Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/BasicLatin.js

On the micro-to-macro limit for first-order traffic flow models on networks

  • Received: 01 May 2015 Revised: 01 August 2015
  • Primary: 35L65; Secondary: 90B20, 35R02, 34B45.

  • Connections between microscopic follow-the-leader and macroscopic fluid-dynamics traffic flow models are already well understood in the case of vehicles moving on a single road. Analogous connections in the case of road networks are instead lacking. This is probably due to the fact that macroscopic traffic models on networks are in general ill-posed, since the conservation of the mass is not sufficient alone to characterize a unique solution at junctions. This ambiguity makes more difficult to find the right limit of the microscopic model, which, in turn, can be defined in different ways near the junctions. In this paper we show that a natural extension of the first-order follow-the-leader model on networks corresponds, as the number of vehicles tends to infinity, to the LWR-based multi-path model introduced in [4,5].

    Citation: Emiliano Cristiani, Smita Sahu. On the micro-to-macro limit for first-order traffic flow models on networks[J]. Networks and Heterogeneous Media, 2016, 11(3): 395-413. doi: 10.3934/nhm.2016002

    Related Papers:

    [1] Emiliano Cristiani, Smita Sahu . On the micro-to-macro limit for first-order traffic flow models on networks. Networks and Heterogeneous Media, 2016, 11(3): 395-413. doi: 10.3934/nhm.2016002
    [2] Helge Holden, Nils Henrik Risebro . Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks and Heterogeneous Media, 2018, 13(3): 409-421. doi: 10.3934/nhm.2018018
    [3] Maria Teresa Chiri, Xiaoqian Gong, Benedetto Piccoli . Mean-field limit of a hybrid system for multi-lane car-truck traffic. Networks and Heterogeneous Media, 2023, 18(2): 723-752. doi: 10.3934/nhm.2023031
    [4] Emiliano Cristiani, Fabio S. Priuli . A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks. Networks and Heterogeneous Media, 2015, 10(4): 857-876. doi: 10.3934/nhm.2015.10.857
    [5] Xiaoqian Gong, Alexander Keimer . On the well-posedness of the "Bando-follow the leader" car following model and a time-delayed version. Networks and Heterogeneous Media, 2023, 18(2): 775-798. doi: 10.3934/nhm.2023033
    [6] Cécile Appert-Rolland, Pierre Degond, Sébastien Motsch . Two-way multi-lane traffic model for pedestrians in corridors. Networks and Heterogeneous Media, 2011, 6(3): 351-381. doi: 10.3934/nhm.2011.6.351
    [7] Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193
    [8] Michael Burger, Simone Göttlich, Thomas Jung . Derivation of second order traffic flow models with time delays. Networks and Heterogeneous Media, 2019, 14(2): 265-288. doi: 10.3934/nhm.2019011
    [9] Maya Briani, Emiliano Cristiani . An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study. Networks and Heterogeneous Media, 2014, 9(3): 519-552. doi: 10.3934/nhm.2014.9.519
    [10] Mohamed Benyahia, Massimiliano D. Rosini . A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks and Heterogeneous Media, 2017, 12(2): 297-317. doi: 10.3934/nhm.2017013
  • Connections between microscopic follow-the-leader and macroscopic fluid-dynamics traffic flow models are already well understood in the case of vehicles moving on a single road. Analogous connections in the case of road networks are instead lacking. This is probably due to the fact that macroscopic traffic models on networks are in general ill-posed, since the conservation of the mass is not sufficient alone to characterize a unique solution at junctions. This ambiguity makes more difficult to find the right limit of the microscopic model, which, in turn, can be defined in different ways near the junctions. In this paper we show that a natural extension of the first-order follow-the-leader model on networks corresponds, as the number of vehicles tends to infinity, to the LWR-based multi-path model introduced in [4,5].


