illustrate the promising computational performance of our proposed algorithms based on matrix exponential techniques.
[1] |
M. N. Ahmadabadi, M. Arab, F. M. Ghaini, The method of fundamental solutions for the inverse space-dependent heat source problem, Eng Anal Bound Elem, 33 (2009), 1231–1235. https://doi.org/10.1016/j.enganabound.2009.05.001 doi: 10.1016/j.enganabound.2009.05.001
![]() |
[2] |
A. H. Al-Mohy, N. J. Higham, Computing the action of the matrix exponential, with an application to exponential integrators, SIAM J Sci Comput, 33 (2011), 488–511. https://doi.org/10.1137/100788860 doi: 10.1137/100788860
![]() |
[3] |
M. Ali, S. Aziz, S. A. Malik, Inverse source problems for a space–time fractional differential equation, Inverse Probl Sci Eng, 28 (2020), 47–68. https://doi.org/10.1080/17415977.2019.1597079 doi: 10.1080/17415977.2019.1597079
![]() |
[4] |
F. S. Bazán, J. B. Francisco, K. H. Leem, G. Pelekanos, A maximum product criterion as a tikhonov parameter choice rule for kirsch's factorization method, J. Comput. Appl. Math., 236 (2012), 4264–4275. https://doi.org/10.1016/j.cam.2012.05.008 doi: 10.1016/j.cam.2012.05.008
![]() |
[5] |
F. S. Bazán, J. B. Francisco, K. H. Leem, G. Pelekanos, Using the linear sampling method and an improved maximum product criterion for the solution of the electromagnetic inverse medium problem, J. Comput. Appl. Math., 273 (2015), 61–75. https://doi.org/10.1016/j.cam.2014.06.003 doi: 10.1016/j.cam.2014.06.003
![]() |
[6] |
J. R. Cannon, P. DuChateau, Structural identification of an unknown source term in a heat equation, Inverse Probl, 14 (1998), 535–551. https://doi.org/10.1088/0266-5611/14/3/010 doi: 10.1088/0266-5611/14/3/010
![]() |
[7] |
A. Chambolle, An algorithm for total variation minimization and applications, J Math Imaging Vis, 20 (2004), 89–97. https://doi.org/10.1023/B:JMIV.0000011321.19549.88 doi: 10.1023/B:JMIV.0000011321.19549.88
![]() |
[8] |
N. M. Dien, D. N. D. Hai, T. Q. Viet, D. D. Trong, On tikhonov's method and optimal error bound for inverse source problem for a time-fractional diffusion equation, Comput. Math. with Appl., 80 (2020), 61–81. https://doi.org/10.1016/j.camwa.2020.02.024 doi: 10.1016/j.camwa.2020.02.024
![]() |
[9] | A. Doicu, T. Trautmann, F. Schreier, Numerical Regularization for Atmospheric Inverse Problems, Heidelberg: Springer Berlin, 2010, |
[10] |
F. F. Dou, C. L. Fu, F. Yang, Identifying an unknown source term in a heat equation, Inverse Probl Sci Eng, 17 (2009), 901–913. https://doi.org/10.1080/17415970902916870 doi: 10.1080/17415970902916870
![]() |
[11] |
F. F. Dou, C. L. Fu, F. L. Yang, Optimal error bound and Fourier regularization for identifying an unknown source in the heat equation, J. Comput. Appl. Math., 230 (2009), 728–737. https://doi.org/10.1016/j.cam.2009.01.008 doi: 10.1016/j.cam.2009.01.008
![]() |
[12] | H. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Netherlands: Springer, 2000. |
[13] | L. Evans, Partial Differential Equations, Providence: American Mathematical Society, 2016. |
[14] |
A. Farcas, D. Lesnic, The boundary-element method for the determination of a heat source dependent on one variable, J Eng Math, 54 (2006), 375–388. https://doi.org/10.1007/s10665-005-9023-0 doi: 10.1007/s10665-005-9023-0
![]() |
[15] |
A. Fatullayev, Numerical solution of the inverse problem of determining an unknown source term in a heat equation, Math Comput Simul, 58 (2002), 247–253. https://doi.org/10.1016/S0378-4754(01)00365-2 doi: 10.1016/S0378-4754(01)00365-2
![]() |
[16] |
A. Fatullayev, Numerical solution of the inverse problem of determining an unknown source term in a two-dimensional heat equation, Appl. Math. Comput., 152 (2004), 659–666. https://doi.org/10.1016/S0096-3003(03)00582-4 doi: 10.1016/S0096-3003(03)00582-4
![]() |
[17] |
D. N. Hào, J. Liu, N. V. Duc, N. V. Thang, Stability results for backward time-fractional parabolic equations, Inverse Probl, 35 (2019), 125006. https://doi.org/10.1088/1361-6420/ab45d3 doi: 10.1088/1361-6420/ab45d3
![]() |
[18] |
M. Hochbruck, C. Lubich, H. Selhofer, Exponential integrators for large systems of differential equations, SIAM J Sci Comput, 19 (1998), 1552–1574. https://doi.org/10.1137/S1064827595295337 doi: 10.1137/S1064827595295337
![]() |
[19] |
M. Hochbruck, A. Ostermann, Exponential integrators, Acta Numer., 19 (2010), 209–286. https://doi.org/10.1017/S0962492910000048 doi: 10.1017/S0962492910000048
![]() |
[20] |
Y. Jiang, J. Liu, X. S. Wang, A direct parallel-in-time quasi-boundary value method for inverse space-dependent source problems, J. Comput. Appl. Math., 423 (2023), 114958. https://doi.org/10.1016/j.cam.2022.114958 doi: 10.1016/j.cam.2022.114958
![]() |
[21] |
B. Jin, W. Rundell, A tutorial on inverse problems for anomalous diffusion processes, Inverse Probl, 31 (2015), 035003. https://doi.org/10.1088/0266-5611/31/3/035003 doi: 10.1088/0266-5611/31/3/035003
![]() |
[22] |
B. T. Johansson, D. Lesnic, A variational method for identifying a spacewise-dependent heat source, IMA J Appl Math, 72 (2007), 748–760. https://doi.org/10.1093/imamat/hxm024 doi: 10.1093/imamat/hxm024
![]() |
[23] |
T. Johansson, D. Lesnic, Determination of a spacewise dependent heat source, J. Comput. Appl. Math., 209 (2007), 66–80. https://doi.org/10.1016/j.cam.2006.10.026 doi: 10.1016/j.cam.2006.10.026
![]() |
[24] | S. I. Kabanikhin, Inverse and ill-posed problems: Theory and Applications, Berlin: De Gruyter, 2011. |
[25] |
R. Ke, M. K. Ng, T. Wei, Efficient preconditioning for time fractional diffusion inverse source problems, SIAM J. Matrix Anal. Appl., 41 (2020), 1857–1888. https://doi.org/10.1137/20M1320304 doi: 10.1137/20M1320304
![]() |
[26] | A. Kirsch, An introduction to the mathematical theory of inverse problems, New York: Springer, 2011. |
[27] |
D. Kressner, R. Luce, Fast computation of the matrix exponential for a Toeplitz matrix, SIAM J. Matrix Anal. Appl., 39 (2018), 23–47. https://doi.org/10.1137/16M1083633 doi: 10.1137/16M1083633
![]() |
[28] | M. M. Lavrentiev, Some Improperly Posed Problems of Mathematical Physics, Berlin: Springer, 1967, |
[29] |
S. T. Lee, H. K. Pang, H. W. Sun, Shift-invert Arnoldi approximation to the Toeplitz matrix exponential, SIAM J Sci Comput, 32 (2010), 774–792. https://doi.org/10.1137/090758064 doi: 10.1137/090758064
![]() |
[30] | D. Lesnic, Inverse Problems with Applications in Science and Engineering, Boca Raton: CRC Press, 2021, |
[31] | J. Lohwater, O. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, New York: Springer, 2013. |
[32] |
Y. Ma, C. Fu, Y. Zhang, Identification of an unknown source depending on both time and space variables by a variational method, Appl. Math. Model., 36 (2012), 5080–5090. https://doi.org/10.1016/j.apm.2011.12.046 doi: 10.1016/j.apm.2011.12.046
![]() |
[33] | M. T. Nair, U. Tautenhahn, Lavrentiev regularization for linear ill-posed problems under general source conditions, Zeitschrift für Anal. und ihre Anwendung, 23 (2004), 167–185. |
[34] |
M. Nair, Regularization of ill-posed operator equations: an overview, The Journal of Analysis, 29 (2021), 519–541. https://doi.org/10.1007/s41478-020-00263-9 doi: 10.1007/s41478-020-00263-9
![]() |
[35] |
