Processing math: 55%

Functional model for extensions of symmetric operators and applications to scattering theory

  • Received: 01 September 2017 Revised: 01 December 2017
  • 47A45, 34L25, 81Q35

  • On the basis of the explicit formulae for the action of the unitary group of exponentials corresponding to almost solvable extensions of a given closed symmetric operator with equal deficiency indices, we derive a new representation for the scattering matrix for pairs of such extensions. We use this representation to explicitly recover the coupling constants in the inverse scattering problem for a finite non-compact quantum graph with $δ$-type vertex conditions.

    Citation: Kirill D. Cherednichenko, Alexander V. Kiselev, Luis O. Silva. Functional model for extensions of symmetric operators and applications to scattering theory[J]. Networks and Heterogeneous Media, 2018, 13(2): 191-215. doi: 10.3934/nhm.2018009

    Related Papers:

    [1] Plamen Stefanov . Conditionally stable unique continuation and applications to thermoacoustic tomography. Mathematics in Engineering, 2019, 1(4): 789-799. doi: 10.3934/mine.2019.4.789
    [2] Valentina Candiani, Matteo Santacesaria . Neural networks for classification of strokes in electrical impedance tomography on a 3D head model. Mathematics in Engineering, 2022, 4(4): 1-22. doi: 10.3934/mine.2022029
    [3] Luigi Ambrosio, Giuseppe Savaré . Duality properties of metric Sobolev spaces and capacity. Mathematics in Engineering, 2021, 3(1): 1-31. doi: 10.3934/mine.2021001
    [4] Guido De Philippis, Filip Rindler . Fine properties of functions of bounded deformation-an approach via linear PDEs. Mathematics in Engineering, 2020, 2(3): 386-422. doi: 10.3934/mine.2020018
    [5] Huyuan Chen, Laurent Véron . Weak solutions of semilinear elliptic equations with Leray-Hardy potentials and measure data. Mathematics in Engineering, 2019, 1(3): 391-418. doi: 10.3934/mine.2019.3.391
    [6] Yiye Jiang, Jérémie Bigot, Edoardo Provenzi . Commutativity of spatiochromatic covariance matrices in natural image statistics. Mathematics in Engineering, 2020, 2(2): 313-339. doi: 10.3934/mine.2020016
    [7] Hoai-Minh Nguyen, Tu Nguyen . Approximate cloaking for the heat equation via transformation optics. Mathematics in Engineering, 2019, 1(4): 775-788. doi: 10.3934/mine.2019.4.775
    [8] Sreevatsa Anantharamu, Bernardo Cockburn . Efficient implementation of the hybridized Raviart-Thomas mixed method by converting flux subspaces into stabilizations. Mathematics in Engineering, 2024, 6(2): 221-237. doi: 10.3934/mine.2024010
    [9] Lucrezia Cossetti . Bounds on eigenvalues of perturbed Lamé operators with complex potentials. Mathematics in Engineering, 2022, 4(5): 1-29. doi: 10.3934/mine.2022037
    [10] Lars Eric Hientzsch . On the low Mach number limit for 2D Navier–Stokes–Korteweg systems. Mathematics in Engineering, 2023, 5(2): 1-26. doi: 10.3934/mine.2023023
  • On the basis of the explicit formulae for the action of the unitary group of exponentials corresponding to almost solvable extensions of a given closed symmetric operator with equal deficiency indices, we derive a new representation for the scattering matrix for pairs of such extensions. We use this representation to explicitly recover the coupling constants in the inverse scattering problem for a finite non-compact quantum graph with $δ$-type vertex conditions.



    Magnetohydrodynamics(MHD) is a subject that studies the motion of conductive fluids in magnetic fields. It is mainly used in astrophysics, controlled thermonuclear reactions and industry. The system of MHD equations is a coupled equation system of Navier-Stokes equations of fluid mechanics and Maxwell's equations of electrodynamics (see[1,2]). In this paper, we consider the unsteady incompressible MHD equations as follows:

    $ {ut+(u)uνu+μB×curlB+p=f,xΩ,u=0,xΩ,Bt+Rm1curlcurlBcurl(u×B)=g,xΩ,B=0,xΩ, $ (1.1)

    where $ u $ is velocity, $ \nu $ kinematic viscosity, $ \mu $ magnetic permeability, $ p $ hydrodynamic pressure, $ B $ magnetic field, $ f $ body force, and $ g $ applied current. The coefficients are the magnetic Reynolds number $ Rm $. As in [3], we assume that $ \Omega $ is a convex domain in $ R^d $, $ d = 2, 3 $ and $ t\in [0, T] $. Here, $ u_t = \frac{\partial u}{\partial t} $, $ B_t = \frac{\partial B}{\partial t} $. The term $ u\times B $ explains the effect of hydrodynamic flow on current. The magnetic Reynolds number $ Rm $ is moderate or low (from $ 10^{-2} $ to 1) (see[4]). For the purposes of simplicity, we choose $ Rm = 1 $ in our numerical analysis.

    System (1.1) is considered in conjunction with the following initial boundary conditions

    $ u(x,0)=u0(x),B(x,0)=B0(x),xΩ,u=0,Bn=0,n×curlB=0,xΩ,t>0, $

    where $ {\bf{n}} $ denotes the outer unit normal of $ \partial \Omega $.

    Over that last few decades, there has been a lot of works devoted on the numerical solution of MHD flows. In [5], some mathematical equations related to the MHD equations have been studied. In [6], a weighted regularization approach was applied to incompressible MHD problems. Reference [7,8] decoupled the linear MHD problem involving conducting and insulating regions. A mixed finite element method for stationary incompressible MHD equations was given in [9]. In order to avoid in-sup condition, Gerbeau [10] presented a stabilized finite element method and Salah et al. [11] proposed a Galerkin least-square method. In [12], a two-level finite element method with a stabilizing sub-grid for the incompressible MHD equations has been shown.

    Recently, a convergence analysis of three finite element iterative methods for 2D/3D stationary incompressible MHD equations has been given by Dong and He (see[13]). In order to continue the in-depth explore of three-dimensional incompressible MHD system, an unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations was studied by He [14]. In [15], a two-level Newton iteration method for 2D/3D steady incompressible MHD equation was proposed by Dong and He. In addition, Yuksel and Ingram have discussed the full discretization of Grank-Nicolson scheme at small magnetic Reynolds numbers (see[16]). The defect correction finite element method for the MHD equations was shown by Si et. al. [17,18,19]. In [20], a decoupling penalty finite element method for the stationary incompressible MHD equation was presented. To further study this method, we can refer to [21,22,23].

    In this paper, a modified characteristics projection finite element method for the unsteady incompressible magnetohydrodynamics(MHD) equations will be given. In this method, modified characteristics finite element method and the projection method will be combined for solving the incompressible MHD equations. Both the stability and the optimal error estimates both in $ L^2 $ and $ H^1 $ norms for the modified characteristics projection finite element method will be derived. In order to demonstrate the effectiveness of our method, we will present some numerical results at the end of the manuscript. The contents of this paper are divided into sections as follows. To obtain the unconditional stability and optimal error estimates, in section 2, we introduce some notations and present a modified characteristics projection algorithm for the MHD equations. Then, in section 3, we give stability and error analysis and show that this method has optimal convergence order by mathematical induction. In order to demonstrate the effectiveness of our method, some numerical results are presented in the last section.

    In this section, we introduce some notations. We employ the standard Sobolev spaces $ H^{k}(\Omega) = W^{k, 2} $, for nonnegative $ k $ with norm $ \|v\|_{k} = (\sum_{|\beta| = 0}^{k}\|D^{\beta}v\|_{0}^{2})^{1/2} $. For vector-value function, we use the Sobolev spaces $ \mbox{H}^{k}(\Omega) = (H^{k}(\Omega))^{d} $ with norm $ \|\mbox{v}\|_{k} = (\sum_{i = 1}^{d}\|v_{i}\|_{k}^{2})^{1/2} $(see [24,25]). For simplicity, we set:

    $ X=H10(Ω)2,X0={vX:v=0},M=L20(Ω)={qL2(Ω)d:Ωq(x)dx=0},H={vL2(Ω)d:v=0},W={ψ(H1(Ω))d:ψn|Ω=0},W0={ψW:ψ=0}, $

    which are equipped with the norms

    $ vX=v0,qM=q0,ψW=ψ1. $

    In this paper, we will use the following equality

    $ curl(ψ×B)=BψψB,ψ,BW0. $

    Then, we recall the following Poincaré-Friedrichs inequality in $ W $: there holds

    $ c0Ccurlc0,cW, $

    with a constant $ C > 0 $ solely depending on the domain $ \Omega $; (see[26]). Here, we define the following trilinear form $ a_1(\cdot, \cdot, \cdot) $ as follows, for all $ u\in V $, $ w, v\in X $,

    $ a1(u,v,w)=(uw+12(u)w,v)=12(uw,v)12(uv,w) $

    and the properties of the trilinear form $ a_1(\cdot, \cdot, \cdot) $ [27] are helpful in our analysis

    $ a1(u,v,w)=a1(u,w,v),  uX0,v,wX,|a1(u,v,w)|N2u0(v0wL+vL6wL3),  uL2(Ω)2, vX,wL(Ω)2X,|a1(u,v,w)|N2(uLv0+uL3vL6)w0,  uL(Ω)2X, vX,wL2(Ω)2,v0γ0v0,vL6Cv0,wL4C0w0,  wX, $

    where $ N > 0 $ is a constant, $ \gamma_0 $ (only dependent on $ \Omega $) is a positive constant, and $ C_0 $ (only dependent on $ \Omega $) is an embedding constant of $ H^{1}(\Omega)\hookrightarrow L^{4}(\Omega) $ ($ \hookrightarrow $ denotes the continuous embedding).

    Furthermore, we define the Stokes operator $ \mathcal{A}:D(\mathcal{A})\longrightarrow \tilde{H} $ such that $ \mathcal{A} = -P\triangle $, where $ D(\mathcal{A}) = H^{2}(\Omega)^{d}\cap X_{0} $ and $ P $ is an $ L^2 $-projection from $ L^2(\Omega)^d $ to $ \tilde{H} = \{v\in L^2(\Omega)^d; \nabla\cdot v = 0, v\cdot n|_{\partial\Omega} = 0\} $.

    Next, we recall a discrete version of Gronwall's inequality established in [14].

    Lemma 2.1 Let $ C_{0}, a_n, b_n $ and $ d_n $, for integers $ n\geq0 $, be the non-negative numbers such that

    $ am+τmn=1bnτm1n=1dnan+C0   m1. $ (2.1)

    Then

    $ am+τmn=1bnC0exp(τm1n=1dn)   m1. $ (2.2)

    Throughout this paper, we make the following assumptions on the prescribed date for the problem (1.1), which satisfies the regularity of the data needed for our main results.

    Assumption (A1)(see[27,28]): Assume that the boundary of $ \Omega $ is smooth so that the unique solution $ (v, q) $ of the steady Stokes problem

    $ Δv+q=f,v=0inΩ,v|Ω=0, $

    for prescribed $ f\in L^{2}(\Omega)^{3} $ satisfies

    $ v2+q1cf0, $

    and Maxwell's equations

    $ curlcurlB=g,B=0inΩ,n×curlB=0,BnonΩ, $

    for the prescribed $ g\in L^{2}(\Omega)^{3} $ admits a unique solution $ B\in W_{0} $ which satisfies

    $ B2cg0. $

    Assumption (A2): The initial data $ u_0, B_0, f $ satisfy

    $ Au00+B02+sup0tTf0+ft0C. $ (2.3)

    Assumption (A3): We assume that the MHD problem admits a unique local strong solution $ (u, p, B) $ on $ (0, T) $ such that

    $ sup0tTAut0+Bt2+p1+ut0+Bt0+T0(ut21+Bt21+pt21+utt20+Btt20)dtC. $ (2.4)

    Let $ 0 = t_{0} < t_{1} < \cdots < t_{N} = T $ be a uniform partition of the time interval $ [0, T] $ with $ t_{n} = n\tau $, and $ N $ being a positive integer. Set $ u^{n} = (\cdot, t_{n}) $, For any sequence of functions $ \{f^{n}\}_{n = 0}^{N} $, we define

    $ Dτfn=fnfn1τ. $

    At the initial time step, we start with $ U^{0} = \tilde{U}^{0} = u_{0}, B^{0} = \tilde{B}^{0} = b_{0} $ and an arbitrary $ P^{0}\in M\cap H^{1}(\Omega) $. Then, we can give

    $ P0=f0u0u0+νΔu0μB0×curlB0. $

    Then, we give the algorithm as follows

    Algorithm 2.1 (Time-discrete modified characteristics projection finite element method)

    Step 1. Solve $ B^{n+1} $, for instance

    $ Bn+1ˆBnτ+curlcurlBn+1(Bn)Un=gn+1, $ (2.5)
    $ Bn+1n=0,n×curlBn+1=0, on Ω, $ (2.6)

    where

    $ ˆln={ln(ˆx),   ˆx=xUnτΩ,0,   othrewise. $

    Step 2. Find $ \tilde{U}^{n+1} $, such that

    $ ˜Un+1ˆUnτνΔ˜Un+1+Pn+μBn×curlBn+1=fn+1, $ (2.7)
    $ ˜Un+1=0, on Ω. $ (2.8)

    Step 3. Calculate $ (U^{n+1}, P^{n+1}) $, for example

    $ Un+1˜Un+1τ+(Pn+1Pn)=0, $ (2.9)
    $ Un+1=0, $ (2.10)
    $ Un+1=0 on Ω,. $ (2.11)

    The corresponding weak form is

    Step 1. Solve $ B^{n+1} $, for instance

    $ (Bn+1ˆBnτ,ψ)+(curlBn+1,curlψ)((Bn)Un,ψ)=(gn+1,ψ),   ψW. $ (2.12)

    Step 2. Find $ \tilde{U}^{n+1} $, such that

    $ (˜Un+1ˆUnτ,v)+ν(˜Un+1,v)+(Pn,v)+μ(Bnv,Bn+1)μ(vBn,Bn)=(fn+1,v),   vX, $ (2.13)

    Step 3. Calculate $ (U^{n+1}, P^{n+1}) $, for example

    $ (Un+1˜Un+1τ,v)+((Pn+1Pn),v)=0,   vX, $ (2.14)
    $ (Un+1,ϕ)=0,   ϕM. $ (2.15)

    Remark 2.1 As we all know $ (B^{n}\times \mbox{curl}B^{n+1}, v) = (B^{n}\cdot\nabla v, B^{n+1})-(v\cdot\nabla B^{n}, B^{n+1}) $. In order to improve our algorithm, we change it as $ (B^{n}\cdot\nabla v, B^{n+1})-(v\cdot\nabla B^{n}, B^{n}) $.

    We denote $ T_{h} $ be a regular and quasi-uniform partition of the domain $ \Omega $ into the triangles for $ d = 2 $ or tetrahedra for $ d = 3 $ with diameters by a real positive parameter $ h(h\rightarrow 0) $. The finite element pair $ (X_{h}, M_{h}, W_{h}) $ is constructed based on $ T_{h} $.