    [1] A. Aw, A. Klar, M. Rascle and T. Materne, Derivation of continuum flow traffic models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278. doi: 10.1137/S0036139900380955
    [2] N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409-463. doi: 10.1137/090746677
    [3] A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, volume 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2000.
    [4] G. Bretti, M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 379-394. doi: 10.3934/dcdss.2014.7.379
    [5] M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study, Netw. Heterog. Media, 9 (2014), 519-552. doi: 10.3934/nhm.2014.9.519
    [6] G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886. doi: 10.1137/S0036141004402683
    [7] R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow, Rend. Sem. Mat. Univ. Padova, 131 (2014), 217-235. doi: 10.4171/RSMUP/131-13
    [8] G. Costeseque, Analyse et modelisation du trafic routier: Passage du microscopique au macroscopique, Master thesis, Ecole des Ponts Paris-Tech, 2011.
    [9] E. Cristiani and F. S. Priuli, A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks, Netw. Heterog. Media, 10 (2015), 857-876. doi: 10.3934/nhm.2015.10.857
    [10] M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Rational Mech. Anal., 217 (2015), 831-871. doi: 10.1007/s00205-015-0843-4
    [11] M. Fellendorf and P. Vortisch, Microscopic traffic flow simulator VISSIM, In: J. Barceló (Ed.), Fundamentals of traffic simulation, International Series in Operations Research & Management Science, 145 (2010), 63-93. doi: 10.1007/978-1-4419-6142-6_2
    [12] L. Fermo and A. Tosin, A fully-discrete-state kinetic theory approach to traffic flow on road networks, Math. Models Methods Appl. Sci., 25 (2015), 423-461. doi: 10.1142/S0218202515400023
    [13] L. Fermo and A. Tosin, Fundamental diagrams for kinetic equations of traffic flow, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 449-462. doi: 10.3934/dcdss.2014.7.449
    [14] N. Forcadel and W. Salazar, A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow, preprint, HAL-01097085, 2014.
    [15] M. Garavello and P. Goatin, The Cauchy problem at a node with buffer, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1915-1938. doi: 10.3934/dcds.2012.32.1915
    [16] M. Garavello and B. Piccoli, Source-destination flow on a road network, Comm. Math. Sci., 3 (2005), 261-283. doi: 10.4310/CMS.2005.v3.n3.a1
    [17] M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS Series on Applied Mathematics, 2006.
    [18] M. Garavello and B. Piccoli, A multibuffer model for LWR road networks, Advances in Dynamic Network Modeling in Complex Transportation Systems, Complex Networks and Dynamic Systems, 2 (2013), 143-161. doi: 10.1007/978-1-4614-6243-9_6
    [19] J. M. Greenberg, Extensions and amplifications of a traffic model of Aw and Rascle, SIAM J. Appl. Math., 62 (2001), 729-745. doi: 10.1137/S0036139900378657
    [20] R. Haberman, Mathematical Models: Mechanical Vibrations, Population Dynamics and Traffic Flow, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA, 1977.
    [21] D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phys., 73 (2001), 1067-1141. doi: 10.1103/RevModPhys.73.1067
    [22] M. Herty, C. Kirchner, S. Moutari and M. Rascle, Multicommodity flows on road networks, Comm. Math. Sci., 6 (2008), 171-187. doi: 10.4310/CMS.2008.v6.n1.a8
    [23] M. Herty and A. Klar, Modeling, simulation, and optimization of traffic flow networks, SIAM J. Sci. Comput., 25 (2003), 1066-1087. doi: 10.1137/S106482750241459X
    [24] M. Herty, J.-P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media, 4 (2009), 813-826. doi: 10.3934/nhm.2009.4.813
    [25] H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017. doi: 10.1137/S0036141093243289
    [26] M. J. Lighthill and G. B. Whitham, On kinetic waves. II. Theory of traffic flows on long crowded roads, Proc. Roy. Soc. Lond. A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089
    [27] S. Moutari and M. Rascle, A hybrid Lagrangian model based on the Aw-Rascle traffic flow model, SIAM J. Appl. Math., 68 (2007), 413-436. doi: 10.1137/060678415
    [28] L. A. Pipes, An operational analysis of traffic dynamics, J. Appl. Phys., 24 (1953), 274-281. doi: 10.1063/1.1721265
    [29] P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
    [30] E. Rossi, A justification of a LWR model based on a follow the leader description, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 579-591. doi: 10.3934/dcdss.2014.7.579
    [31] J. Shen and X. Jin, Detailed traffic animation for urban road networks, Graphical Models, 74 (2012), 265-282. doi: 10.1016/j.gmod.2012.04.002
  • This article has been cited by:

    1. Felisia Angela Chiarello, Benedetto Piccoli, Andrea Tosin, A statistical mechanics approach to macroscopic limits of car-following traffic dynamics, 2021, 137, 00207462, 103806, 10.1016/j.ijnonlinmec.2021.103806
    2. Jereme Chien, Wen Shen, Stationary wave profiles for nonlocal particle models of traffic flow on rough roads, 2019, 26, 1021-9722, 10.1007/s00030-019-0601-7
    3. Maya Briani, Emiliano Cristiani, Paolo Ranut, Macroscopic and Multi-Scale Models for Multi-Class Vehicular Dynamics with Uneven Space Occupancy: A Case Study, 2021, 10, 2075-1680, 102, 10.3390/axioms10020102
    4. Michael Herty, Elisa Iacomini, Uncertainty quantification in hierarchical vehicular flow models, 2022, 15, 1937-5093, 239, 10.3934/krm.2022006
    5. Felisia Angela Chiarello, Benedetto Piccoli, Andrea Tosin, Multiscale Control of Generic Second Order Traffic Models by Driver-Assist Vehicles, 2021, 19, 1540-3459, 589, 10.1137/20M1360128
    6. Mauro Garavello, Benedetto Piccoli, Boundary coupling of microscopic and first order macroscopic traffic models, 2017, 24, 1021-9722, 10.1007/s00030-017-0467-5
    7. Emiliano Cristiani, Maria Cristina Saladino, Comparing comparisons between vehicular traffic states in microscopic and macroscopic first-order models, 2019, 42, 01704214, 918, 10.1002/mma.5395
    8. R. Borsche, A. Meurer, Microscopic and macroscopic models for coupled car traffic and pedestrian flow, 2019, 348, 03770427, 356, 10.1016/j.cam.2018.08.037
    9. Fabio Camilli, Raul De Maio, Andrea Tosin, Transport of measures on networks, 2017, 12, 1556-181X, 191, 10.3934/nhm.2017008
    10. Helge Holden, Nils Henrik Risebro, The continuum limit of Follow-the-Leader models — a short proof, 2018, 38, 1553-5231, 715, 10.3934/dcds.2018031
    11. Nicolas Forcadel, Wilfredo Salazar, Homogenization of a discrete model for a bifurcation and application to traffic flow, 2020, 136, 00217824, 356, 10.1016/j.matpur.2019.12.004
    12. Rinaldo M. Colombo, Helge Holden, Francesca Marcellini, On the Microscopic Modeling of Vehicular Traffic on General Networks, 2020, 80, 0036-1399, 1377, 10.1137/19M1270896
    13. Xuelian Liu, Huazhi Yuan, Jie Hu, Xinlong Jiao, Single-Point Adaptive Control Method for Urban Mixed Traffic Flow, 2020, 2020, 0197-6729, 1, 10.1155/2020/8827824
    14. Francesca Marcellini, The Follow-The-Leader model without a leader: An infinite-dimensional Cauchy problem, 2021, 495, 0022247X, 124664, 10.1016/j.jmaa.2020.124664
    15. Othmane Jerhaoui, Hasnaa Zidani, Viscosity Solutions of Hamilton-Jacobi Equations in Proper CAT(0)
    Spaces, 2024, 34, 1050-6926, 10.1007/s12220-023-01484-7
    16. Helge Holden, Nils Henrik Risebro, The continuum limit of non-local follow-the-leader models, 2024, 58, 2822-7840, 1523, 10.1051/m2an/2024054
    17. Velizara Pencheva, Asen Asenov, Dimitar Grozev, Ivan Beloev, Pavel Stoyanov, Kremena Mineva, 2024, 3064, 0094-243X, 070002, 10.1063/5.0202663
    18. P. Cardaliaguet, N. Forcadel, Microscopic Derivation of a Traffic Flow Model with a Bifurcation, 2024, 248, 0003-9527, 10.1007/s00205-023-01948-8
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5029) PDF downloads(200) Cited by(18)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog