Citation: Emiliano Cristiani, Smita Sahu. On the micro-to-macro limit for first-order traffic flow models on networks[J]. Networks and Heterogeneous Media, 2016, 11(3): 395-413. doi: 10.3934/nhm.2016002
[1] | Emiliano Cristiani, Smita Sahu . On the micro-to-macro limit for first-order traffic flow models on networks. Networks and Heterogeneous Media, 2016, 11(3): 395-413. doi: 10.3934/nhm.2016002 |
[2] | Helge Holden, Nils Henrik Risebro . Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks and Heterogeneous Media, 2018, 13(3): 409-421. doi: 10.3934/nhm.2018018 |
[3] | Maria Teresa Chiri, Xiaoqian Gong, Benedetto Piccoli . Mean-field limit of a hybrid system for multi-lane car-truck traffic. Networks and Heterogeneous Media, 2023, 18(2): 723-752. doi: 10.3934/nhm.2023031 |
[4] | Emiliano Cristiani, Fabio S. Priuli . A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks. Networks and Heterogeneous Media, 2015, 10(4): 857-876. doi: 10.3934/nhm.2015.10.857 |
[5] | Xiaoqian Gong, Alexander Keimer . On the well-posedness of the "Bando-follow the leader" car following model and a time-delayed version. Networks and Heterogeneous Media, 2023, 18(2): 775-798. doi: 10.3934/nhm.2023033 |
[6] | Cécile Appert-Rolland, Pierre Degond, Sébastien Motsch . Two-way multi-lane traffic model for pedestrians in corridors. Networks and Heterogeneous Media, 2011, 6(3): 351-381. doi: 10.3934/nhm.2011.6.351 |
[7] | Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193 |
[8] | Michael Burger, Simone Göttlich, Thomas Jung . Derivation of second order traffic flow models with time delays. Networks and Heterogeneous Media, 2019, 14(2): 265-288. doi: 10.3934/nhm.2019011 |
[9] | Maya Briani, Emiliano Cristiani . An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study. Networks and Heterogeneous Media, 2014, 9(3): 519-552. doi: 10.3934/nhm.2014.9.519 |
[10] | Mohamed Benyahia, Massimiliano D. Rosini . A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks and Heterogeneous Media, 2017, 12(2): 297-317. doi: 10.3934/nhm.2017013 |
[1] |
A. Aw, A. Klar, M. Rascle and T. Materne, Derivation of continuum flow traffic models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278. doi: 10.1137/S0036139900380955
![]() |
[2] |
N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409-463. doi: 10.1137/090746677
![]() |
[3] | A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, volume 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2000. |
[4] |
G. Bretti, M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 379-394. doi: 10.3934/dcdss.2014.7.379
![]() |
[5] |
M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study, Netw. Heterog. Media, 9 (2014), 519-552. doi: 10.3934/nhm.2014.9.519
![]() |
[6] |
G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886. doi: 10.1137/S0036141004402683
![]() |
[7] |
R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow, Rend. Sem. Mat. Univ. Padova, 131 (2014), 217-235. doi: 10.4171/RSMUP/131-13
![]() |
[8] | G. Costeseque, Analyse et modelisation du trafic routier: Passage du microscopique au macroscopique, Master thesis, Ecole des Ponts Paris-Tech, 2011. |
[9] |
E. Cristiani and F. S. Priuli, A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks, Netw. Heterog. Media, 10 (2015), 857-876. doi: 10.3934/nhm.2015.10.857
![]() |
[10] |
M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Rational Mech. Anal., 217 (2015), 831-871. doi: 10.1007/s00205-015-0843-4
![]() |
[11] |
M. Fellendorf and P. Vortisch, Microscopic traffic flow simulator VISSIM, In: J. Barceló (Ed.), Fundamentals of traffic simulation, International Series in Operations Research & Management Science, 145 (2010), 63-93. doi: 10.1007/978-1-4419-6142-6_2
![]() |
[12] |
L. Fermo and A. Tosin, A fully-discrete-state kinetic theory approach to traffic flow on road networks, Math. Models Methods Appl. Sci., 25 (2015), 423-461. doi: 10.1142/S0218202515400023
![]() |
[13] |
L. Fermo and A. Tosin, Fundamental diagrams for kinetic equations of traffic flow, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 449-462. doi: 10.3934/dcdss.2014.7.449
![]() |
[14] | N. Forcadel and W. Salazar, A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow, preprint, HAL-01097085, 2014. |
[15] |
M. Garavello and P. Goatin, The Cauchy problem at a node with buffer, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1915-1938. doi: 10.3934/dcds.2012.32.1915
![]() |
[16] |
M. Garavello and B. Piccoli, Source-destination flow on a road network, Comm. Math. Sci., 3 (2005), 261-283. doi: 10.4310/CMS.2005.v3.n3.a1
![]() |
[17] | M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS Series on Applied Mathematics, 2006. |
[18] |
M. Garavello and B. Piccoli, A multibuffer model for LWR road networks, Advances in Dynamic Network Modeling in Complex Transportation Systems, Complex Networks and Dynamic Systems, 2 (2013), 143-161. doi: 10.1007/978-1-4614-6243-9_6
![]() |
[19] |