H. T. Nguyen, D. L. Le, V. T Nguyen, Regularized solution of an inverse source problem for a time fractional diffusion equation, Appl. Math. Model., 40 (2016), 8244–8264. https://doi.org/10.1016/j.apm.2016.04.009 doi: 10.1016/j.apm.2016.04.009
![]() |
[36] | L. I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259–268. |
[37] |
E. G. Savateev, On problems of determining the source function in a parabolic equation, J Inverse Ill Posed Probl, 3 (1995), 83–102. https://doi.org/10.1515/jiip.1995.3.1.83 doi: 10.1515/jiip.1995.3.1.83
![]() |
[38] |
U. Tautenhahn, On the method of Lavrentiev regularization for nonlinear ill-posed problems, Inverse Probl, 18 (2002), 191. https://doi.org/10.1088/0266-5611/18/1/313 doi: 10.1088/0266-5611/18/1/313
![]() |
[39] |
D. Trong, N. Long, P. Alain, Nonhomogeneous heat equation: Identification and regularization for the inhomogeneous term, J. Math. Anal. Appl., 312 (2005), 93–104. https://doi.org/10.1016/j.jmaa.2005.03.037 doi: 10.1016/j.jmaa.2005.03.037
![]() |
[40] |
D. Trong, P. Quan, P. Alain, Determination of a two-dimensional heat source: uniqueness, regularization and error estimate, J. Comput. Appl. Math., 191 (2006), 50–67. https://doi.org/10.1016/j.cam.2005.04.022 doi: 10.1016/j.cam.2005.04.022
![]() |
[41] | Z. Wang, W. Zhang, B. Wu, Regularized optimization method for determining the space-dependent source in a parabolic equation without iteration, J. Comput. Anal. Appl., 20 (2016), 1107–1126. |
[42] |
T. Wei, X. Li, Y. Li, An inverse time-dependent source problem for a time-fractional diffusion equation, Inverse Probl, 32 (2016), 085003. https://doi.org/10.1088/0266-5611/32/8/085003 doi: 10.1088/0266-5611/32/8/085003
![]() |
[43] |
T. Wei, J. G. Wang, A modified quasi-boundary value method for the backward time-fractional diffusion problem, Esaim Math Model Numer Anal, 48 (2014), 603–621. https://doi.org/10.1051/m2an/2013107 doi: 10.1051/m2an/2013107
![]() |
[44] |
T. Wei, J. Wang, A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Appl Numer Math, 78 (2014), 95–111. https://doi.org/10.1016/j.apnum.2013.12.002 doi: 10.1016/j.apnum.2013.12.002
![]() |
[45] |
T. Wei, J. Wang, A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Appl Numer Math, 78 (2014), 95–111. https://doi.org/10.1016/j.apnum.2013.12.002 doi: 10.1016/j.apnum.2013.12.002
![]() |
[46] |
L. Yan, C. L. Fu, F. L. Yang, The method of fundamental solutions for the inverse heat source problem, Eng Anal Bound Elem, 32 (2008), 216–222. https://doi.org/10.1016/j.enganabound.2007.08.002 doi: 10.1016/j.enganabound.2007.08.002
![]() |
[47] |
L. Yan, F. L. Yang, C. L. Fu, A meshless method for solving an inverse spacewise-dependent heat source problem, J. Comput. Phys., 228 (2009), 123–136. https://doi.org/10.1016/j.jcp.2008.09.001 doi: 10.1016/j.jcp.2008.09.001
![]() |
[48] |
F. Yang, C. L. Fu, A simplified Tikhonov regularization method for determining the heat source, Appl. Math. Model., 34 (2010), 3286–3299. https://doi.org/10.1016/j.apm.2010.02.020 doi: 10.1016/j.apm.2010.02.020
![]() |
[49] |
F. Yang, C. L. Fu, X. X. Li, A quasi-boundary value regularization method for determining the heat source, Math. Methods Appl. Sci., 37 (2013), 3026–3035. https://doi.org/10.1002/mma.3040 doi: 10.1002/mma.3040
![]() |
[50] |
F. Yang, C. L. Fu, X. X. Li, The inverse source problem for time-fractional diffusion equation: stability analysis and regularization, Inverse Probl Sci Eng, 23 (2015), 969–996. https://doi.org/10.1080/17415977.2014.968148 doi: 10.1080/17415977.2014.968148
![]() |
[51] |
L. Yang, M. Dehghan, J. Yu, G. Luo, Inverse problem of time-dependent heat sources numerical reconstruction, Math Comput Simul, 81 (2011), 1656–1672. https://doi.org/10.1016/j.matcom.2011.01.001 doi: 10.1016/j.matcom.2011.01.001
![]() |
[52] |
L. Yang, J. Yu, G. Luo, Z. Deng, Numerical identification of source terms for a two dimensional heat conduction problem in polar coordinate system, Appl. Math. Model., 37 (2013), 939–957. https://doi.org/10.1016/j.apm.2012.03.024 doi: 10.1016/j.apm.2012.03.024
![]() |
[53] |
Z. Yi, D. Murio, Source term identification in 1D IHCP, Comput. Math. with Appl., 47 (2004), 1921–1933. https://doi.org/10.1016/j.camwa.2002.11.025 doi: 10.1016/j.camwa.2002.11.025
![]() |
1. | Shikaa Samuel, Vinod Gill, Diffusion-Chemotaxis Model of Effects of Cortisol on Immune Response to Human Immunodeficiency virus, 2018, 7, 2192-8010, 207, 10.1515/nleng-2017-0018 | |
2. | Jinhu Xu, Yan Geng, Stability preserving NSFD scheme for a delayed viral infection model with cell-to-cell transmission and general nonlinear incidence, 2017, 23, 1023-6198, 893, 10.1080/10236198.2017.1304933 | |
3. | Jinhu Xu, Yan Geng, Suxia Zhang, Global Stability and Hopf Bifurcation in a Delayed Viral Infection Model with Cell-to-Cell Transmission and Humoral Immune Response, 2019, 29, 0218-1274, 1950161, 10.1142/S021812741950161X | |
4. | Chittaranjan Mondal, Debadatta Adak, Nandadulal Bairagi, Optimal control in a multi-pathways HIV-1 infection model: a comparison between mono-drug and multi-drug therapies, 2019, 0020-7179, 1, 10.1080/00207179.2019.1690694 | |
5. | Shikaa Samuel, Vinod Gill, Time-fractional diffusion model on dynamical effect of dendritic cells on HIV pathogenesis, 2018, 18, 14727978, 193, 10.3233/JCM-180780 | |
6. | Jinhu Xu, Yan Geng, Threshold dynamics of a delayed virus infection model with cellular immunity and general nonlinear incidence, 2019, 42, 01704214, 892, 10.1002/mma.5392 | |
7. | Yu Yang, Tonghua Zhang, Yancong Xu, Jinling Zhou, A Delayed Virus Infection Model with Cell-to-Cell Transmission and CTL Immune Response, 2017, 27, 0218-1274, 1750150, 10.1142/S0218127417501504 | |
8. | Jinhu Xu, Yan Geng, Jiangyong Hou, Global dynamics of a diffusive and delayed viral infection model with cellular infection and nonlinear infection rate, 2017, 73, 08981221, 640, 10.1016/j.camwa.2016.12.032 | |
9. | Jinhu Xu, Jiangyong Hou, Yan Geng, Suxia Zhang, Dynamic consistent NSFD scheme for a viral infection model with cellular infection and general nonlinear incidence, 2018, 2018, 1687-1847, 10.1186/s13662-018-1560-8 | |
10. | M.L. Mann Manyombe, J. Mbang, G. Chendjou, Stability and Hopf bifurcation of a CTL-inclusive HIV-1 infection model with both viral and cellular infections, and three delays, 2021, 144, 09600779, 110695, 10.1016/j.chaos.2021.110695 | |
11. | Yancong Xu, Yu Yang, Fanwei Meng, Pei Yu, Modeling and analysis of recurrent autoimmune disease, 2020, 54, 14681218, 103109, 10.1016/j.nonrwa.2020.103109 | |
12. | Jinhu Xu, Yan Geng, Dynamic Consistent NSFD Scheme for a Delayed Viral Infection Model with Immune Response and Nonlinear Incidence, 2017, 2017, 1026-0226, 1, 10.1155/2017/3141736 | |
13. | Yan Geng, Jinhu Xu, Stability and bifurcation analysis for a delayed viral infection model with full logistic proliferation, 2020, 13, 1793-5245, 2050033, 10.1142/S1793524520500333 | |
14. | Dali Zan, Ying Zhang, Hao Yang, Kaiqun Wang, Di Huang, Weiyi Chen, 2019, The effect of intercellular adhesion on immune response of tumor cells at different early stages of tumor growth based on the modeling study, 978-1-7281-2493-3, 1658, 10.1109/AIM.2019.8868697 | |
15. | Suxia Zhang, Hongsen Dong, Jinhu Xu, Bifurcation Analysis of a Delayed Infection Model with General Incidence Function, 2019, 2019, 1748-670X, 1, 10.1155/2019/1989651 | |
16. | Jinhu Xu, Yan Geng, Jiangyong Hou, A non-standard finite difference scheme for a delayed and diffusive viral infection model with general nonlinear incidence rate, 2017, 74, 08981221, 1782, 10.1016/j.camwa.2017.06.041 | |
17. | Yan Geng, Jinhu Xu, Global stability of a delayed and diffusive virus model with nonlinear infection function, 2021, 15, 1751-3758, 287, 10.1080/17513758.2021.1922770 | |
18. | Suxia Zhang, Fei Li, Xiaxia Xu, Dynamics and control strategy for a delayed viral infection model, 2022, 16, 1751-3758, 44, 10.1080/17513758.2022.2028024 | |
19. | Zhijun Liu, Lianwen Wang, Ronghua Tan, Spatiotemporal dynamics for a diffusive HIV-1 infection model with distributed delays and CTL immune response, 2022, 27, 1531-3492, 2767, 10.3934/dcdsb.2021159 | |
20. | Fei Li, Suxia Zhang, Xiaxia Xu, Dynamical analysis and optimal control for a delayed viral infection model, 2023, 16, 1793-5245, 10.1142/S1793524522500930 | |
21. | Yan Wang, Jun Liu, Xinhong Zhang, Jane M. Heffernan, An HIV stochastic model with cell-to-cell infection, B-cell immune response and distributed delay, 2023, 86, 0303-6812, 10.1007/s00285-022-01863-8 | |
22. | Regan Murugesan, Suresh Rasappan, 2022, 2516, 0094-243X, 130007, 10.1063/5.0108789 | |
23. | Yu Yang, Gang Huang, Yueping Dong, Stability and Hopf bifurcation of an HIV infection model with two time delays, 2022, 20, 1551-0018, 1938, 10.3934/mbe.2023089 | |
24. | Jiawei Deng, Ping Jiang, Hongying Shu, Viral infection dynamics with mitosis, intracellular delays and immune response, 2022, 20, 1551-0018, 2937, 10.3934/mbe.2023139 | |
25. | Yuqiong Lan, Yanqiu Li, Dongmei Zheng, Global dynamics of an age-dependent multiscale hepatitis C virus model, 2022, 85, 0303-6812, 10.1007/s00285-022-01773-9 | |
26. | Xiao-Lan Liu, Cheng-Cheng Zhu, A Non-Standard Finite Difference Scheme for a Diffusive HIV-1 Infection Model with Immune Response and Intracellular Delay, 2022, 11, 2075-1680, 129, 10.3390/axioms11030129 | |
27. | Jinhu Xu, Guokun Huang, Global Stability and Bifurcation Analysis of a Virus Infection Model with Nonlinear Incidence and Multiple Delays, 2023, 7, 2504-3110, 583, 10.3390/fractalfract7080583 | |
28. | Yan Wang, Minmin Lu, Daqing Jiang, Dynamic Behavior of a General Stochastic HIV Model with Virus-to-Cell Infection, Cell-to-Cell Transmission, Immune Response and Distributed Delays, 2023, 33, 0938-8974, 10.1007/s00332-023-09955-5 | |
29. | Jinhu Xu, Global dynamics of a periodic viral infection model incorporating diffusion and antiretroviral therapy, 2024, 17, 1793-5245, 10.1142/S1793524523500596 | |
30. | Chittaranjan Mondal, Parthasakha Das, Nandadulal Bairagi, Transmission dynamics and optimal control strategies in a multi-pathways delayed HIV infection model with multi-drug therapy, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-04911-y | |
31. | Pradeesh Murugan, Prakash Mani, Threshold dynamics of time-delay in HIV infection model with immune impairment, 2024, 0, 1937-1632, 0, 10.3934/dcdss.2024066 | |
32. | Shilpa Samaddar, Kalyan Manna, Malay Banerjee, 2024, Chapter 3, 978-981-97-7849-2, 29, 10.1007/978-981-97-7850-8_3 | |
33. | Zhigang Liu, Tiejun Zhou, Analysis of global stability and bifurcation for an HIV infection model with cell to cell transmission, 2024, 2024, 2731-4235, 10.1186/s13662-024-03861-0 | |
34. | Hana M. Dobrovolny, How do viruses get around? A review of mathematical modeling of in-host viral transmission, 2025, 604, 00426822, 110444, 10.1016/j.virol.2025.110444 | |
35. | Jinhu Xu, Xueru Liu, Suxia Zhang, Aili Wang, Mengli Hao, Modeling and Analysis for a Delayed Cytokine-Enhanced Viral Infection Model, 2025, 35, 0218-1274, 10.1142/S021812742550066X |