    Let $ W_{0n}^h = X_h\times W_h $. There exits a constant $ \beta_0 > 0 $ (only dependent on $ \Omega $) such that

    $ sup0(v,ψ)Wh0nd(v,q)v0β0q0,  qMh. $ (2.16)

    There exits a mapping $ r_h\in \mathcal{L}(H^2(\Omega)^2\cap V, X_h) $ satisfying

    $ ((vrhv),q)=0,(vrhv)0Chv2,  vH2(Ω)2V,  qMh, $

    and a $ L^2 $-projection operator $ \rho_h:M\rightarrow M_h $ satisfying

    $ qρhq0Chq1,  qH1(Ω)M, $

    and a mapping $ R_h\in \mathcal{L}(H^2(\Omega)^2\cap V_n, W_h) $ satisfying

    $ (×RhΦ,×Ψ)+(RhΦ,Ψ)=(×Φ,×Ψ)+(Φ,Ψ)=(×Φ,×Ψ),  ΨWh,ΦRhΦ0+hΦRhΦ1Ch2Φ2,  H2(Ω)Vh. $

    Here, we define the discrete Stokes operator $ A_{h} = -P_h\triangle_h $ and $ \triangle_h $ (see [15] and the references therein) defined by

    $ (huh,vh)=(uh,vh),uh,vhVh. $

    Meanwhile, we define the discrete operator $ A_{1h} B_h = R_{1h}(\nabla_h\times \nabla\times B_h+\nabla_h\nabla\cdot B_h)\in W_h $ (see [15]) as follows

    $ (A1hBh,Ψ)=(A121hBh,A121hBh)=(×Bh,×Ψ)+(Bh,Ψ),Bh,ΨWh. $

    We define the Stokes projection $ (R_{h}(u, p), Q_{h}(u, P)):(X, M)\rightarrow (X_{h}, M_{h}) $ by

    $ ν(Rh(u,p)u,vh)(Qh(u,p)p,vh)=0, $ (2.17)
    $ ((Rh(u,p)u),ϕh)=0. $ (2.18)

    By classical FEM theory ([25,29,30]), we have the following results.

    Lemma 2.2 Assume that $ u \in H_{0}^{1}(\Omega)^{d}\cap H^{r+1}(\Omega)^{d} $ and $ p \in L_{0}^{2}(\Omega)\cap H^{r}(\Omega) $. Then,

    $ Rh(u,p)u0+h((Rh(u,p)u)0+Qh(u,p)p0)Chr+1(ur+1+pr), $ (2.19)

    and

    $ Rh(u,p)LC(u2+p1). $ (2.20)

    Lemma 2.3 If $ (u, p)\in W^{2, k}(\Omega)^{d}\times W^{1, k}(\Omega) $ for $ k > d $,

    $ Rh(u,p)LC(uW1,+pL). $ (2.21)

    Algorithm 2.2 (The fully discrete modified characteristics projection finite element method)

    Step 1. Solve $ B_{h}^{n+1} $, for instance

    $ (Bn+1hˆBnhτ,ψh)+(curlBn+1h,curlψh)((Bnh)unh,ψh)=(gn+1,ψh),   ψhWh. $ (2.22)

    where

    $ ˆlnh={lnh(ˆx),   ˆx=xunhτΩ,0,   othrewise. $

    Step 2. Find $ \tilde{U}^{n+1} $, such that

    $ (˜un+1hˆunhτ,vh)+ν(˜un+1h,vh)+(pnh,vh)+μ(Bnhvh,Bn+1h)μ(vhBnh,Bnh)=(fn+1,vh),   vhXh. $ (2.23)

    Step 3. Calculate $ (u_{h}^{n+1}, p_{h}^{n+1}) $, for example

    $ (un+1h˜un+1hτ,vh)+((pn+1hpnh),vh)=0,   vhXh, $ (2.24)
    $ (un+1h,ϕh)=0,   ϕhMh. $ (2.25)

    Here, we make use of the following notation:

    $ en=unUn,˜e=un˜Un,n=0,1,...,N,εn=bnBn,ˆεn=bnˆBn,n=0,1,...,N,ξn=pnPn,n=0,1,...,N. $

    Lemma 3.1 (see[31]). Assume that $ g_{1}, g_{2}, \rho $ are three functions defined in $ \Omega $ and $ \rho|_{\partial\Omega} = 0 $. If

    $ τ(g1W1,+g2W1,)12, $

    then

    $ ρ(xg1(x)τ)ρ(xg2(x)τ)LqCτρW1,q2g1g2Lq1,ρ(xg1(x)τ)ρ(xg2(x)τ)1Cτρ0g1g2W1,, $

    where $ 1/q_{1}+1/q_{2} = 1/q, 1 < q < \infty $.

    The following theorem gives insight on the error estimate between the time-discrete solution and the solution of the time-dependent MHD system (1.1).

    Theorem 3.1 Suppose that assumption A2–A3 are satisfied, there exists a positive $ C > 0 $ such that

    $ max0nm(em+120+μεm+120)+mn=0(en+1en20+μεn+1εn20),+τmn=0(ν˜en+120+μcurlεn+120)Cτ2,max0nm(νem+121+μcurlεm+120)+τmn=1(νen+1en21+μcurlεn+1curlεn20)+τmn=1(Dτen+120+μDτεn+120)Cτ2,τmn=0(en+122+˜en+122+εn+122)Cτ2,τmn=0(DτUn+122+Dτ˜Un+122+DτPn+121+DτBn+122+Un+12W2,d+Bn+12W2,d)+max0nm(Un+12+˜Un+12+Pn+11+Bn+12)C. $

    Proof. Firstly, we prove the following inequality

    $ em2+τ3/4UmW2,d1, $ (3.1)
    $ εm2+τ3/4BmW2,d1, $ (3.2)

    by mathematical induction for $ m = 0, 1, ..., N $.

    Since $ U^{0} = u^{0}, B^{0} = b^{0} $ the above inequality hold for $ m = 0 $.

    We assume that (3.1) and (3.2) hold for $ m\leq n $ for some integer $ n\geq0 $. By Sobolev embedding theory, we get

    $ UmLumL+Cem2C, $ (3.3)
    $ BmLbmL+Cεm2C, $ (3.4)

    and

    $ τUmW1,1/4, $ (3.5)
    $ τBmW1,1/4, $ (3.6)

    when $ \tau\leq\tau_{1} $ for some positive constant $ \tau_{1} $.

    To prove (3.1) and (3.2) for $ m = n+1 $, we rewrite (1.1) by

    $ Dτun+1νΔun+1+pn+1=fn+1unˉunτ+Rn+1tr1μbn+1×curlbn+1, $ (3.7)
    $ un+1=0, $ (3.8)
    $ Dτbn+1+curlcurlbn+1=gn+1bnˉbnτ+Rn+1tr2+bn+1un+1. $ (3.9)

    where $ u^{n+1} = U(t_{n+1}), b^{n+1} = B(t_{n+1}) $, and

    $ ˉln={ln(ˉx),ˉx=xunτΩ,0,otherwise. $

    and

    $ Rn+1tr1=un+1ˉunτun+1t(un+1)un+1,Rn+1tr2=bn+1ˉbnτbn+1t(un+1)bn+1, $

    define the truncation error. We can refer to ([31]), there holds that

    $ τNm=1Rmtr120Cτ2,τNm=1Rmtr220Cτ2. $ (3.10)

    The corresponding weak form is

    $ (Dτun+1,v)+ν(un+1,v)(pn+1,v)=(fn+1,v)(unˉunτ,v)+(Rn+1tr1,v)μ(bn+1×curlbn+1,v), $ (3.11)
    $ (un+1,ϕ)=0, $ (3.12)
    $ (Dτbn+1,ψ)+(curlbn+1,curlψ)=(gn+1,ψ)(bnˉbnτ,ψ)+(Rn+1tr2,ψ)+(bn+1(un+1un),ψ)+(bn+1un,ψ). $ (3.13)

    Combining (2.13) and (2.14), we obtain

    $ (Un+1ˆUnτ,v)+ν(˜Un+1,v)(Pn+1,v)+μ(Bnv,Bn+1)μ(vBn,Bn)=(fn+1,v). $ (3.14)

    Then, we rewrite (3.14) and (2.12) as

    $ (DτUn+1,v)+ν(˜Un+1,v)(Pn+1,v)=(fn+1,v)(UnˆUnτ,v)μ(Bnv,Bn+1)+μ(vBn,Bn), $ (3.15)

    and

    $ (DτBn+1,ψ)+(curlBn+1,curlψ)=(gn+1,ψ)+(BnUn,ψ)(BnˆBnτ,ψ). $ (3.16)

    Subtracting (3.15) and (3.16) from (3.11) and (3.13), respectively, leads to

    $ (Dτen+1,v)+ν(˜en+1,v)(ξn+1,v)=(unˉun(UnˆUn)τ,v)+(Rn+1tr1,v)μ((bn+1bn)vv(bn+1bn),bn+1)+μ(vbn,bn+1bn)+μ(vεn,bn)+μ(vBn,εn)μ(εnv,bn+1)μ(Bnv,εn+1), $ (3.17)

    and

    $ (Dτεn+1,ψ)+(curlεn+1,curlψ)=(bnˉbn(BnˆBn)τ,ψ)+(Rn+1tr2,ψ)+(bn+1(un+1un)+(bn+1bn)un+εnun+Bnen,ψ). $ (3.18)

    Testing (2.9) by $ \tau e^{n+1} $, since $ \nabla\cdot e^{n+1} = 0 $, we arrive at

    $ (en+1,˜en+1)=(en+1,en+1). $ (3.19)

    Testing (2.9) by $ \tau e^{n} $, we get

    $ (en,˜en+1)=(en,en+1). $ (3.20)

    Subtracting (3.20) from (3.19), we can obtain

    $ (en+1en,˜en+1)=(en+1en,en+1). $ (3.21)

    Let $ v = 2\tau \tilde{e}^{n+1} $ in (3.17), we obtain

    $ en+120en20+en+1en20+2ντ˜en+1202τ(ξn+1,˜en+1)=2((en(ˉunˆUn),˜en+1)+2τ(Rn+1tr1,˜en+1)2μτ((bn+1bn)˜en+1˜en+1(bn+1bn),bn)+2μτ(˜en+1bn,bn+1bn)+2μτ(˜en+1εn,bn)+2μτ(˜en+1Bn,εn)2μτ(εn˜en+1,bn+1)2μτ(Bn˜en+1,εn+1). $ (3.22)

    Let $ \psi = 2\mu\tau \varepsilon^{n+1} $ in (3.18), we get

    $ μεn+120μεn20+μεn+1εn20+2μτcurlεn+120=2μ(εn(ˉbnˆBn),εn+1)+2μτ(Rn+1tr2,εn+1)+2μτ(bn+1(un+1un)+(bn+1bn)un+εnun+Bnen,εn+1). $ (3.23)

    Taking sum of (3.22) and (3.23) yields

    $ en+120en20+μεn+120μεn20+en+1en20+μεn+1εn20+2ντ˜en+120+2μτcurlεn+1202τ(ξn+1,˜en+1)=2(enˆen,˜en+1)2(ˆunˉun,˜en+1)+2τ(Rn+1tr1,˜en+1)2μτ((bn+1bn)˜en+1,bn)+2μτ(˜en+1(bn+1bn),bn)+2μτ(˜en+1bn,bn+1bn)+2μτ(˜en+1εn,bn)+2μτ(˜en+1Bn,εn)2μτ(εn˜en+1,bn+1)2μτ(Bn˜en+1,εn+1)2μ(εnˆεn,εn+1)2μ(ˆbnˉbn,εn+1)+2μτ(Rn+1tr2,εn+1)+2μτ(bn+1(un+1un),εn+1)+2μτ((bn+1bn)un,εn+1)+2μτ(εnunεn+1)+2μτ(Bnen,εn+1). $ (3.24)

    From (2.9), we have

    $ ˜en+1=en+1+τ(ξn+1ξn)τ(pn+1pn). $

    Then, we can obtain

    $ 2τ(ξn+1,˜en+1)=2τ(ξn+1,en+1)+2τ2(ξn+1,(ξn+1ξn))4τ2(ξn+1,(pn+1pn))=τ2(ξn+120ξn20+ξn+1ξn20)2τ2(ξn+1,(pn+1pn))τ2(ξn+120ξn20+(ξn+1ξn)20)Cτ2ξn+10(pn+1pn)0=τ2(ξn+120ξn20+(ξn+1ξn)20)τ(Cτξn+10(pn+1pn)0)τ2(ξn+120ξn20+(ξn+1ξn)20)τ(Cτ2ξn+120+14(pn+1pn)20)=τ2(ξn+120ξn20+(ξn+1ξn)20)Cτ3ξn+120+14(pn+1pn)20). $

    On the other hand, using Lemma 3.1, we deduce that

    $ 2|(enˆen,˜en+1)|2enˆen1˜en+10Cτen0UnW1,˜en+10ντ12˜en+120+Cτen20,2|(ˆunˉun,˜en+1)|CˆunˉunL6/5˜en+1L6CτunL3en0˜en+10ντ12˜en+120+Cτen20,2τ|(Rn+1tr1,˜en+1)|Rn+1tr10˜en+10ντ12˜en+120+CτRn+1tr120,2μτ|((bn+1bn)˜en+1,bn+1)|Cτbn+1bn0˜en+10bn+12ντ12˜en+120+Cτ3bn+1t20bn+122,2μτ|(˜en+1(bn+1bn),bn+1)|Cτ˜en+1L6bn+1L3bn+1bn0ντ12˜en+120+Cτ3bn+1t20bn+122,2μτ|(˜en+1bn,bn+1bn)|Cτ˜en+1L6bn+1L3bn+1bn0ντ12˜en+120+Cτ3bn+1t20bn+122,2μτ|(˜en+1εn,bn)|Cτ˜en+10bn2εn0ντ12˜en+120+Cτεn20bn22,2μτ|(˜en+1Bn,εn)|Cτ˜en+10BnLεn0ντ12˜en+120+Cτεn20Bn2L,2μτ|(εn˜en+1,bn+1)|Cτεn0˜en+10bn+1Lντ12˜en+120+Cτεn20bn+122,2μτ|(Bn˜en+1,εn+1)|CτBnL˜en+10εn+10ντ12˜en+120+Cτεn20,2μτ|(εnˆεn,εn+1)|Cτεn0BnW1,εn+10μτ8curlεn+120+Cτεn20,2μτ|(ˆbnˉbn,εn+1)|CτˆbnˉbnL6/5εn+1L6CτbnL3εn0εn+10μτ8curlεn+120+Cτεn20,2μτ|(Rn+1tr2,εn+1)|CτRn+1tr20εn+10μτ8curlεn+120+CτRn+1tr220,2μτ|(bn+1(un+1un),εn+1)|Cτbn+12un+1un0curlεn+10μτ8curlεn+120+Cτun+1un20,2μτ|((bn+1bn)un,εn+1)|Cτbn+1bn0unLεn+10μτ8curlεn+120+Cτ3bn+1t20un2L,2μτ|(εnun,εn+1)|Cτεn0unL3curlεn+10μτ8curlεn+120+Cτεn20un2L3,2μτ|(Bnen,εn+1)|CτBnLen0curlεn+10μτ8curlεn+120+Cτen20. $

    Substituting these above inequality into (3.24), we obtain

    $ en+120en20+μεn+120μεn20+τ2ξn+120τ2ξn20+en+1en20+μεn+1εn20+τ2(ξn+1ξn)20+ντ˜en+120+μτcurlεn+120Cτ(en20+εn20+εn+120)+Cτ(Rn+1tr120+Rn+1tr220)+Cτ3(ξn+120+ξn20)+Cτ3. $ (3.25)

    Taking sum of the (3.25) for $ n $ from $ 0 $ to $ m\leq N $ and using discrete Gronwall's inequality Lemma 2.1, we get

    $ max0nm(em+120+μεm+120+τ2ξm+120)+mn=0(en+1en20+μεn+1εn20)+τmn=0(ν˜en+120+μcurlεn+120)Cτ2. $ (3.26)

    Owing to (3.21), we have

    $ ((en+1en),˜en+1)=((en+1en),en+1). $ (3.27)

    To acquire the $ H^{1} $ estimates, we take $ v = 2\tau D_{\tau}e^{n+1} $ in (3.17) to get

    $ ν(en+121en21+en+1en21)+2τDτen+120=2((en(ˉunˆUn),Dτen+1)+2τ(Rn+1tr1,Dτen+1)2μτ((bn+1bn)Dτen+1Dτen+1(bn+1bn),bn+1)+2μτ(Dτen+1bn,bn+1bn)+2μτ(Dτen+1εn,bn)+2μτ(Dτen+1Bn,εn)2μτ(εnDτen+1,bn+1)2μτ(BnDτen+1,εn+1). $ (3.28)

    Then, we take $ \psi = 2\mu\tau D_{\tau}\varepsilon^{n+1} $ in (3.18) to get

    $ μ(curlεn+120curlεn20+curlεn+1curlεn20)+2μτDτεn+120=2μ(εn(ˉbnˆBn),Dτεn+1)+2μτ(Rn+1tr2,Dτεn+1)+2μτ(bn+1(un+1un)+(bn+1bn)un+εnun+Bnen,Dτεn+1). $ (3.29)

    Combining (3.28) and (3.29), we obtain

    $ ν(en+121en21+en+1en21)+μ(curlεn+120curlεn20+curlεn+1curlεn20)+2τDτen+120+2ντDτεn+120=2(enˆen,Dτen+1)2(ˆunˉun,Dτen+1)+2τ(Rn+1tr1,Dτen+1)2μτ((bn+1bn)Dτen+1,bn+1)+2μτ(Dτen+1(bn+1bn),bn+1)+2μτ(Dτen+1bn,bn+1bn)+2μτ(Dτen+1εn,bn)+2μτ(Dτen+1Bn,εn)2μτ(εnDτen+1,bn+1)2μτ(BnDτen+1,εn+1)2μ(εnˆεn,εn+1)2μ(ˆbnˉbn,Dτεn+1)+2μτ(Rn+1tr2,Dτεn+1)+2μτ(bn+1(un+1un),Dτεn+1)+2μτ((bn+1bn)un,Dτεn+1)+2μτ(εnun,Dτεn+1)+2μτ(Bnen,Dτεn+1). $ (3.30)

    Similarly, by Lemma 3.1, we have

    $ 2|(enˆen,Dτen+1)|2enW1,2UnLDτen+10τ16Dτen+120+Cτen21,2|(ˆunˉun,Dτen+1)|CunW1,4enL4Dτen+10CunW1,4en1Dτen+10τ16Dτen+120+Cτen21,2τ|(Rn+1tr1,Dτen+1)|Rn+1tr10Dτen+10τ16Dτen+120+CτRn+1tr120,2μτ|((bn+1bn)Dτen+1,bn+1)|Cτ(bn+1bn)0Dτen+10bn+12τ16Dτen+120+Cτ3bn+1t20bn+122,2μτ|(Dτen+1(bn+1bn),bn+1)|CτDτen+10(bn+1bn)0bn+12τ16Dτen+120+Cτ3bn+1t20bn+122,2μτ|(Dτen+1bn,bn+1bn)|CτDτen+10bnLbn+1bn0τ16Dτen+120+Cτ3bn+1t20bn2L,2μτ|(Dτen+1εn,bn)|CτDτen+10εn0bnLτ16Dτen+120+Cτcurlεn20bn2L,2μτ|(Dτen+1Bn,εn)|CτDτen+10BnL3εnL6τ16Dτen+120+Cτεn20Bn2L3,τ16Dτen+120+Cτcurlεn20Bn2L3,2μτ|(εnDτen+1,bn+1)|Cτεn0Dτen+10bn+12τ16Dτen+120+Cτcurlεn20bn+122,2μτ|(BnDτen+1,εn+1)|CτBnLεn+10Dτen+10τ16Dτen+120+Cτcurlεn+120Bn2L,2μτ|(εnˆεn,Dτεn+1)|CτεnW1,2BnLDτεn+10μτ8Dτεn+120+Cτcurlεn20,2μτ|(ˆbnˉbn,Dτεn+1)|CτbnL4εnL4Dτεn+10μτ8Dτεn+120+Cτcurlεn20,2μτ|(Rn+1tr2,Dτεn+1)|CτRn+1tr20Dτεn+10μτ8Dτεn+120+CτRn+1tr220,2μτ|(bn+1(un+1un),Dτεn+1)|Cτbn+12(un+1un)0Dτεn+10μτ8Dτεn+120+Cτ(un+1un)20,2μτ|((bn+1bn)un,Dτεn+1)|Cτbn+1bn0unLDτεn+10μτ8Dτεn+120+Cτ3bn+1t20un2L,2μτ|(εnun,Dτεn+1)|Cτεn0unLDτεn+10μτ8Dτεn+120+Cτcurlεn20un2L,2μτ|(Bnen,Dτεn+1)|CτBnLen0Dτεn+10μτ8Dτεn+120+Cτen20Bn2L. $

    Substituting these above inequality into (3.30), we obtain

    $ \begin{align} &\nu(\|e^{n+1}\|_{1}^{2}-\|e^{n}\|_{1}^{2}+\|e^{n+1}-e^{n}\|_{1}^{2}) +\mu(\|\mbox{curl}\varepsilon^{n+1}\|_{0}^{2}-\|\mbox{curl}\varepsilon^{n}\|_{0}^{2}+\|\mbox{curl}\varepsilon^{n+1}-\mbox{curl}\varepsilon^{n}\|_{0}^{2}) \\ &+\tau\|D_{\tau}e^{n+1}\|_{0}^{2}+\mu\tau\|D_{\tau}\varepsilon^{n+1}\|_{0}^{2} \\ \leq &C\tau(\|e^{n}\|_{1}^{2}+\|\mbox{curl}\varepsilon^{n+1}\|_{0}^{2}+\|\mbox{curl}\varepsilon^{n}\|_{0}^{2}) +C\tau(\|R_{tr1}^{n+1}\|_{0}^{2}+\|R_{tr2}^{n+1}\|_{0}^{2})+C\tau^{3}. \end{align} $ (3.31)

    Taking sum of the (3.31) for $ n $ from $ 0 $ to $ m\leq N $ and using discrete Gronwall's inequality Lemma 2.1, we arrive at

    $ \begin{align} &\max\limits_{0\leq n\leq m}\left(\nu\|e^{m+1}\|_{1}^{2}+\mu\|\mbox{curl}\varepsilon^{m+1}\|_{0}^{2}\right)+\tau\sum\limits_{n = 1}^m\left(\nu\|e^{n+1}-e^{n}\|_{1}^{2} +\mu\|\mbox{curl}\varepsilon^{n+1}-\mbox{curl}\varepsilon^{n}\|_{0}^{2}\right) \\ &+\tau\sum\limits_{n = 1}^m(\| D_{\tau}e^{n+1}\|_{0}^{2}+ \mu\|D_{\tau}\varepsilon^{n+1}\|_{0}^{2}) \leq C\tau^{2}. \end{align} $ (3.32)

    Furthermore, the standard result for (3.17) and (3.18) with $ p = 2 $, respectively, leads to

    $ \begin{align} &\|\tilde{e}^{n+1}\|_{2} \\ \leq &C\|D_{\tau}e^{n+1}\|_{0}+\frac{C}{\tau}\|e^{n}-\hat{e}^{n}\|_{0}+\frac{C}{\tau}\|\hat{U}^{n}-\bar{U}^{n}\|_{0} +C\|R_{tr1}^{n+1}\|_{0}+C\|b^{n+1}-b^{n}\|_{0}\|\nabla b^{n+1}\|_{L^{\infty}} \\ &+C\|b^{n+1}-b^{n}\|_{0}\|\nabla b^{n+1}\|_{L^{\infty}}+C\|\nabla b^{n}\|_{L^{\infty}}\|b^{n+1}-b^{n}\|_{0}+C\|\nabla\varepsilon^{n}\|_{0} \| b^{n}\|_{L^{\infty}} \\ &+C\| B^{n}\|_{W^{1,\infty}}\|\varepsilon^{n}\|_{0} +C\|\varepsilon^{n}\|_{0}\| \nabla b^{n+1}\|_{L^{\infty}}+C\|B^{n}\|_{L^{\infty}}\|\mbox{curl}\varepsilon^{n+1}\|_{0}+\|\xi^{n+1}\|_{1} \\ \leq &C\|D_{\tau}e^{n+1}\|_{0}+C\|R_{tr1}^{n+1}\|_{0}+\|\xi^{n+1}\|_{1}+C\tau, \end{align} $ (3.33)
    $ \begin{align} &\|\varepsilon^{n+1}\|_{2} \\ \leq &C\|D_{\tau}\varepsilon^{n+1}\|_{0}+\frac{C}{\tau}\|\varepsilon^{n}-\hat{\varepsilon}^{n}\|_{0}+\frac{C}{\tau}\|\hat{b}^{n}-\bar{b}^{n}\|_{0} +C\|R_{tr2}^{n+1}\|_{0}+C\|b^{n+1}\|_{L^{\infty}}\| u^{n+1}- u^{n}\|_{0} \\ &+C\|b^{n+1}-b^{n}\|_{0}\|\nabla u^{n}\|_{L^{\infty}} +C\|\varepsilon^{n}\|_{0}\| \nabla u^{n}\|_{L^{\infty}}+C\| B^{n}\|_{L^{\infty}}\|\nabla e^{n}\|_{0} \\ \leq &C\|D_{\tau}e^{n+1}\|_{0}+C\|R_{tr}^{n+1}\|_{0}+C\tau. \end{align} $ (3.34)

    Thanks to (3.19), we can obtain

    $ \begin{align*} &(\Delta e^{n+1},\Delta e^{n+1}) = (\Delta\tilde{e}^{n+1},\Delta e^{n+1}), \nonumber\\ &\|e^{n+1}\|_{2}\leq \|\tilde{e}^{n+1}\|_{2}. \end{align*} $

    Then, we have

    $ \begin{align} \tau\sum\limits_{n = 0}^m(\|e^{n+1}\|_{2}^{2}+\|\tilde{e}^{n+1}\|_{2}^{2}+\|\varepsilon^{n+1}\|_{2}^{2})\leq C\tau^2. \end{align} $ (3.35)

    From (3.35), we can arrive at

    $ \begin{align} \max\limits_{0\leq n\leq m}\|U^{n+1}\|_{2}\leq \max\limits_{0\leq n\leq m}(\|u^{n+1}\|_{2}+\|e^{n+1}\|_{2})\leq C, \end{align} $ (3.36)
    $ \begin{align} \max\limits_{0\leq n\leq m}\|\tilde{U}^{n+1}\|_{2}\leq \max\limits_{0\leq n\leq m}(\|u^{n+1}\|_{2}+\|\tilde{e}^{n+1}\|_{2})\leq C, \end{align} $ (3.37)
    $ \begin{align} \max\limits_{0\leq n\leq m}\|P^{n+1}\|_{1}\leq \max\limits_{0\leq n\leq m}(\|p^{n+1}\|_{1}+\|\xi^{n+1}\|_{1})\leq C, \end{align} $ (3.38)
    $ \begin{align} \max\limits_{0\leq n\leq m}\|B^{n+1}\|_{2}\leq \max\limits_{0\leq n\leq m}(\|b^{n+1}\|_{2}+\|\varepsilon^{n+1}\|_{2})\leq C, \end{align} $ (3.39)
    $ \begin{align} \tau\sum\limits_{n = 0}^m\|D_{\tau}U^{n+1}\|_{2}^{2}\leq 2\tau\sum\limits_{n = 0}^m(\|D_{\tau}u^{n+1}\|_{2}^{2}+\|D_{\tau}e^{n+1}\|_{2}^{2})\leq C, \end{align} $ (3.40)
    $ \begin{align} \tau\sum\limits_{n = 0}^m\|D_{\tau}\tilde{U}^{n+1}\|_{2}^{2}\leq 2\tau\sum\limits_{n = 0}^m(\|D_{\tau}u^{n+1}\|_{2}^{2}+\|D_{\tau}\tilde{e}^{n+1}\|_{2}^{2})\leq C, \end{align} $ (3.41)
    $ \begin{align} \tau\sum\limits_{n = 0}^m\|D_{\tau}P^{n+1}\|_{1}^{2}\leq 2\tau\sum\limits_{n = 0}^m(\|D_{\tau}p^{n+1}\|_{1}^{2}+\|D_{\tau}\xi^{n+1}\|_{1}^{2})\leq C, \end{align} $ (3.42)
    $ \begin{align} \tau\sum\limits_{n = 0}^m\|D_{\tau}B^{n+1}\|_{2}^{2}\leq 2\tau\sum\limits_{n = 0}^m(\|D_{\tau}b^{n+1}\|_{2}^{2}+\|D_{\tau}\varepsilon^{n+1}\|_{2}^{2})\leq C. \end{align} $ (3.43)

    From (2.7) and (2.5), we have

    $ \begin{align} D_{\tau} U^{n+1}-\nu\Delta\tilde{U}^{n+1}+\nabla P^{n+1} = f^{n+1}-\frac{U^{n}-\hat{U}^{n}}{\tau}-\mu B^{n}\times \mbox{curl}B^{n+1}, \end{align} $ (3.44)

    and

    $ \begin{align} D_{\tau} B^{n+1}+\mbox{curlcurl}B^{n+1} = g^{n+1}+ (B^{n}\cdot \nabla) U^{n}-\frac{B^{n+1}-\hat{B}^{n}}{\tau}. \end{align} $ (3.45)

    By (2.9), we have

    $ \begin{align} -\Delta U^{n+1} = \nabla\times\nabla\times\tilde{U}^{n+1}. \end{align} $ (3.46)

    Considering the identity $ \nabla^2\tilde{U}^{n+1} = \nabla\nabla\cdot\tilde{U}^{n+1}-\nabla\times\nabla\times\tilde{U}^{n+1} $ and (3.46), we can obtain

    $ \begin{align} \Delta \tilde{U}^{n+1} = \nabla\nabla\cdot\tilde{U}^{n+1}-\Delta U^{n+1}. \end{align} $ (3.47)

    Now, the standard result for the Stokes system (3.17) and (3.18) with $ p = d^{*} > 2 $, respectively, leads to

    $ \begin{align} &\|U^{n+1}\|_{W^{2,d^{*}}}+\|P^{n+1}-\nabla\cdot\tilde{U}^{n+1}\|_{W^{1,d^{*}}} \\ \leq &C\|D_{\tau}U^{n+1}\|_{L^{d^{*}}}+\frac{C}{\tau}\|\hat{U}^{n}-U^{n}\|_{L^{d^{*}}} +C\|f^{n+1}\|_{L^{d^{*}}}+C\|B^{n}\times\mbox{curl}B^{n+1}\|_{L^{d^{*}}} \\ \leq &C(\|D_{\tau}U^{n+1}\|_{L^{d^{*}}}+\|\nabla U^{n}\|_{L^{d^{*}}}\|U^{n}\|_{L^{\infty}} +\|f^{n+1}\|_{L^{d^{*}}}+\|B^{n}\|_{L^{d^{*}}}\|\mbox{curl}B^{n+1}\|_{L^{d^{*}}}), \end{align} $ (3.48)
    $ \begin{align} &\|B^{n+1}\|_{W^{2,d^{*}}} \\ \leq &C\|D_{\tau}B^{n+1}\|_{L^{d^{*}}}+C\|g^{n+1}\|_{L^{d^{*}}}+\frac{C}{\tau}\|\hat{B}^{n}-B^{n}\|_{L^{d*}} +C\|B^{n}\cdot\nabla U^{n}\|_{L^{d^{*}}} \\ \leq &C(\|D_{\tau}B^{n+1}\|_{L^{d^{*}}}+\|g^{n+1}\|_{L^{d^{*}}}+\|\nabla B^{n}\|_{L^{d^{*}}}\|B^{n}\|_{L^{\infty}} +\| B^{n}\|_{L^{d^{*}}}\|\nabla U^{n}\|_{L^{d^{*}}}). \end{align} $ (3.49)

    By (3.48) and (3.49), we get

    $ \begin{align} \tau\sum\limits_{n = 0}^m(\|U^{n+1}\|_{W^{2,d^{*}}}^{2}+\|B^{n+1}\|_{W^{2,d^{*}}}^{2})\leq C. \end{align} $ (3.50)

    Thus, we can obtain

    $ \begin{align} &\|e^{n+1}\|_{2}+\tau^{3/4}\|U^{n+1}\|_{W^{2,d^{*}}}\leq 1, \end{align} $ (3.51)
    $ \begin{align} &\|\varepsilon^{n+1}\|_{2}+\tau^{3/4}\|B^{n+1}\|_{W^{2,d^{*}}}\leq 1. \end{align} $ (3.52)

    The proof is complete.

    For the sake of simplicity, we denote $ R_{h}^{n} = R_{h}(U^{n}, P^{n}), Q_{h}^{n} = Q_{h}(U^{n}, P^{n}), R_{0h} = R_{0h}B^{n}, n = 1, 2, ..., N $, and $ e_{h}^{n} = u_{h}^{n}-R_{h}^{n}, \tilde{e}_{h}^{n} = \tilde{u}_{h}^{n}-R_{h}^{n}, \varepsilon_{h}^{n} = B_{h}^{n}-R_{0h}^{n}, n = 1, 2, ..., N $, where $ R_{0h}:L^{2}(\Omega)^{3} \rightarrow W_{h} $ is the $ L^{2} $-orthogonal projection, where

    $ \begin{align} &\|R_{0h}w-w\|_{0}+h\|\nabla(R_{0h}w-w)\|_{0}\leq Ch^{r+1}\|w\|_{r+1}, \end{align} $ (3.53)
    $ \begin{align} &\|R_{0h}w\|_{L^{\infty}}\leq C\|w\|_{2}, \end{align} $ (3.54)
    $ \begin{align} &\|\nabla R_{0h}w\|_{L^{\infty}}\leq C\|w\|_{W^{1,\infty}}. \end{align} $ (3.55)

    Theorem 3.2 Suppose that assumption A2–A3 are satisfied, there exists a positive $ C > 0 $ such that

    $ \begin{align*} &\|u_{h}^{m+1}\|_{0}^{2}+\mu\|B_{h}^{m+1}\|_{0}^{2} +\sum\limits_{n = 0}^{m}(\|u_{h}^{n+1}-u_{h}^{n}\|_{0}^{2} +\mu\|B_{h}^{n+1}-B_{h}^{n}\|_{0}^{2}) \nonumber\\ &+\tau \sum\limits_{n = 0}^m\left(\nu\|\nabla\tilde{u}_{h}^{n+1}\|_{0}^{2} +\mu\|{\mbox{curl}}B_{h}^{n+1}\|_{0}^{2}\right)\leq C, \nonumber\\ &\|u_{h}^{m+1}\|_{1}^{2}+\mu\|{\mbox{curl}}B_{h}^{m+1}\|_{0}^{2} +\sum\limits_{n = 0}^{m}(\|u_{h}^{n+1}-u_{h}^{n}\|_{1}^{2} +\mu\|{\mbox{curl}}B_{h}^{n+1}-{\mbox{curl}}B_{h}^{n}\|_{0}^{2}) \nonumber\\ &+\tau \sum\limits_{n = 0}^m\left(\nu\|\mathcal{A}u_{h}^{n+1}\|_{0}^{2} +\mu\|{\mbox{curl}}B_{h}^{n+1}\|_{0}^{2}\right)\leq C, \nonumber\\ &\|e_{h}^{m+1}\|_{0}^{2}+\mu\|\varepsilon_{h}^{m+1}\|_{0}^{2} +\sum\limits_{n = 0}^{m}(\|e_{h}^{n+1}-e_{h}^{n}\|_{0}^{2} +\mu\|\varepsilon_{h}^{n+1}-\varepsilon_{h}^{n}\|_{0}^{2}) \nonumber\\ &+\tau \sum\limits_{n = 0}^m\left(\nu\|\nabla\tilde{e}_{h}^{n+1}\|_{0}^{2} +\mu\|{\mbox{curl}}\varepsilon_{h}^{n+1}\|_{0}^{2}\right)\leq C h^{4}, \nonumber\\ &\|u_{h}^{n+1}\|_{L^{\infty}}^{2}+\mu\|B_{h}^{n+1}\|_{L^{\infty}}^{2} +\tau \sum\limits_{n = 0}^m(\|u_{h}^{n+1}\|_{W^{1,\infty}}^{2} +\mu\|B_{h}^{n+1}\|_{W^{1,\infty}}^{2})\leq C. \end{align*} $

    Proof. We prove following estimates

    $ \begin{align} \|e_{h}^{m}\|_{0}^{2}+\mu\|\varepsilon_{h}^{m}\|_{0}^{2} +\tau \sum\limits_{m = 0}^n\left(\nu\|\nabla e_{h}^{m}\|_{0}^{2} +\mu\|\mbox{curl}\varepsilon_{h}^{m}\|_{0}^{2}\right)\leq C h^{4}, \end{align} $ (3.56)

    by mathematical induction for $ m = 0, 1, ..., N $.

    When $ m = 0, u_{h}^{0} = u_{0}, B_{h}^{0} = B_{0} $. It is obvious (3.56) holds at the initial time step. We assume that (3.56) holds for $ 0\leq m\leq n $ for some integer $ n\geq0 $. By (2.20), (2.21), (3.54), (3.55), Theorem 3.1 and inverse inequality, we infer

    $ \begin{align} \tau\|u_{h}^{m}\|_{W^{1,\infty}}\leq &(\|e_{h}^{m}\|_{W^{1,\infty}}+\|R_{h}^{m}\|_{W^{1,\infty}})\leq C(h^{-\frac{d}{2}}\|\nabla e_{h}^{m} \|_{0}+\|U^{m}\|_{W^{1,\infty}}+\|P^{m}\|_{L^{\infty}}) \\ \leq &\frac{1}{4}, \end{align} $ (3.57)
    $ \begin{align} \tau\|B_{h}^{m}\|_{W^{1,\infty}}\leq &(\|\varepsilon_{h}^{m}\|_{W^{1,\infty}}+\|R_{0h}^{m}\|_{W^{1,\infty}})\leq C(h^{-\frac{d}{2}}\|\nabla \varepsilon_{h}^{m} \|_{0}+\|B^{m}\|_{W^{1,\infty}}) \\ \leq &\frac{1}{4}, \end{align} $ (3.58)

    and

    $ \begin{align} &\tau\|u_{h}^{m}\|_{L^{\infty}}\leq (\|e_{h}^{m}\|_{L^{\infty}}+\|R_{h}^{m}\|_{L^{\infty}})\leq C(h^{-\frac{d}{2}}\| e_{h}^{m} \|_{0}+\|U^{m}\|_{2}+\|P^{m}\|_{1}) \leq C, \end{align} $ (3.59)
    $ \begin{align} &\tau\|B_{h}^{m}\|_{L^{\infty}}\leq (\|\varepsilon_{h}^{m}\|_{L^{\infty}}+\|R_{0h}^{m}\|_{L^{\infty}})\leq C(h^{-\frac{d}{2}}\| \varepsilon_{h}^{m} \|_{0}+\|B^{m}\|_{2}) \leq C. \end{align} $ (3.60)

    Combining (2.23) and (2.24), we obtain

    $ \begin{align} &\left(\frac{u_{h}^{n+1}-\hat{u}_{h}^{n}}{\tau},v_{h}\right)+\nu(\nabla \tilde{u}_{h}^{n+1},\nabla v_{h}) -(p_{h}^{n+1},\nabla \cdot v_{h})+\mu(B_{h}^{n}\cdot \nabla v_{h},B_{h}^{n+1}) \\ &-\mu(v_{h}\cdot \nabla B_{h}^{n},B_{h}^{n}) = (f^{n+1},v_{h}). \end{align} $ (3.61)

    When $ m = n+1 $, letting $ v_{h} = 2\tau \tilde{u}_{h}^{n+1} $ in (3.61), we can obtain

    $ \begin{align} &2(u_{h}^{n+1}-u_{h}^{n}+u_{h}^{n}-\hat{u}_{h}^{n},\tilde{u}_{h}^{n+1})+2\nu\tau(\nabla \tilde{u}_{h}^{n+1},\nabla \tilde{u}_{h}^{n+1}) -2\tau(p_{h}^{n+1},\nabla \cdot \tilde{u}_{h}^{n+1}) \\ &+2\mu\tau(B_{h}^{n}\cdot \nabla \tilde{u}_{h}^{n+1},B_{h}^{n+1}) -2\mu\tau(\tilde{u}_{h}^{n+1}\cdot \nabla B_{h}^{n},B_{h}^{n}) \\ = &2\tau(f^{n+1},\tilde{u}_{h}^{n+1}). \end{align} $ (3.62)

    Letting $ v_{h} = \tau u_{h}^{n+1} $ in (2.24), since $ \nabla\cdot u_{h}^{n+1} = 0 $, it follows that

    $ \begin{align} (u_{h}^{n+1},\tilde{u}_{h}^{n+1}) = (u_{h}^{n+1},u_{h}^{n+1}). \end{align} $ (3.63)

    Taking $ v_{h} = \tau u_{h}^{n} $ in (2.24), we get

    $ \begin{align} (u_{h}^{n},\tilde{u}_{h}^{n+1}) = (u_{h}^{n},u_{h}^{n+1}). \end{align} $ (3.64)

    Subtracting (3.64) from (3.63), we can obtain

    $ \begin{align} (u_{h}^{n+1}-u_{h}^{n},\tilde{u}_{h}^{n+1}) = (u_{h}^{n+1}-u_{h}^{n},u_{h}^{n+1}). \end{align} $ (3.65)

    Using $ 2(a-b, a) = \|a\|_{0}^{2}-\|b\|_{0}^{2}+\|a-b\|_{0}^{2} $, leads to

    $ \begin{align} &\|u_{h}^{n+1}\|_{0}^{2}-\|u_{h}^{n}\|_{0}^{2}+\|u_{h}^{n+1}-u_{h}^{n}\|_{0}^{2} +2\nu\tau\|\nabla\tilde{u}_{h}^{n+1}\|_{0}^{2} -2\tau(p_{h}^{n+1},\nabla \cdot \tilde{u}_{h}^{n+1}) \\ = &2\tau(f^{n+1},\tilde{u}_{h}^{n+1})+2(\hat{u}_{h}^{n}-u_{h}^{n},\tilde{u}_{h}^{n+1}) -2\mu\tau(B_{h}^{n}\cdot \nabla \tilde{u}_{h}^{n+1},B_{h}^{n+1}). \end{align} $ (3.66)

    Taking $ v_{h} = \nabla p_{h}^{n+1} $ in (2.24), we deduce

    $ \begin{align} &-2\tau(p_{h}^{n+1},\nabla\cdot \tilde{u}^{n+1}) \\ = &2\tau^{2}\|\nabla p_{h}^{n+1}\|_{0}^{2}-2\tau^{2}\|\nabla p_{h}^{n}\|_{0}^{2}+2\tau^{2}\|\nabla p_{h}^{n+1}-\nabla p_{h}^{n}\|_{0}^{2}. \end{align} $ (3.67)

    When $ m = n+1 $, letting $ \psi_{h} = 2\mu\tau B_{h}^{n+1} $ in (2.22), we can obtain

    $ \begin{align} &2\mu(B_{h}^{n+1}-B_{h}^{n}+B_{h}^{n}-\hat{B}_{h}^{n},B_{h}^{n+1})+2\mu\tau(\mbox{curl}B_{h}^{n+1},\mbox{curl} B_{h}^{n+1}) \\ &-2\mu\tau( B_{h}^{n}\cdot \nabla u_{h}^{n}, B_{h}^{n+1}) = 2\mu\tau (g^{n+1},B_{h}^{n+1}). \end{align} $ (3.68)

    Using $ 2(a-b, a) = \|a\|_{0}^{2}-\|b\|_{0}^{2}+\|a-b\|_{0}^{2} $, we have

    $ \begin{align} &\mu\|B_{h}^{n+1}\|_{0}^{2}-\mu\|B_{h}^{n}\|_{0}^{2}+\mu\|B_{h}^{n+1}-B_{h}^{n}\|_{0}^{2}+2\mu\tau\|\mbox{curl}B_{h}^{n+1}\|_{0}^{2} \\ = &2\mu\tau (g^{n+1},B_{h}^{n+1})+ 2\mu\tau( B_{h}^{n}\cdot \nabla u_{h}^{n}, B_{h}^{n+1})+2\mu(\hat{B}_{h}^{n}-B_{h}^{n},B_{h}^{n+1}). \end{align} $ (3.69)

    Taking sum of (3.66) and (3.69) yields

    $ \begin{align} &\|u_{h}^{n+1}\|_{0}^{2}-\|u_{h}^{n}\|_{0}^{2} +\mu\|B_{h}^{n+1}\|_{0}^{2}-\mu\|B_{h}^{n}\|_{0}^{2}+2\tau^{2}\|\nabla p_{h}^{n+1}\|_{0}^{2}-2\tau^{2}\|\nabla p_{h}^{n}\|_{0}^{2} +\|u_{h}^{n+1}-u_{h}^{n}\|_{0}^{2} \\ &+\mu\|B_{h}^{n+1}-B_{h}^{n}\|_{0}^{2}+2\tau^{2}\|\nabla p_{h}^{n+1}-\nabla p_{h}^{n}\|_{0}^{2} +2\nu\tau\|\nabla\tilde{u}_{h}^{n+1}\|_{0}^{2} +2\mu\tau\|\mbox{curl}B_{h}^{n+1}\|_{0}^{2} \\ = &2\tau(f^{n+1},\tilde{u}_{h}^{n+1})+2\mu\tau (g^{n+1},B_{h}^{n+1})+2(\hat{u}_{h}^{n}-u_{h}^{n},\tilde{u}_{h}^{n+1})-2\mu\tau( B^{n}\cdot \nabla \tilde{u}_{h}^{n+1}, B_{h}^{n+1}) \\ &+2\mu(\hat{B}_{h}^{n}-B_{h}^{n},B_{h}^{n+1}) +2\mu\tau( B_{h}^{n}\cdot \nabla u_{h}^{n}, B_{h}^{n+1}). \end{align} $ (3.70)