J. M. Greenberg, Extensions and amplifications of a traffic model of Aw and Rascle, SIAM J. Appl. Math., 62 (2001), 729-745. doi: 10.1137/S0036139900378657
![]() |
[20] | R. Haberman, Mathematical Models: Mechanical Vibrations, Population Dynamics and Traffic Flow, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA, 1977. |
[21] |
D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phys., 73 (2001), 1067-1141. doi: 10.1103/RevModPhys.73.1067
![]() |
[22] |
M. Herty, C. Kirchner, S. Moutari and M. Rascle, Multicommodity flows on road networks, Comm. Math. Sci., 6 (2008), 171-187. doi: 10.4310/CMS.2008.v6.n1.a8
![]() |
[23] |
M. Herty and A. Klar, Modeling, simulation, and optimization of traffic flow networks, SIAM J. Sci. Comput., 25 (2003), 1066-1087. doi: 10.1137/S106482750241459X
![]() |
[24] |
M. Herty, J.-P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media, 4 (2009), 813-826. doi: 10.3934/nhm.2009.4.813
![]() |
[25] |
H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017. doi: 10.1137/S0036141093243289
![]() |
[26] |
M. J. Lighthill and G. B. Whitham, On kinetic waves. II. Theory of traffic flows on long crowded roads, Proc. Roy. Soc. Lond. A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089
![]() |
[27] |
S. Moutari and M. Rascle, A hybrid Lagrangian model based on the Aw-Rascle traffic flow model, SIAM J. Appl. Math., 68 (2007), 413-436. doi: 10.1137/060678415
![]() |
[28] |
L. A. Pipes, An operational analysis of traffic dynamics, J. Appl. Phys., 24 (1953), 274-281. doi: 10.1063/1.1721265
![]() |
[29] |
P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
![]() |
[30] |
E. Rossi, A justification of a LWR model based on a follow the leader description, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 579-591. doi: 10.3934/dcdss.2014.7.579
![]() |
[31] |
J. Shen and X. Jin, Detailed traffic animation for urban road networks, Graphical Models, 74 (2012), 265-282. doi: 10.1016/j.gmod.2012.04.002
![]() |
1. | Felisia Angela Chiarello, Benedetto Piccoli, Andrea Tosin, A statistical mechanics approach to macroscopic limits of car-following traffic dynamics, 2021, 137, 00207462, 103806, 10.1016/j.ijnonlinmec.2021.103806 | |
2. | Jereme Chien, Wen Shen, Stationary wave profiles for nonlocal particle models of traffic flow on rough roads, 2019, 26, 1021-9722, 10.1007/s00030-019-0601-7 | |
3. | Maya Briani, Emiliano Cristiani, Paolo Ranut, Macroscopic and Multi-Scale Models for Multi-Class Vehicular Dynamics with Uneven Space Occupancy: A Case Study, 2021, 10, 2075-1680, 102, 10.3390/axioms10020102 | |
4. | Michael Herty, Elisa Iacomini, Uncertainty quantification in hierarchical vehicular flow models, 2022, 15, 1937-5093, 239, 10.3934/krm.2022006 | |
5. | Felisia Angela Chiarello, Benedetto Piccoli, Andrea Tosin, Multiscale Control of Generic Second Order Traffic Models by Driver-Assist Vehicles, 2021, 19, 1540-3459, 589, 10.1137/20M1360128 | |
6. | Mauro Garavello, Benedetto Piccoli, Boundary coupling of microscopic and first order macroscopic traffic models, 2017, 24, 1021-9722, 10.1007/s00030-017-0467-5 | |
7. | Emiliano Cristiani, Maria Cristina Saladino, Comparing comparisons between vehicular traffic states in microscopic and macroscopic first-order models, 2019, 42, 01704214, 918, 10.1002/mma.5395 | |
8. | R. Borsche, A. Meurer, Microscopic and macroscopic models for coupled car traffic and pedestrian flow, 2019, 348, 03770427, 356, 10.1016/j.cam.2018.08.037 | |
9. | Fabio Camilli, Raul De Maio, Andrea Tosin, Transport of measures on networks, 2017, 12, 1556-181X, 191, 10.3934/nhm.2017008 | |
10. | Helge Holden, Nils Henrik Risebro, The continuum limit of Follow-the-Leader models — a short proof, 2018, 38, 1553-5231, 715, 10.3934/dcds.2018031 | |
11. | Nicolas Forcadel, Wilfredo Salazar, Homogenization of a discrete model for a bifurcation and application to traffic flow, 2020, 136, 00217824, 356, 10.1016/j.matpur.2019.12.004 | |
12. | Rinaldo M. Colombo, Helge Holden, Francesca Marcellini, On the Microscopic Modeling of Vehicular Traffic on General Networks, 2020, 80, 0036-1399, 1377, 10.1137/19M1270896 | |
13. | Xuelian Liu, Huazhi Yuan, Jie Hu, Xinlong Jiao, Single-Point Adaptive Control Method for Urban Mixed Traffic Flow, 2020, 2020, 0197-6729, 1, 10.1155/2020/8827824 | |
14. | Francesca Marcellini, The Follow-The-Leader model without a leader: An infinite-dimensional Cauchy problem, 2021, 495, 0022247X, 124664, 10.1016/j.jmaa.2020.124664 | |
15. |
Othmane Jerhaoui, Hasnaa Zidani,
Viscosity Solutions of Hamilton-Jacobi Equations in Proper CAT(0) Spaces,
2024,
34,
1050-6926,
10.1007/s12220-023-01484-7
|
|
16. | Helge Holden, Nils Henrik Risebro, The continuum limit of non-local follow-the-leader models, 2024, 58, 2822-7840, 1523, 10.1051/m2an/2024054 | |
17. | Velizara Pencheva, Asen Asenov, Dimitar Grozev, Ivan Beloev, Pavel Stoyanov, Kremena Mineva, 2024, 3064, 0094-243X, 070002, 10.1063/5.0202663 | |
18. | P. Cardaliaguet, N. Forcadel, Microscopic Derivation of a Traffic Flow Model with a Bifurcation, 2024, 248, 0003-9527, 10.1007/s00205-023-01948-8 |