Citation: Dong Li, Tong Li. Shock formation in a traffic flow model with Arrhenius look-ahead dynamics[J]. Networks and Heterogeneous Media, 2011, 6(4): 681-694. doi: 10.3934/nhm.2011.6.681
[1] | Dong Li, Tong Li . Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2011, 6(4): 681-694. doi: 10.3934/nhm.2011.6.681 |
[2] | Tong Li . Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8(3): 773-781. doi: 10.3934/nhm.2013.8.773 |
[3] | Alexander Kurganov, Anthony Polizzi . Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2009, 4(3): 431-451. doi: 10.3934/nhm.2009.4.431 |
[4] | Xiaoqian Gong, Alexander Keimer . On the well-posedness of the "Bando-follow the leader" car following model and a time-delayed version. Networks and Heterogeneous Media, 2023, 18(2): 775-798. doi: 10.3934/nhm.2023033 |
[5] | Clément Cancès . On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Networks and Heterogeneous Media, 2010, 5(3): 635-647. doi: 10.3934/nhm.2010.5.635 |
[6] | Wen Shen . Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14(4): 709-732. doi: 10.3934/nhm.2019028 |
[7] | Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040 |
[8] | Wen Shen . Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition. Networks and Heterogeneous Media, 2018, 13(3): 449-478. doi: 10.3934/nhm.2018020 |
[9] | Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel . Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks and Heterogeneous Media, 2013, 8(3): 783-802. doi: 10.3934/nhm.2013.8.783 |
[10] | Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193 |
[1] |
M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035-1042. doi: 10.1103/PhysRevE.51.1035
![]() |
[2] |
D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phy., 73 (2001), 1067-1141. doi: 10.1103/RevModPhys.73.1067
![]() |
[3] |
W. L. Jin and H. M. Zhang, The formation and structure of vehicle clusters in the Payne-Whitham traffic flow model, Transportation Research, B., 37 (2003), 207-223. doi: 10.1016/S0191-2615(02)00008-5
![]() |
[4] |
B. S. Kerner and P. Konhäuser, Structure and parameters of clusters in traffic flow, Physical Review E, 50 (1994), 54-83. doi: 10.1103/PhysRevE.50.54
![]() |
[5] |
A. Klar and R. Wegener, Kinetic derivation of macroscopic anticipation models for vehicular traffic, SIAM J. Appl. Math., 60 (2000), 1749-1766. doi: 10.1137/S0036139999356181
![]() |
[6] |
A. Kurganov and A. Polizzi, Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics, Netw. Heterog. Media, 4 (2009), 431-451. doi: 10.3934/nhm.2009.4.431
![]() |
[7] | H. Y. Lee, H.-W. Lee and D. Kim, Steady-state solutions of hydrodynamic traffic models, Phys. Rev. E, 69 (2004), 016118-1-016118-7. |
[8] |
T. Li, Nonlinear dynamics of traffic jams, Physica D, 207 (2005), 41-51. doi: 10.1016/j.physd.2005.05.011
![]() |
[9] |
T. Li, Stability of traveling waves in quasi-linear hyperbolic systems with relaxation and diffusion, SIAM J. Math. Anal., 40 (2008), 1058-1075. doi: 10.1137/070690638
![]() |
[10] | A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow," Cambridge Univ. Press, 2002. |
[11] | M. J. Lighthill and G. B. Whitham, On kinematic waves: II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc., London, Ser. A, 229 (1955), 317-345. |
[12] |
T. Nagatani, The physics of traffic jams, Rep. Prog. Phys., 65 (2002), 1331-1386. doi: 10.1088/0034-4885/65/9/203
![]() |
[13] |
K. Nagel, Particle hopping models and traffic flow theory, Phys. Rev. E, 53 (1996), 4655-4672. doi: 10.1103/PhysRevE.53.4655
![]() |
[14] | I. Prigogine and R. Herman, "Kinetic Theory of Vehicular Traffic," American Elsevier Publishing Company Inc., New York, 1971. |
[15] |
P. I. Richards, Shock waves on highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