    Then, we can obtain

    $ \begin{align*} 2\tau|(f^{n+1},\tilde{u}_{h}^{n+1})| \leq &C\tau\|f^{n+1}\|_{0}\|\tilde{u}_{h}^{n+1}\|_{0} \nonumber\\ \leq &\frac{\nu\tau}{4}\|\nabla \tilde{u}_{h}^{n+1}\|_{0}^{2}+C\tau \|f^{n+1}\|_{0}^{2}, \nonumber\\ 2\mu\tau|(g^{n+1},B_{h}^{n+1})| \leq &C\tau\|g^{n+1}\|_{0}\|B_{h}^{n+1}\|_{0} \nonumber\\ \leq &\frac{\mu\tau}{4}\|{\mbox{curl}} B_{h}^{n+1}\|_{0}^{2}+C\tau \|g^{n+1}\|_{0}^{2}, \nonumber\\ 2|(\hat{u}_{h}^{n}-u_{h}^{n},\tilde{u}_{h}^{n+1})| \leq &C\tau\|\hat{u}_{h}^{n}-u_{h}^{n}\|_{6/5}\| \tilde{u}_{h}^{n+1}\|_{L^{6}} \nonumber\\ \leq &C\tau\|\nabla u_{h}^{n}\|_{L^{3}}\|u_{h}^{n}\|_{0}\|\nabla \tilde{u}_{h}^{n+1}\|_{0} \nonumber\\ \leq &\frac{\nu\tau}{4}\|\nabla \tilde{u}_{h}^{n+1}\|_{0}^{2}+C\tau \|u_{h}^{n}\|_{0}^{2}, \nonumber\\ 2\mu\tau|( B^{n}\cdot \nabla \tilde{u}_{h}^{n+1}, B_{h}^{n+1})| \leq &C\tau\|B^{n}\|_{L^{\infty}}\|\nabla \tilde{u}_{h}^{n+1}\|_{0}\| B_{h}^{n+1}\|_{0} \nonumber\\ \leq &\frac{\nu\tau}{4}\|\nabla \tilde{u}_{h}^{n+1}\|_{0}^{2}+C\tau \|B_{h}^{n+1}\|_{0}^{2}, \nonumber\\ 2\mu|(\hat{B}_{h}^{n}-B_{h}^{n},B_{h}^{n+1})| \leq &C\tau\|\hat{B}_{h}^{n}-B_{h}^{n}\|_{-1}\|B_{h}^{n+1}\|_{1} \nonumber\\ \leq &C\tau\|B_{h}^{n}\|_{0}\|B_{h}^{n}\|_{W^{1,\infty}}\|\mbox{curl}B_{h}^{n+1}\|_{0} \nonumber\\ \leq &\frac{\mu\tau}{4}\|\mbox{curl}B_{h}^{n+1}\|_{0}^{2}+C\tau \|B_{h}^{n}\|_{0}^{2}\|B_{h}^{n}\|_{W^{1,\infty}}^{2}, \nonumber\\ 2\mu\tau|( B^{n}\cdot \nabla u_{h}^{n}, B_{h}^{n+1})| \leq &C\tau\|B^{n}\|_{L^{\infty}}\|u_{h}^{n}\|_{0}\| \mbox{curl}B_{h}^{n+1}\|_{0} \nonumber\\ \leq &\frac{\mu\tau}{4}\|\mbox{curl}B_{h}^{n+1}\|_{0}^{2}+C\tau\|u_{h}^{n}\|_{0}^{2}. \end{align*} $

    Substituting these above estimates into (3.70), we obtain

    $ \begin{align} &\|u_{h}^{n+1}\|_{0}^{2}-\|u_{h}^{n}\|_{0}^{2} +\mu\|B_{h}^{n+1}\|_{0}^{2}-\mu\|B_{h}^{n}\|_{0}^{2}+\tau^{2}\|\nabla p_{h}^{n+1}\|_{0}^{2}-\tau^{2}\|\nabla p_{h}^{n}\|_{0}^{2}+\|u_{h}^{n+1}-u_{h}^{n}\|_{0}^{2} \\ &+\mu\|B_{h}^{n+1}-B_{h}^{n}\|_{0}^{2}+2\tau^2\|\nabla p_{h}^{n+1}-\nabla p_{h}^{n}\|_{0}^{2} +\nu\tau\|\nabla\tilde{u}_{h}^{n+1}\|_{0}^{2} +\mu\tau\|\mbox{curl}B_{h}^{n+1}\|_{0}^{2} \\ \leq & C\tau \|f^{n+1}\|_{0}^{2}+C\tau \|g^{n+1}\|_{0}^{2}+C\tau\|u_{h}^{n}\|_{0}^{2}+C\tau\|B_{h}^{n}\|_{0}^{2}. \end{align} $ (3.71)

    Taking sum of the (3.71) for $ n $ from $ 0 $ to $ m\leq N $ and using discrete Gronwall's inequality Lemma 2.1, we get

    $ \begin{align*} &\|u_{h}^{m+1}\|_{0}^{2}+\mu\|B_{h}^{m+1}\|_{0}^{2}+\tau^{2}\|\nabla p_{h}^{m+1}\|_{0}^{2} +\sum\limits_{n = 0}^{m}(\|u_{h}^{n+1}-u_{h}^{n}\|_{0}^{2} +\mu\|B_{h}^{n+1}-B_{h}^{n}\|_{0}^{2}) \nonumber\\ &+\tau \sum\limits_{n = 0}^m\left(\nu\|\nabla\tilde{u}_{h}^{n+1}\|_{0}^{2} +\mu\|\mbox{curl}B_{h}^{n+1}\|_{0}^{2}\right)\leq C. \end{align*} $

    Letting $ v_{h} = 2\tau\mathcal{A}u_{h}^{n+1} $ in (3.61), we obtain

    $ \begin{align} &2(u_{h}^{n+1}-u_{h}^{n}+u_{h}^{n}-\hat{u}_{h}^{n},\mathcal{A}u_{h}^{n+1}) +2\nu\tau(\mathcal{A}\tilde{u}_{h}^{n+1},\mathcal{A}u_{h}^{n+1}) \\ &+2\mu\tau(B_{h}^{n}\cdot \nabla \mathcal{A}u_{h}^{n+1},B_{h}^{n+1}) -2\mu\tau(\mathcal{A}u_{h}^{n+1}\cdot \nabla B_{h}^{n},B_{h}^{n}) \\ = &2\tau(f^{n+1},\mathcal{A}u_{h}^{n+1}). \end{align} $ (3.72)

    From (3.63), we arrive at

    $ \begin{align*} &(\mathcal{A}\tilde{u}_{h}^{n+1},\mathcal{A}u_{h}^{n+1}) = (\mathcal{A}u_{h}^{n+1},\mathcal{A}u_{h}^{n+1}),\\ &(\mathcal{A}\tilde{u}_{h}^{n+1},\mathcal{A}u_{h}^{n+1}) = \|\mathcal{A}u_{h}^{n+1}\|_{0}^{2}. \end{align*} $

    Using $ 2(a-b, a) = \|a\|_{0}^{2}-\|b\|_{0}^{2}+\|a-b\|_{0}^{2} $, leads to

    $ \begin{align} &\|u_{h}^{n+1}\|_{1}^{2}-\|u_{h}^{n}\|_{1}^{2}+\|u_{h}^{n+1}-u_{h}^{n}\|_{1}^{2}+2\nu\tau\|\mathcal{A}u_{h}^{n+1}\|_{0}^{2} \\ = &2\tau(f^{n+1},\mathcal{A}u_{h}^{n+1})+2(\hat{u}_{h}^{n}-u_{h}^{n},\mathcal{A}u_{h}^{n+1}) -2\mu\tau(B_{h}^{n}\cdot \nabla \mathcal{A}u_{h}^{n+1},B_{h}^{n+1}). \end{align} $ (3.73)

    Letting $ \psi_{h} = 2\mu\tau \mbox{curlcurl}B_{h}^{n+1} $ in (2.22), we can obtain

    $ \begin{align} &\mu\|\mbox{curl}B_{h}^{n+1}\|_{0}^{2}-\mu\|\mbox{curl}B_{h}^{n}\|_{0}^{2}+\mu\|\mbox{curl}B_{h}^{n+1}-\mbox{curl}B_{h}^{n}\|_{0}^{2} +2\mu\tau\|\mbox{curlcurl}B_{h}^{n+1}\|_{0}^{2} \\ = &2\mu\tau( g^{n+1}, \mbox{curlcurl}B_{h}^{n+1})+2\mu\tau( B_{h}^{n}\cdot \nabla u_{h}^{n}, \mbox{curlcurl}B_{h}^{n+1})+2\mu(\hat{B}_{h}^{n}-B_{h}^{n},\mbox{curlcurl}B_{h}^{n+1}). \end{align} $ (3.74)

    Taking sum of (3.73) and (3.74) yields

    $ \begin{align} &\|u_{h}^{n+1}\|_{1}^{2}-\|u_{h}^{n}\|_{1}^{2} +\mu\|\mbox{curl}B_{h}^{n+1}\|_{0}^{2}-\mu\|\mbox{curl}B_{h}^{n}\|_{0}^{2} +\|u_{h}^{n+1}-u_{h}^{n}\|_{1}^{2}+\mu\|\mbox{curl}B_{h}^{n+1}-\mbox{curl}B_{h}^{n}\|_{0}^{2} \\ &+2\nu\tau\|\mathcal{A}u_{h}^{n+1}\|_{0}^{2}+2\mu\tau\|\mbox{curlcurl}B_{h}^{n+1}\|_{0}^{2} \\ = &2\tau(f^{n+1},\mathcal{A}u_{h}^{n+1})+2(\hat{u}_{h}^{n}-u_{h}^{n},\mathcal{A}u_{h}^{n+1})+ 2\tau( g^{n+1}, \mbox{curlcurl}B_{h}^{n+1})-2\mu\tau(B_{h}^{n}\cdot \nabla \mathcal{A}u_{h}^{n+1},B_{h}^{n+1}) \\ &+2\mu\tau( B_{h}^{n}\cdot \nabla u_{h}^{n}, \mbox{curlcurl}B_{h}^{n+1}) +2\mu(\hat{B}_{h}^{n}-B_{h}^{n},\mbox{curlcurl}B_{h}^{n+1}). \end{align} $ (3.75)

    Then, we get

    $ \begin{align*} 2\tau|(f^{n+1},\mathcal{A}u_{h}^{n+1})| &\leq C\tau \|f^{n+1}\|_{0}\|\mathcal{A}u_{h}^{n+1}\|_{0} \nonumber\\ &\leq \frac{\nu\tau}{6}\|\mathcal{A}u_{h}^{n+1}\|_{0}^{2}+C\tau \|f^{n+1}\|_{0}^{2}, \nonumber\\ 2\mu\tau|( g^{n+1}, \mbox{curlcurl}B_{h}^{n+1})|&\leq C\tau \|g^{n+1}\|_{0}\|\mbox{curlcurl}B_{h}^{n+1}\|_{0} \nonumber\\ &\leq \frac{\mu\tau}{4}\|{\mbox{curl}}{\mbox{curl}} B_{h}^{n+1}\|_{0}^{2}+C\tau \|g^{n+1}\|_{0}^{2}, \nonumber\\ 2|(\hat{u}_{h}^{n}-u_{h}^{n},\mathcal{A}u_{h}^{n+1})| &\leq C\tau \|u_{h}^{n}\|_{W^{1,4}}\|u_{h}^{n}\|_{L^{4}}\|\mathcal{A}u_{h}^{n+1}\|_{0} \nonumber\\ &\leq \frac{\nu\tau}{6}\|\mathcal{A}u_{h}^{n+1}\|_{0}^{2}+C\tau\|u_{h}^{n}\|_{1}^{2}, \nonumber\\ 2\mu\tau|(B_{h}^{n}\cdot \nabla \mathcal{A}u_{h}^{n+1},B_{h}^{n+1})| &\leq C\tau \|B_{h}^{n}\|_{W^{1,\infty}}\|\mathcal{A}u_{h}^{n+1}\|_{0}\|B_{h}^{n+1}\|_{0} \nonumber\\ &\leq \frac{\nu\tau}{6}\|\mathcal{A}u_{h}^{n+1}\|_{0}^{2}+C\tau\|\mbox{curl}B_{h}^{n+1}\|_{0}^{2}, \nonumber\\ 2\mu\tau|( B_{h}^{n}\cdot \nabla u_{h}^{n}, \mbox{curlcurl}B_{h}^{n+1})| &\leq C\tau \| B_{h}^{n}\|_{L^{\infty}}\|\nabla u_{h}^{n}\|_{0}\|\mbox{curlcurl}B_{h}^{n+1}\|_{0} \nonumber\\ &\leq \frac{\mu\tau}{4}\|\mbox{curlcurl}B_{h}^{n+1}\|_{0}^{2}+C\tau\|\nabla u_{h}^{n}\|_{0}^{2}, \nonumber\\ 2\mu|(\hat{B}_{h}^{n}-B_{h}^{n},\mbox{curlcurl}B_{h}^{n+1})| &\leq C\tau \|B_{h}^{n}\|_{W^{1,4}}\|B_{h}^{n}\|_{L^{4}}\|\mbox{curlcurl}B_{h}^{n+1}\|_{0} \nonumber\\ &\leq \frac{\mu\tau}{4}\|\mbox{curlcurl}B_{h}^{n+1}\|_{0}^{2}+C\tau\|B_{h}^{n}\|_{W^{1,4}}^{2}\|B_{h}^{n}\|_{L^{4}}^{2} \nonumber\\ &\leq \frac{\mu\tau}{4}\|\mbox{curlcurl}B_{h}^{n+1}\|_{0}^{2}+C\tau\|\mbox{curl}B_{h}^{n}\|_{0}^{2}. \end{align*} $

    Substituting these above estimates into (3.75), we obtain

    $ \begin{align} &\|u_{h}^{n+1}\|_{1}^{2}-\|u_{h}^{n}\|_{1}^{2}+\mu\|\mbox{curl}B_{h}^{n+1}\|_{0}^{2}-\mu\|\mbox{curl}B_{h}^{n}\|_{0}^{2}+\|u_{h}^{n+1}-u_{h}^{n}\|_{1}^{2} +\mu\|\mbox{curl}B_{h}^{n+1}-\mbox{curl}B_{h}^{n}\|_{0}^{2} \\ &+\nu\tau\|\mathcal{A}u_{h}^{n+1}\|_{0}^{2}+\mu\tau\|\mbox{curlcurl}B_{h}^{n+1}\|_{0}^{2} \\ \leq & C\tau \|f^{n+1}\|_{0}^{2}+C\tau \|g^{n+1}\|_{0}^{2}+C\tau\|u_{h}^{n}\|_{1}^{2}+C\tau(\|\mbox{curl}B_{h}^{n+1}\|_{0}^{2}+\|\mbox{curl}B_{h}^{n}\|_{0}^{2}). \end{align} $ (3.76)

    Taking sum of the (3.76) for $ n $ from $ 0 $ to $ m\leq N $ and using discrete Gronwall's inequality Lemma 2.1, we get

    $ \begin{align*} &\|u_{h}^{m+1}\|_{1}^{2}+\mu\|\mbox{curl}B_{h}^{m+1}\|_{0}^{2} +\sum\limits_{n = 0}^{m}(\|u_{h}^{n+1}-u_{h}^{n}\|_{1}^{2} +\mu\|\mbox{curl}B_{h}^{n+1}-\mbox{curl}B_{h}^{n}\|_{0}^{2}) \nonumber\\ &+\tau \sum\limits_{n = 0}^m\left(\nu\|\mathcal{A}u_{h}^{n+1}\|_{0}^{2} +\mu\|\mbox{curlcurl}B_{h}^{n+1}\|_{0}^{2}\right)\leq C. \end{align*} $

    Then, we rewrite (3.61) and (2.22) as

    $ \begin{align} &(D_{\tau} u_{h}^{n+1},v_{h})+\nu(\nabla \tilde{u}_{h}^{n+1},\nabla v_{h}) -(P_{h}^{n+1},\nabla \cdot v_{h}) \\ = &(f^{n+1},v_{h})-\left(\frac{u_{h}^{n}-\hat{u}_{h}^{n}}{\tau},v_{h}\right)-\mu(B_{h}^{n}\cdot \nabla v_{h},B_{h}^{n+1}) +\mu(v_{h}\cdot \nabla B_{h}^{n},B_{h}^{n}), \end{align} $ (3.77)

    and

    $ \begin{align} (D_{\tau} B_{h}^{n+1},\psi_{h})+(\mbox{curl}B_{h}^{n+1},\mbox{curl}\psi_{h}) & = (g^{n+1},\psi_{h})+( B_{h}^{n}\cdot \nabla u_{h}^{n},\psi_{h})-\left(\frac{B_{h}^{n}-\hat{B}_{h}^{n}}{\tau},\psi_{h}\right). \end{align} $ (3.78)

    Subtracting (3.15) and (3.16) from (3.77) and (3.78), respectively, leads to

    $ \begin{align} &(D_{\tau} e_{h}^{n+1},v_{h})+\nu(\nabla \tilde{e}_{h}^{n+1},\nabla v_{h})-(p_{h}^{n+1}-Q_{h}^{n+1},\nabla\cdot v_{h}) \\ = &(D_{\tau} (U^{n+1}-R_{h}^{n+1}),v_{h}) + \left(\frac{\hat{u}_{h}^{n}-u_{h}^{n}}{\tau},v_{h}\right)+\left(\frac{U^{n}-\hat{U}^{n}}{\tau},v_{h}\right) -\mu(\varepsilon_{h}^{n}\cdot \nabla v_{h},B_{h}^{n+1}) \\ &-\mu((R_{0h}^{n}-B^{n})\cdot \nabla v_{h},B_{h}^{n+1})-\mu(B^{n}\cdot \nabla v_{h},\varepsilon_{h}^{n+1}) -\mu(B^{n}\cdot \nabla v_{h},R_{0h}^{n+1}-B^{n+1}) \\ &+\mu(v_{h}\cdot \nabla \varepsilon_{h}^{n},B_{h}^{n}) +\mu(v_{h}\cdot \nabla B^{n},\varepsilon_{h}^{n})-\mu(v_{h}\cdot \nabla B^{n},R_{0h}^{n}-B^{n}) \\ &+\mu(v_{h}\cdot \nabla (R_{0h}^{n}-B^{n}),B_{h}^{n}), \end{align} $ (3.79)

    and

    $ \begin{align} &(D_{\tau} \varepsilon_{h}^{n+1},\psi_{h})+(\mbox{curl}\varepsilon_{h}^{n+1},\mbox{curl}\psi_{h}^{n}) \\ = &(D_{\tau} (B^{n+1}-R_{0h}^{n+1}),\psi_{h}) + \left(\frac{B_{h}^{n}-\hat{B}_{h}^{n}}{\tau},\psi_{h}\right)+\left(\frac{\hat{B}^{n}-B^{n}}{\tau},\psi_{h}\right) +(\varepsilon_{h}^{n}\cdot \nabla u_{h}^{n},\psi_{h}) \\ &+((R_{0h}^{n}-B^{n})\cdot \nabla u_{h}^{n},\psi_{h}) +(B^{n}\cdot \nabla (R_{h}^{n}-U^{n}),\psi_{h})+(B^{n}\cdot \nabla e_{h}^{n},\psi_{h}). \end{align} $ (3.80)

    Taking $ v_{h} = 2\tau e_{h}^{n+1} $ in (2.24), we can obtain

    $ \begin{align*} &(e_{h}^{n+1},\tilde{e}_{h}^{n+1}) = (e_{h}^{n+1},e_{h}^{n+1}), \nonumber\\ &(D_{\tau}e_{h}^{n+1},\tilde{e}_{h}^{n+1}) = (D_{\tau}e_{h}^{n+1},e_{h}^{n+1}), \nonumber\\ &(\nabla e_{h}^{n+1},\nabla\tilde{e}_{h}^{n+1}) = (\nabla e_{h}^{n+1},\nabla e_{h}^{n+1}) = \|\nabla e_{h}^{n+1}\|_{0}^{2}. \end{align*} $

    Let $ \theta^{n} = U^{n}-R_{h}^{n}, \eta^{n} = B^{n}-R_{0h}^{n} $. By taking $ v_{h} = 2\tau e_{h}^{n+1} $ in (3.79), we deduce

    $ \begin{align} &\|e_{h}^{n+1}\|_{0}^{2}-\|e_{h}^{n}\|_{0}^{2}+\|e_{h}^{n+1}-e_{h}^{n}\|_{0}^{2}+2\nu\tau\|\nabla e_{h}^{n+1}\|_{0}^{2} \\ = &2\tau(D_{\tau} U^{n+1}-R_{h}(D_{\tau}U^{n+1},D_{\tau}P^{n+1}),e_{h}^{n+1}) + 2(\hat{e}_{h}^{n}-e_{h}^{n},e_{h}^{n+1}) +2(\theta^{n}-\hat{\theta}^{n},e_{h}^{n+1}) \\ &-2\mu\tau(\varepsilon_{h}^{n}\cdot \nabla e_{h}^{n+1},B_{h}^{n+1}) -2\mu\tau(\eta^{n}\cdot \nabla e_{h}^{n+1},B_{h}^{n+1}) -2\mu\tau(B^{n}\cdot \nabla e_{h}^{n+1},\varepsilon_{h}^{n+1}) \\ &-2\mu\tau(B^{n}\cdot \nabla e_{h}^{n+1},\eta^{n+1}) +2\mu\tau(e_{h}^{n+1}\cdot \nabla \varepsilon_{h}^{n},B_{h}^{n}) +2\mu\tau(e_{h}^{n+1}\cdot \nabla B^{n},\varepsilon_{h}^{n}) \\ &+2\mu\tau(e_{h}^{n+1}\cdot \nabla B^{n},\eta^{n})+2\mu\tau(e_{h}^{n+1}\cdot \nabla \eta^{n},B_{h}^{n}). \end{align} $ (3.81)

    By taking $ \psi_{h} = 2\mu\tau \varepsilon_{h}^{n+1} $ in (3.80), we have

    $ \begin{align} &\mu\|\varepsilon_{h}^{n+1}\|_{0}^{2}-\mu\|\varepsilon_{h}^{n}\|_{0}^{2}+\mu\|\varepsilon_{h}^{n+1}-\varepsilon_{h}^{n}\|_{0}^{2}+2\mu\tau\| \mbox{curl}\varepsilon_{h}^{n+1}\|_{0}^{2} \\ = &2\tau(D_{\tau} B^{n+1}-R_{0h}D_{\tau}B^{n+1}),\varepsilon_{h}^{n+1}) +2\mu(\varepsilon_{h}^{n}-\hat{\varepsilon}_{h}^{n},\varepsilon_{h}^{n+1}) +2\mu(\eta^{n}-\hat{\eta}^{n},\varepsilon_{h}^{n+1}) \\ &+2\mu\tau(\varepsilon_{h}^{n}\cdot \nabla u_{h}^{n},\varepsilon_{h}^{n+1}) -2\mu\tau(\eta^{n}\cdot \nabla u_{h}^{n},\varepsilon_{h}^{n+1}) +2\mu\tau(B^{n}\cdot \nabla (R_{h}^{n}-U^{n}),\varepsilon_{h}^{n+1}) \\ &+2\mu\tau(B^{n}\cdot \nabla e_{h}^{n},\varepsilon_{h}^{n+1}). \end{align} $ (3.82)

    Combining (3.81) and (3.82), we obtain

    $ \begin{align} &\|e_{h}^{n+1}\|_{0}^{2}-\|e_{h}^{n}\|_{0}^{2}+\mu\|\varepsilon_{h}^{n+1}\|_{0}^{2}-\mu\|\varepsilon_{h}^{n}\|_{0}^{2}+\|e_{h}^{n+1}-e_{h}^{n}\|_{0}^{2} +S\|\varepsilon_{h}^{n+1}-\varepsilon_{h}^{n}\|_{0}^{2} \\ &+2\nu\tau\|\nabla e_{h}^{n+1}\|_{0}^{2}+2\mu\tau\| \mbox{curl}\varepsilon_{h}^{n+1}\|_{0}^{2} \\ = &2\tau(D_{\tau} U^{n+1}-R_{h}(D_{\tau}U^{n+1},D_{\tau}P^{n+1}),e_{h}^{n+1}) + 2(\hat{e}_{h}^{n}-e_{h}^{n},e_{h}^{n+1}) +2(\theta^{n}-\hat{\theta}^{n},e_{h}^{n+1}) \\ &-2\mu\tau(\varepsilon_{h}^{n}\cdot \nabla e_{h}^{n+1},B_{h}^{n+1}) -2\mu\tau(\eta^{n}\cdot \nabla e_{h}^{n+1},B_{h}^{n+1}) -2\mu\tau(B^{n}\cdot \nabla e_{h}^{n+1},B_{h}^{n+1}) \\ &-2\mu\tau(B^{n}\cdot \nabla e_{h}^{n+1},\eta^{n+1}) +2\mu\tau(e_{h}^{n+1}\cdot \nabla \varepsilon_{h}^{n},B_{h}^{n}) +2\mu\tau(e_{h}^{n+1}\cdot \nabla B^{n},\varepsilon_{h}^{n}) +2\mu\tau(e_{h}^{n+1}\cdot \nabla B^{n},\eta^{n}) \\ &+2\mu\tau(e_{h}^{n+1}\cdot \nabla \eta^{n},B_{h}^{n}) +2\tau(D_{\tau} B^{n+1}-R_{0h}D_{\tau}B^{n+1}),\varepsilon_{h}^{n+1}) +2\mu(\varepsilon_{h}^{n}-\hat{\varepsilon}_{h}^{n},\varepsilon_{h}^{n+1}) \\ &+2\mu(\eta^{n}-\hat{\eta}^{n},\varepsilon_{h}^{n+1}) +2\mu\tau(\varepsilon_{h}^{n}\cdot \nabla u_{h}^{n},\varepsilon_{h}^{n+1}) -2\mu\tau(\eta^{n}\cdot \nabla u_{h}^{n},\varepsilon_{h}^{n+1}) \\ &+2\mu\tau(B^{n}\cdot \nabla (R_{h}^{n}-U^{n}),\varepsilon_{h}^{n+1}) -2\mu\tau(B^{n}\cdot \nabla e_{h}^{n},B_{h}^{n+1}). \end{align} $ (3.83)

    Due to (2.19) and Theorem 3.1, we can get $ \|\theta^{n}\|_{0}\leq Ch^{2}(\|U^{n}\|_{2}+\|P^{n}\|_{1})\leq Ch^{2} $, $ \|\eta^{n}\|_{0}\leq Ch^{2}\|B^{n}\|_{2} $. By Lemma 3.1, there holds that

    $ \begin{align*} 2\tau|(D_{\tau} U^{n+1}-R_{h}(D_{\tau}U^{n+1},D_{\tau}P^{n+1}),e_{h}^{n+1})| &\leq C\tau h^{2} \|e_{h}^{n+1}\|_{0}(\|D_{\tau}U^{n+1}\|_{2}+D_{\tau}P^{n+1}\|_{1}) \nonumber\\ &\leq \frac{\nu\tau}{20}\|\nabla e_{h}^{n+1}\|_{0}^{2}+C\tau h^{4}(\|D_{\tau}U^{n+1}\|_{2}^{2}+D_{\tau}P^{n+1}\|_{1}^{2}), \nonumber\\ 2|(\hat{e}_{h}^{n}-e_{h}^{n},e_{h}^{n+1})| &\leq C \|e_{h}^{n}-\hat{e}_{h}^{n}\|_{-1}\|\nabla e_{h}^{n+1}\|_{0} \nonumber\\ &\leq C\tau \|\nabla e_{h}^{n}\|_{0}\| u_{h}^{n}\|_{W^{1,\infty}}\|\nabla e_{h}^{n+1}\|_{0} \nonumber\\ &\leq \frac{\nu\tau}{20}\|\nabla e_{h}^{n+1}\|_{0}^{2}+C\tau\|e_{h}^{n}\|_{0}^{2}, \nonumber\\ 2|(\theta^{n}-\hat{\theta}^{n},e_{h}^{n+1})| &\leq C \|\theta^{n}-\hat{\theta}^{n}\|_{-1}\|\nabla e_{h}^{n+1}\|_{0} \nonumber\\ &\leq C\tau \|\theta^{n}\|_{0}\| u_{h}^{n}\|_{W^{1,\infty}}\|\nabla e_{h}^{n+1}\|_{0} \nonumber\\ &\leq \frac{\nu\tau}{20}\|\nabla e_{h}^{n+1}\|_{0}^{2}+C\tau\|\theta^{n}\|_{0}^{2}, \nonumber\\ 2\mu\tau|(\varepsilon_{h}^{n}\cdot \nabla e_{h}^{n+1},B_{h}^{n+1})| &\leq C\tau \|\varepsilon_{h}^{n}\|_{0}\|\nabla e_{h}^{n+1}\|_{0}\|B_{h}^{n+1}\|_{L^{\infty}} \nonumber\\ &\leq \frac{\nu\tau}{20}\|\nabla e_{h}^{n+1}\|_{0}^{2}+C\tau\|\varepsilon_{h}^{n}\|_{0}^{2} , \nonumber\\ 2\mu\tau|(\eta^{n}\cdot \nabla e_{h}^{n+1},B_{h}^{n+1})| &\leq C\tau \|\eta^{n}\|_{0}\|\nabla e_{h}^{n+1}\|_{0}\|B_{h}^{n+1}\|_{L^{\infty}} \nonumber\\ &\leq \frac{\nu\tau}{20}\|\nabla e_{h}^{n+1}\|_{0}^{2}+C\tau\|\eta^{n}\|_{0}^{2} , \nonumber\\ 2\mu\tau|(B^{n}\cdot \nabla e_{h}^{n+1},\varepsilon_{h}^{n+1})| &\leq C\tau \|B^{n}\|_{L^{\infty}}\|\nabla e_{h}^{n+1}\|_{0}\|\varepsilon_{h}^{n+1}\|_{0} \nonumber\\ &\leq \frac{\nu\tau}{20}\|\nabla e_{h}^{n+1}\|_{0}^{2}+C\tau\|\varepsilon_{h}^{n+1}\|_{0}^{2} , \nonumber\\ 2\mu\tau|(B^{n}\cdot \nabla e_{h}^{n+1},\eta^{n+1})| &\leq C\tau \|B^{n}\|_{2}\|\nabla e_{h}^{n+1}\|_{0}\|\eta^{n+1}\|_{0} \nonumber\\ &\leq \frac{\nu\tau}{20}\|\nabla e_{h}^{n+1}\|_{0}^{2}+C\tau\|\eta^{n+1}\|_{0}^{2} , \nonumber\\ 2\mu\tau|(e_{h}^{n+1}\cdot \nabla \varepsilon_{h}^{n},B_{h}^{n})| &\leq C\tau \|\nabla e_{h}^{n+1}\|_{0}\|\varepsilon_{h}^{n}\|_{0}\|B_{h}^{n}\|_{L^{\infty}} \nonumber\\ &\leq \frac{\nu\tau}{20}\|\nabla e_{h}^{n+1}\|_{0}^{2}+C\tau\|\varepsilon_{h}^{n}\|_{0}^{2} , \nonumber\\ 2\mu\tau|(e_{h}^{n+1}\cdot \nabla B^{n},\varepsilon_{h}^{n+1})| &\leq C\tau \|\nabla e_{h}^{n+1}\|_{0}\|B^{n}\|_{2}\| \varepsilon_{h}^{n}\|_{0} \nonumber\\ &\leq \frac{\nu\tau}{20}\|\nabla e_{h}^{n+1}\|_{0}^{2}+C\tau\|\varepsilon_{h}^{n}\|_{0}^{2}, \nonumber\\ 2\mu\tau|(e_{h}^{n+1}\cdot \nabla B^{n},\eta^{n})| &\leq C\tau \|\nabla e_{h}^{n+1}\|_{0}\|B^{n}\|_{2}\| \eta^{n}\|_{0} \nonumber\\ &\leq \frac{\nu\tau}{20}\|\nabla e_{h}^{n+1}\|_{0}^{2}+C\tau\|\eta^{n}\|_{0}^{2}, \nonumber\\ 2\mu\tau|(e_{h}^{n+1}\cdot \nabla \eta^{n},B_{h}^{n})| &\leq C\tau \|\nabla e_{h}^{n+1}\|_{0}\| \eta^{n}\|_{0}\|B_{h}^{n}\|_{L^{\infty}} \nonumber\\ &\leq \frac{\nu\tau}{20}\|\nabla e_{h}^{n+1}\|_{0}^{2}+C\tau\| \eta^{n}\|_{0}^{2} , \nonumber\\ 2\tau|(D_{\tau} B^{n+1}-R_{0h}D_{\tau}B^{n+1},\varepsilon_{h}^{n+1})| &\leq C\tau h^{2} \|\varepsilon_{h}^{n+1}\|_{0}\|D_{\tau} B^{n+1}\|_{2}\| \eta^{n}\|_{0} \nonumber\\ &\leq \frac{\mu\tau}{16}\|\mbox{curl}\varepsilon_{h}^{n+1}\|_{0}^{2}+C\tau h^{4}\|D_{\tau}B^{n+1}\|_{2}^{2}, \nonumber\\ 2\mu|(\varepsilon_{h}^{n}-\hat{\varepsilon}_{h}^{n},\varepsilon_{h}^{n+1})| &\leq C \|\varepsilon_{h}^{n}-\hat{\varepsilon}_{h}^{n}\|_{0}\|\varepsilon_{h}^{n+1}\|_{0} \nonumber\\ &\leq C\tau \|\mbox{curl}\varepsilon_{h}^{n}\|_{0}\| B_{h}^{n}\|_{L^{\infty}}\|\varepsilon_{h}^{n+1}\|_{0} \nonumber\\ &\leq \frac{\mu\tau}{16}\|\mbox{curl}\varepsilon_{h}^{n+1}\|_{0}^{2}+C\tau\|\varepsilon_{h}^{n+1}\|_{0}^{2}, \nonumber\\ 2\mu|(\eta^{n}-\hat{\eta}^{n},\varepsilon_{h}^{n+1})| &\leq C \|\eta^{n}-\hat{\eta}^{n}\|_{-1}\|\nabla\varepsilon_{h}^{n+1}\|_{0} \nonumber\\ &\leq C\tau \|\eta^{n}\|_{0}\| B_{h}^{n}\|_{W^{1,\infty}}\|\mbox{curl}\varepsilon_{h}^{n+1}\|_{0} \nonumber\\ &\leq \frac{\mu\tau}{16}\|\mbox{curl}\varepsilon_{h}^{n+1}\|_{0}^{2}+C\tau\|\eta^{n}\|_{0}^{2}, \nonumber\\ 2\mu\tau|(\varepsilon_{h}^{n}\cdot \nabla u_{h}^{n},\varepsilon_{h}^{n+1})| &\leq C\tau \|\varepsilon_{h}^{n}\|_{0}\|\nabla u_{h}^{n}\|_{L^{3}}\|\varepsilon_{h}^{n+1}\|_{L^{6}} \nonumber\\ &\leq \frac{\mu\tau}{16}\|\mbox{curl}\varepsilon_{h}^{n+1}\|_{0}^{2}+C\tau\|\varepsilon_{h}^{n+1}\|_{0}^{2}, \nonumber\\ 2\mu\tau|(\eta^{n}\cdot \nabla u_{h}^{n},\varepsilon_{h}^{n+1})| &\leq C\tau \|\eta^{n}\|_{0}\|\nabla u_{h}^{n}\|_{L^{3}}\|\varepsilon_{h}^{n+1}\|_{L^{6}} \nonumber\\ &\leq \frac{\mu\tau}{16}\|\mbox{curl}\varepsilon_{h}^{n+1}\|_{0}^{2}+C\tau\|\eta^{n}\|_{0}^{2}, \nonumber\\ 2\mu\tau|(B^{n}\cdot \nabla (R_{h}^{n}-U^{n}),\varepsilon_{h}^{n+1})| &\leq C\tau \|B^{n}\|_{2}\| \theta^{n}\|_{0}\|\nabla\varepsilon_{h}^{n+1}\|_{0} \nonumber\\ &\leq \frac{\mu\tau}{16}\|\mbox{curl}\varepsilon_{h}^{n+1}\|_{0}^{2}+C\tau\|\theta^{n}\|_{0}^{2}, \nonumber\\ 2\mu\tau|(B^{n}\cdot \nabla e_{h}^{n},\varepsilon_{h}^{n+1})| &\leq C\tau \|B^{n}\|_{L^{\infty}}\| e_{h}^{n}\|_{0}\|\mbox{curl}\varepsilon_{h}^{n+1}\|_{0} \nonumber\\ &\leq \frac{\mu\tau}{16}\|\mbox{curl}\varepsilon_{h}^{n+1}\|_{0}^{2}+C\tau\|e_{h}^{n}\|_{0}^{2}. \end{align*} $

    Substituting these above estimates into (3.83), we obtain

    $ \begin{align} &\|e_{h}^{n+1}\|_{0}^{2}-\|e_{h}^{n}\|_{0}^{2}+\mu\|\varepsilon_{h}^{n+1}\|_{0}^{2}-\mu\|\varepsilon_{h}^{n}\|_{0}^{2} +\|e_{h}^{n+1}-e_{h}^{n}\|_{0}^{2} +\mu\|\varepsilon_{h}^{n+1}-\varepsilon_{h}^{n}\|_{0}^{2} \\ &+\nu\tau\| \nabla e_{h}^{n+1}\|_{0}^{2}+\mu\tau\|\mbox{curl}\varepsilon_{h}^{n+1}\|_{0}^{2} \\ \leq & C\tau(\|e_{h}^{n}\|_{0}^{2}+\|\varepsilon_{h}^{n}\|_{0}^{2}+\|\varepsilon_{h}^{n+1}\|_{0}^{2}) + C\tau h^{4}. \end{align} $ (3.84)

    Taking the sum of the (3.76) for $ n $ from $ 0 $ to $ m\leq N $ and using the discrete Gronwall's inequality Lemma 2.1, we get

    $ \begin{align*} &\|e_{h}^{m+1}\|_{0}^{2}+\mu\|\varepsilon_{h}^{m+1}\|_{0}^{2} +\sum\limits_{n = 0}^{m}(\|e_{h}^{n+1}-e_{h}^{n}\|_{0}^{2} +\mu\|\varepsilon_{h}^{n+1}-\varepsilon_{h}^{n}\|_{0}^{2}) \nonumber\\ &+\tau \sum\limits_{n = 0}^m\left(\nu\|\nabla e_{h}^{n+1}\|_{0}^{2} +\mu\|\mbox{curl}\varepsilon_{h}^{n+1}\|_{0}^{2}\right)\leq C h^{4}. \end{align*} $

    Then, we can deduce

    $ \begin{align*} \max\limits_{0\leq n\leq m}\|u_{h}^{n+1}\|_{L^{\infty}} &\leq\max\limits_{0\leq n\leq m}(\|R_{h}^{n+1}\|_{L^{\infty}}+\|e_{h}^{n+1}\|_{L^{\infty}}) \nonumber\\ &\leq C\max\limits_{0\leq n\leq m}\|U^{n+1}\|_{2}+C\max\limits_{0\leq n\leq m}\|P^{n+1}\|_{1}+Ch^{-\frac{1}{2}}\max\limits_{0\leq n\leq m}\|e_{h}^{n+1}\|_{0} \leq C, \nonumber\\ \max\limits_{0\leq n\leq m}\|B_{h}^{n+1}\|_{L^{\infty}} &\leq\max\limits_{0\leq n\leq m}(\|R_{0h}^{n+1}\|_{L^{\infty}}+\|\varepsilon_{h}^{n+1}\|_{L^{\infty}}) \nonumber\\ &\leq C\max\limits_{0\leq n\leq m}\|B^{n+1}\|_{2}+Ch^{-\frac{1}{2}}\max\limits_{0\leq n\leq m}\|\varepsilon_{h}^{n+1}\|_{0} \leq C, \nonumber\\ \tau\sum\limits_{n = 0}^m\|u_{h}^{n+1}\|_{W^{1,\infty}}^{2} &\leq 2\tau\sum\limits_{n = 0}^m(\|R_{h}^{n+1}\|_{W^{1,\infty}}^{2}+\|e_{h}^{n+1}\|_{W^{1,\infty}}^{2}) \nonumber\\ &\leq C\tau\sum\limits_{n = 0}^m(\|U^{n+1}\|_{W^{1,\infty}}^{2}+\|P^{n+1}\|_{L^{\infty}}^{2}) +C\tau h^{-2}\sum\limits_{n = 0}^m\|\nabla e_{h}^{n+1}\|_{0}^{2}\leq C, \nonumber\\ \tau\sum\limits_{n = 0}^m\|B_{h}^{n+1}\|_{W^{1,\infty}}^{2} &\leq 2\tau\sum\limits_{n = 0}^m(\|R_{0h}^{n+1}\|_{W^{1,\infty}}^{2}+\|\varepsilon_{h}^{n+1}\|_{W^{1,\infty}}^{2}) \nonumber\\ &\leq C\tau\sum\limits_{n = 0}^m\|B^{n+1}\|_{W^{1,\infty}}^{2} +C\tau h^{-2}\sum\limits_{n = 0}^m\|\nabla \varepsilon_{h}^{n+1}\|_{0}^{2} \leq C. \end{align*} $

    Thus, all the results in Theorem 3.2 have been proved.

    In order to show the effect of our method, we present some numerical results. Here, we consider the

    $ \begin{align*} u_1& = (y+y^4)*cos(t),\\ u_2& = (x+x^2)*cos(t),\\ p& = (2.0*x-1.0)*(2.0*y-1.0)*cos(t),\\ B_1& = (sin(y)+y)*cos(t),\\ B_2& = (sin(x)+x^2)*cos(t). \end{align*} $

    The boundary conditions and the forcing terms are given by the exact solution. The finite element spaces are chosen as P1b-P1-P1b finite element spaces. Here, we choose $ \tau = h^2 $ and $ h = 1/n $, $ n = 8, 16, 24, 32, 40, 48 $. Different Reynolds number $ Re $ and magnetic Reynolds number $ Rm $ are chosen to show the effect of our method, the numerical results were shown in Tables 16. Here, we use the software package FreeFEM++ [32] for our program.

    Table 1.  The numerical results for $ Re = 1.0 $ and $ Rm = 1.0 $ for different $ h $ at $ T = 1.0 $.
    $ 1/h$ $ \|{\bf{u}}_h^1-{\bf{u}}\|_0$ $ \|\nabla({\bf{u}}_{h}^1-{\bf{u}}_1)\|_0$ $ \|p_h^1-p\|_0$ $ \|{\bf{B}}_h^1-{\bf{B}}\|_0$ $ \|\nabla({\bf{B}}_h^1-{\bf{B}})\|_0$ $ \|E_h^1-E\|_0$ $ |\int_{\Omega} \nabla\cdot B dx|$ $ |\int_{\Omega} \nabla\cdot {\bf{u}} dx |$
    8 0.00395939 0.104518 0.0633311 0.00146071 0.0443105 0.0402426 4.95209e-17 1.99024e-14
    16 0.00109704 0.0527177 0.0212408 0.000384435 0.0221793 0.0208612 1.41995e-16 4.15508e-15
    24 0.000473611 0.0347495 0.0118957 0.000175071 0.0148256 0.0141051 5.03032e-17 5.95751e-15
    32 0.000256132 0.0258999 0.010131 9.82405e-05 0.0111161 0.010656 3.35182e-16 7.38832e-15
    40 0.000160786 0.0206654 0.00831346 6.2778e-05 0.00889124 0.00856254 7.97451e-16 5.55468e-15
    48 0.000110796 0.0171977 0.00648101 4.35568e-05 0.00740848 0.00715659 1.00015e-16 4.15077e-15

     | Show Table
    DownLoad: CSV
    Table 2.  Convergence order for $ Re = 1.0 $ and $ Rm = 1.0 $ for different $ h $ at $ T = 1.0 $.
    $ 1/h$ $ {\bf{u}}-L^2$ $ {\bf{u}}-H_1$ $ P-L^2$ $ {\bf{B}}-L^2$ $ {\bf{B}}-H_1$
    16 1.85166 0.987389 1.57608 1.92586 0.998435
    24 2.07166 1.02792 1.42982 1.93995 0.99343
    32 2.13671 1.0217 0.5582 2.00837 1.00097
    40 2.08665 1.01181 0.88607 2.00685 1.00084
    48 2.04246 1.00748 1.36571 2.00491 1.00066

     | Show Table
    DownLoad: CSV
    Table 3.  The numerical results for $ Re = 100.0 $ and $ Rm = 100.0 $ for different $ h $ at $ T = 1.0 $.
    $ 1/h$ $ \|{\bf{u}}_h^1-{\bf{u}}\|_0$ $ \|\nabla({\bf{u}}_{h}^1-{\bf{u}}_1)\|_0$ $ \|p_h^1-p\|_0$ $ \|{\bf{B}}_h^1-{\bf{B}}\|_0$ $ \|\nabla({\bf{B}}_h^1-{\bf{B}})\|_0$ $ \|E_h^1-E\|_0$ $ |\int_{\Omega} \nabla\cdot B dx|$ $ |\int_{\Omega} \nabla\cdot {\bf{u}} dx |$
    8 0.0172667 0.279161 0.0354359 0.0127351 0.19731 0.00779509 3.41253e-17 3.17954e-14
    16 0.00233046 0.0697115 0.01409 0.00240034 0.0479792 0.00159673 9.63754e-17 1.3337e-14
    24 0.000831767 0.0398145 0.00892872 0.000977778 0.0269431 0.000711847 8.03834e-18 8.42217e-15
    32 0.000422379 0.0280313 0.00649219 0.000527044 0.0184095 0.000385869 2.36579e-16 5.31439e-15
    40 0.000256947 0.0217553 0.00511173 0.000330314 0.013926 0.000239563 7.44033e-16 2.85026e-15
    48 0.000173343 0.0178297 0.00421705 0.000226765 0.0112143 0.000162916 7.14376e-17 2.41418e-15

     | Show Table
    DownLoad: CSV
    Table 4.  Convergence order for $ Re = 100.0 $ and $ Rm = 100.0 $ for different $ h $ at $ T = 1.0 $.
    $ 1/h$ $ {\bf{u}}-L^2$ $ {\bf{u}}-H_1$ $ P-L^2$ $ {\bf{B}}-L^2$ $ {\bf{B}}-H_1$
    16 2.88931 2.00163 1.33054 2.4075 2.03998
    24 2.54095 1.38147 1.12512 2.21495 1.42315
    32 2.35555 1.21978 1.10773 2.1482 1.32391
    40 2.22742 1.13589 1.07134 2.09391 1.2508
    48 2.1588 1.09144 1.05529 2.063 1.1878