![]() |
[16] |
A. Sopasakis and M. Katsoulakis, Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics, SIAM J. Appl. Math., 6 (2006), 921-944. doi: 10.1137/040617790
![]() |
[17] | G. B. Whitham, "Linear and Nonlinear Waves," Wiley, New York, 1974. |
1. | Felisia Angela Chiarello, Paola Goatin, Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, 2018, 52, 0764-583X, 163, 10.1051/m2an/2017066 | |
2. | Felisia Angela Chiarello, 2021, Chapter 5, 978-3-030-66559-3, 79, 10.1007/978-3-030-66560-9_5 | |
3. | Giuseppe Maria Coclite, Francesco Gargano, Vincenzo Sciacca, Up-wind difference approximation and singularity formation for a slow erosion model, 2020, 54, 0764-583X, 465, 10.1051/m2an/2019068 | |
4. | Yongki Lee, Hailiang Liu, Threshold for shock formation in the hyperbolic Keller–Segel model, 2015, 50, 08939659, 56, 10.1016/j.aml.2015.06.001 | |
5. | Iasson Karafyllis, Dionysis Theodosis, Markos Papageorgiou, 2020, Using Nudging for the Control of a Non-Local PDE Traffic Flow Model, 978-1-7281-4149-7, 1, 10.1109/ITSC45102.2020.9294264 | |
6. | Iasson Karafyllis, Dionysios Theodosis, Markos Papageorgiou, Analysis and control of a non-local PDE traffic flow model, 2022, 95, 0020-7179, 660, 10.1080/00207179.2020.1808902 | |
7. | Gianluca Crippa, Elio Marconi, Laura V. Spinolo, Maria Colombo, Local limit of nonlocal traffic models: Convergence results and total variation blow-up, 2021, 38, 0294-1449, 1653, 10.1016/j.anihpc.2020.12.002 | |
8. | Yongki Lee, Thresholds for shock formation in traffic flow models with nonlocal-concave-convex flux, 2019, 266, 00220396, 580, 10.1016/j.jde.2018.07.048 | |
9. | Yongki Lee, Hailiang Liu, Thresholds for shock formation in traffic flow models with Arrhenius look-ahead dynamics, 2015, 35, 1553-5231, 323, 10.3934/dcds.2015.35.323 | |
10. | Alexander Keimer, Lukas Pflug, Michele Spinola, Nonlocal Scalar Conservation Laws on Bounded Domains and Applications in Traffic Flow, 2018, 50, 0036-1410, 6271, 10.1137/18M119817X | |
11. | R.M. Colombo, G. Guerra, M. Herty, F. Marcellini, A hyperbolic model for the laser cutting process, 2013, 37, 0307904X, 7810, 10.1016/j.apm.2013.02.031 | |
12. | Tong Li, Qualitative analysis of some PDE models of traffic flow, 2013, 8, 1556-181X, 773, 10.3934/nhm.2013.8.773 | |
13. | Yongki Lee, Wave breaking in a class of non-local conservation laws, 2020, 269, 00220396, 8838, 10.1016/j.jde.2020.06.035 | |
14. | Alexander Keimer, Lukas Pflug, On approximation of local conservation laws by nonlocal conservation laws, 2019, 475, 0022247X, 1927, 10.1016/j.jmaa.2019.03.063 | |
15. | Alexander Keimer, Lukas Pflug, 2023, 15708659, 10.1016/bs.hna.2022.11.001 | |
16. | Oluwaseun Farotimi, Kuppalapalle Vajravelu, Formulation of a maximum principle satisfying a numerical scheme for traffic flow models, 2020, 1, 2662-2963, 10.1007/s42985-020-00022-2 | |
17. | Paola Goatin, Sheila Scialanga, Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, 2016, 11, 1556-1801, 107, 10.3934/nhm.2016.11.107 | |
18. | Saeed Mohammadian, Zuduo Zheng, Md. Mazharul Haque, Ashish Bhaskar, Continuum modeling of freeway traffic flows: State-of-the-art, challenges and future directions in the era of connected and automated vehicles, 2023, 3, 27724247, 100107, 10.1016/j.commtr.2023.100107 | |
19. | Said Belkadi, Mohamed Atounti, A class of central unstaggered schemes for nonlocal conservation laws: Applications to traffic flow models, 2024, 42, 2175-1188, 1, 10.5269/bspm.63895 | |
20. | Yi Hu, Yongki Lee, Shijun Zheng, 2024, Chapter 13, 978-3-031-69709-8, 301, 10.1007/978-3-031-69710-4_13 | |
21. | Alexander Keimer, Lukas Pflug, Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity, 2023, 361, 1778-3569, 1723, 10.5802/crmath.490 |