     | Show Table
    DownLoad: CSV
    Table 5.  The numerical results for $ Re = 1000.0 $ and $ Rm = 1000.0 $ for different $ h $ at $ T = 1.0 $.
    $ 1/h$ $ \|{\bf{u}}_h^1-{\bf{u}}\|_0$ $ \|\nabla({\bf{u}}_{h}^1-{\bf{u}}_1)\|_0$ $ \|p_h^1-p\|_0$ $ \|{\bf{B}}_h^1-{\bf{B}}\|_0$ $ \|\nabla({\bf{B}}_h^1-{\bf{B}})\|_0$ $ \|E_h^1-E\|_0$ $ |\int_{\Omega} \nabla\cdot B dx|$ $ |\int_{\Omega} \nabla\cdot {\bf{u}} dx |$
    8 0.0397337 1.68458 0.0330041 0.029124 1.17999 0.0213862 1.41814e-16 1.99053e-14
    16 0.00470743 0.368592 0.0137702 0.00403407 0.219747 0.00228304 7.44847e-17 1.26213e-14
    24 0.00158913 0.177215 0.00901776 0.00143967 0.106852 0.000843484 8.59434e-17 8.328e-15
    32 0.000750714 0.102493 0.00644056 0.000756826 0.0713168 0.000456685 2.75943e-16 5.37049e-15
    40 0.000430867 0.0675245 0.00509083 0.000460115 0.0510193 0.000286991 8.76007e-16 2.73806e-15
    48 0.000276193 0.0481754 0.00421193 0.000306103 0.038122 0.000195792 1.25266e-16 2.4751e-15

     | Show Table
    DownLoad: CSV
    Table 6.  Convergence order for $ Re = 1000.0 $ and $ Rm = 1000.0 $ for different $ h $ at $ T = 1.0 $.
    $ 1/h$ $ {\bf{u}}-L^2$ $ {\bf{u}}-H_1$ $ P-L^2$ $ {\bf{B}}-L^2$ $ {\bf{B}}-H_1$
    16 3.07735 2.19229 1.26109 2.8519 2.42487
    24 2.6783 1.80614 1.04402 2.54119 1.77829
    32 2.60675 1.90339 1.16997 2.23523 1.40541
    40 2.48819 1.8701 1.05392 2.23021 1.50095
    48 2.43909 1.85191 1.03949 2.23536 1.59834

     | Show Table
    DownLoad: CSV

    Tables 1 and 2 give the numerical results for $ Re = 1.0 $ and $ Rm = 1.0 $. In order to show the effect of our method for high Reynolds number, we give the numerical results for $ Re = 100.0, \ 1000.0 $ and $ Rm = 100.0, \ 1000.0 $. Tables 3 and 4 give the numerical results for $ Re = 100.0 $ and $ Rm = 100.0 $. Tables 5 and 6 give the numerical results for $ Re = 1000.0 $ and $ Rm = 1000.0 $. It shows that our method is effect for high Reynolds numbers. It shows that the errors are goes small as the space step goes small and the convergence orders are optimal. We can see that $ |\int_{\Omega} \nabla\cdot B dx| $ and $ |\int_{\Omega} \nabla\cdot {{\bf u}} dx| $ are small, which means that our method can conserve the Gauss's law very well.

    In this paper, we have given a modified characteristics projection finite element method for the unsteady incompressible magnetohydrodynamics(MHD) equations. In this method, the modified characteristics finite element method and the projection method were combined for solving the incompressible MHD equations. Both the stability and the optimal error estimates in $ L^2 $ and $ H^1 $ norms for the modified characteristics projection finite element method have been given. In order to demonstrate the effectiveness of our method, some numerical results were given at the end of the manuscript.

    The authors would like to thank the anonymous referees for their valuable suggestions and comments, which helped to improve the quality of the paper. This work is supported in part by National Natural Science Foundation of China (No. 11971152), China Postdoctoral Science Foundation (No. 2018M630907) and the Key scientific research projects Henan Colleges and Universities (No. 19B110007).

    The authors declare there is no conflict of interest in this paper.

    [1] V. M. Adamjan and D. Z. Arov, Unitary couplings of semi-unitary operators, (Russian) Mat. Issled., 1 (1966), 3–64; English translation in Amer. Math Soc. Transl. Ser., 2 (1970), p95.
    [2] V. M. Adamyan and B. S. Pavlov, Zero-radius potentials and M. G. Kreĭn's formula for generalized resolvents, (Russian)translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 149 (1986), Issled. Lineĭn. Teor. Funktsiĭ. XV, 7–23, 186; J. Soviet Math. 42 (1988), 1537–1550. doi: 10.1007/BF01665040
    [3] Scattering theory for open quantum systems with finite rank coupling. Math. Phys. Anal. Geom. (2007) 10: 313-358.
    [4] G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs volume, 186 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2013.
    [5] On the theory of self-adjoint extensions of positive definite operators. Math. Sb. N. S. (1956) 38: 431-450.
    [6] Birman, Existence conditions for wave operators, (Russian). Izv. Akad. Nauk SSSR Ser. Mat. (1963) 27: 883-906.
    [7] On the theory of wave operators and scattering operators, (Russian). Dokl. Akad. Nauk SSSR (1962) 144: 475-478.
    [8] M. Š. Birman and M. Z. Solomjak, Spectral Theory of Selfadjoint Operators in Hilbert Space, Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht, 1987. Translated from the 1980 Russian original by S. Khrushchëv and V. Peller.
    [9] Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte, (German). Acta Math. (1946) 78: 1-96.
    [10] G. Borg, Uniqueness theorems in the spectral theory of y"+(λ-q(x))y = 0, In Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, pages 276–287. Johan Grundt Tanums Forlag, Oslo, 1952.
    [11] Boundary triples and \begin{document}$M$\end{document} -functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices. J. Lond. Math. Soc. (2) (2008) 77: 700-718.
    [12] K. Cherednichenko, A. Kiselev and L. Silva, Scattering theory for non-selfadjoint extensions of symmetric operators, Preprint, arXiv: 1712.09293, 2017.
    [13] Inverse scattering on the line. Comm. Pure Appl. Math. (1979) 32: 121-251.
    [14] V. Derkach, Boundary triples, Weyl functions, and the Kreĭn formula, Operator Theory: Living Reference Work, Springer Basel, 2014, 1–33. doi: 10.1007/978-3-0348-0692-3_32-1
    [15] Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. (1991) 95: 1-95.
    [16] Isospectrality for graph Laplacians under the change of coupling at graph vertices. J. Spectr. Theory (2016) 6: 43-66.
    [17] Isospectrality for graph Laplacians under the change of coupling at graph vertices: necessary and sufficient conditions. Mathematika (2016) 62: 210-242.
    [18] On inverse topology problem for Laplace operators on graphs. Carpathian Math. Publ. (2014) 6: 230-236.
    [19] A duality between Schrödinger operators on graphs and certain Jacobi matrices. Ann. Inst. H. Poincaré Phys. Théor. (1997) 66: 359-371.
    [20] L. D. Faddeev The inverse problem in the quantum theory of scattering. II. (Russian) Current problems in mathematics, Vol. 3 (Russian), Akad. Nauk SSSR Vsesojuz. Inst. Naučn. i Tehn. Informacii, Moscow, (1974), 93–180. English translation in: J. Sov. Math., 5 (1976), 334–396.
    [21] The inverse problem in the quantum theory of scattering. J. Mathematical Phys. (1963) 4: 72-104.
    [22] On the perturbation of continuous spectra. Communications on Appl. Math. (1948) 1: 361-406.
    [23] On the determination of a differential equation from its spectral function, (Russian). Izvestiya Akad. Nauk SSSR. Ser. Mat. (1951) 15: 309-360.
    [24] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonself-Adjoint Operators, Translations of Mathematical Monographs, vol. 18 AMS, Providence, R. I., 1969.
    [25] The theory of selfadjoint extensions of symmetric operators; entire operators and boundary value problems. Ukraïn. Mat. Zh. (1994) 46: 55-62.
    [26] V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, volume 48 of Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991. Translated and revised from the 1984 Russian original. doi: 10.1007/978-94-011-3714-0
    [27] \begin{document}$R$\end{document} -functions-analytic functions mapping upper half-plane into itself. Amer. Math. Soc. Transl. Series 2 (1974) 103: 1-18.
    [28] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Second edition, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132.
    [29] The abstract theory of scattering. Rocky Mountain J. Math. (1971) 1: 127-171.
    [30] Extensions of symmetric operators and of symmetric binary relations. Mat. Zametki (1975) 17: 41-48.
    [31] Characteristic functions of symmetric operators and their extensions (in Russian). Izv. Akad. Nauk Arm. SSR Ser. Mat. (1980) 15: 219-232.
    [32] V. Kostrykin and R. Schrader, The inverse scattering problem for metric graphs and the traveling salesman problem, Preprint, arXiv: math-ph/0603010, 2006.
    [33] Kirchhoff's rule for quantum wires. J. Phys. A (1999) 32: 595-630.
    [34] Theory of self-adjoint extensions of semi-bounded Hermitian operators and applications Ⅱ, (Russian). Mat. Sb. N. S. (1947) 21: 365-404.
    [35] Solution of the inverse Sturm-Liouville problem, (Russian). Doklady Akad. Nauk SSSR (N.S.) (1951) 76: 21-24.
    [36] On the transfer function of a one-dimensional boundary problem of the second order, (Russian). Doklady Akad. Nauk SSSR (N.S.) (1953) 88: 405-408.
    [37] On determination of the potential of a particle from its S-function, (Russian). Dokl. Akad. Nauk SSSR (N.S.) (1955) 105: 433-436.
    [38] Inverse problems for Aharonov-Bohm rings. Math. Proc. Cambridge Philos. Soc. (2010) 148: 331-362.
    [39] P. D. Lax and R. S. Phillips, Scattering Theory, Pure and Applied Mathematics, 26. Academic Press, New York-London, 1967.
    [40] The inverse Sturm-Liouville problem. Mat. Tidsskr. B. (1949) 1949: 25-30.
    [41] On a certain class of linear operators in Hilbert space. Rec. Math. [Mat. Sbornik] N.S. (1946) 19: 239-262.
    [42] On reconstruction of the potential energy from phases of the scattered waves, (Russian). Dokl. Akad. Nauk SSSR (N.S.) (1955) 104: 695-698.
    [43] Absolutely continuous spectrum of a nondissipative operator, and a functional model. Ⅰ. Zap. Naučn. Sem. Leningrad. Otdel Mat. Inst. Steklov. (LOMI) (1976) 65: 90-102,204-205.
    [44] Functional model of perturbation theory and its applications to scattering theory. Trudy Mat. Inst. Steklov. (1980) 147: 86-114,203.
    [45] Nontangential boundary values of operator \begin{document}$R$\end{document} -functions in a half-plane. Algebra i Analiz (1989) 1: 197-222.
    [46] S. N. Naboko, On the conditions for existence of wave operators in the nonselfadjoint case, Wave propagation. Scattering theory, Amer. Math. Soc. Transl. Ser. 2, Amer. Math. Soc., Providence, RI, 157 (1993), 127–149. doi: 10.1090/trans2/157/09
    [47] B. S. Pavlov, Conditions for separation of the spectral components of a dissipative operator, Izv. Akad. Nauk SSSR Ser. Mat., 39 (1975), 123–148, 240. English translation in: Math. USSR Izvestija, 9 (1975), 113–137.
    [48] B. S. Pavlov, Dilation theory and the spectral analysis of non-selfadjoint differential operators, Proc. 7th Winter School, Drogobych, 1974, TsEMI, Moscow, 1976, 3–69. English translation: Transl., II Ser., Am. Math. Soc., 115 (1981), 103–142.
    [49] Selfadjoint dilation of a dissipative Schrödinger operator, and expansion in its eigenfunction, (Russian). Mat. Sb. (N.S.) (1977) 102: 511-536,631.
    [50] Conditions for the existence of the generalized wave operators. J. Mathematical Phys (1972) 13: 1490-1499.
    [51] M. Reed and B. Simon, Methods of Modern Mathematical Physics. III, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1979.
    [52] M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1985. Oxford Science Publications.
    [53] Perturbation of the continuous spectrum and unitary equivalence. Pacific J. Math. (1957) 7: 997-1010.
    [54] V. Ryzhov. Functional model of a class of non-selfadjoint extensions of symmetric operators, In Operator Theory, Analysis and Mathematical Physics, 174 of Oper. Theory Adv. Appl., Birkhäuser, Basel, (2007), 117–158. doi: 10.1007/978-3-7643-8135-6_9
    [55] K. Schmüdgen, Unbounded Self-Adjoint Operators on Hilbert Space, Volume 265 of Graduate Texts in Mathematics. Springer, Dordrecht, 2012. doi: 10.1007/978-94-007-4753-1
    [56] B. Sz.-Nagy, C. Foias, H. Bercovici and L. Kérchy, Harmonic Analysis of Operators on Hilbert Space, Universitext. Springer, New York, Second enlarged edition, 2010. doi: 10.1007/978-1-4419-6094-8
    [57] W. T. Tutte, Graph theory. With a foreword by C. St. J. A. Nash-Williams, Reprint of the 1984 original. Encyclopedia of Mathematics and its Applications, 21. Cambridge University Press, Cambridge, 2001.
    [58] On general boundary problems for elliptic differential equations (Russian). Trudy Moskov. Mat. Obšč. (1952) 86: 645-648.
    [59] Über adjungierte Funktionaloperatoren. Ann. Math. (1932) 33: 294-310.
    [60] J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, 1955. Translated by Robert T. Beyer.
    [61] R. Weder, Scattering theory for the matrix Schrödinger operator on the half line with general boundary conditions J. Math. Phys., 56 (2015), 092103, 24 pp. doi: 10.1063/1.4930293
    [62] R. Weder, Trace formulas for the matrix Schrödinger operator on the half-line with general boundary conditions J. Math. Phys., 57 (2016), 112101, 11 pp. doi: 10.1063/1.4964447
    [63] J. Weidmann, Linear Operators in Hilbert Spaces, volume 68 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1980. Translated from the German by Joseph Szücs.
    [64] D. R. Yafaev, Mathematical Scattering Theory, volume 105 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1992. General theory, Translated from the Russian by J. R. Schulenberger.
  • This article has been cited by:

    1. Ke Zhang, Haiyan Su, Xinlong Feng, Second order unconditional linear energy stable, rotational velocity correction method for unsteady incompressible magneto-hydrodynamic equations, 2022, 236, 00457930, 105300, 10.1016/j.compfluid.2021.105300
    2. Zhiyong Si, Mingyi Wang, Yunxia Wang, A projection method for the non-stationary incompressible MHD coupled with the heat equations, 2022, 428, 00963003, 127217, 10.1016/j.amc.2022.127217
    3. Huifang Zhang, Tong Zhang, Optimal error estimates of two‐level iterative finite element methods for the thermally coupled incompressible MHD with different viscosities, 2022, 0170-4214, 10.1002/mma.8800
    4. Zhiyong Si, Xiaonan Guo, Yunxia Wang, A modified characteristics projection finite element method for the non‐stationary incompressible thermally coupled MHD equations, 2023, 46, 0170-4214, 17422, 10.1002/mma.9508
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6429) PDF downloads(330) Cited by(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog