Shock formation in a traffic flow model with Arrhenius look-ahead dynamics

  • Received: 01 January 2011 Revised: 01 October 2011
  • Primary: 35B44, 35L65, 35L67, 35Q35, 76L05, 90B20.

  • We consider a nonlocal traffic flow model with Arrhenius look-ahead dynamics. We provide a complete local theory and give the blowup alternative of solutions to the conservation law with a nonlocal flux. We show that the finite time blowup of solutions must occur at the level of the first order derivative of the solution. Furthermore, we prove that finite time singularities do occur for several types of physical initial data by analyzing the solutions on different characteristic lines. These results are new and are consistent with the blowups observed in previous numerical simulations on the nonlocal traffic flow model [6].

    Citation: Dong Li, Tong Li. Shock formation in a traffic flow model with Arrhenius look-ahead dynamics[J]. Networks and Heterogeneous Media, 2011, 6(4): 681-694. doi: 10.3934/nhm.2011.6.681

    Related Papers:

    [1] Dong Li, Tong Li . Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2011, 6(4): 681-694. doi: 10.3934/nhm.2011.6.681
    [2] Tong Li . Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8(3): 773-781. doi: 10.3934/nhm.2013.8.773
    [3] Alexander Kurganov, Anthony Polizzi . Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2009, 4(3): 431-451. doi: 10.3934/nhm.2009.4.431
    [4] Xiaoqian Gong, Alexander Keimer . On the well-posedness of the "Bando-follow the leader" car following model and a time-delayed version. Networks and Heterogeneous Media, 2023, 18(2): 775-798. doi: 10.3934/nhm.2023033
    [5] Clément Cancès . On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Networks and Heterogeneous Media, 2010, 5(3): 635-647. doi: 10.3934/nhm.2010.5.635
    [6] Wen Shen . Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14(4): 709-732. doi: 10.3934/nhm.2019028
    [7] Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040
    [8] Wen Shen . Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition. Networks and Heterogeneous Media, 2018, 13(3): 449-478. doi: 10.3934/nhm.2018020
    [9] Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel . Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks and Heterogeneous Media, 2013, 8(3): 783-802. doi: 10.3934/nhm.2013.8.783
    [10] Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193
  • We consider a nonlocal traffic flow model with Arrhenius look-ahead dynamics. We provide a complete local theory and give the blowup alternative of solutions to the conservation law with a nonlocal flux. We show that the finite time blowup of solutions must occur at the level of the first order derivative of the solution. Furthermore, we prove that finite time singularities do occur for several types of physical initial data by analyzing the solutions on different characteristic lines. These results are new and are consistent with the blowups observed in previous numerical simulations on the nonlocal traffic flow model [6].


    [1] M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035-1042. doi: 10.1103/PhysRevE.51.1035
    [2] D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phy., 73 (2001), 1067-1141. doi: 10.1103/RevModPhys.73.1067
    [3] W. L. Jin and H. M. Zhang, The formation and structure of vehicle clusters in the Payne-Whitham traffic flow model, Transportation Research, B., 37 (2003), 207-223. doi: 10.1016/S0191-2615(02)00008-5
    [4] B. S. Kerner and P. Konhäuser, Structure and parameters of clusters in traffic flow, Physical Review E, 50 (1994), 54-83. doi: 10.1103/PhysRevE.50.54
    [5] A. Klar and R. Wegener, Kinetic derivation of macroscopic anticipation models for vehicular traffic, SIAM J. Appl. Math., 60 (2000), 1749-1766. doi: 10.1137/S0036139999356181
    [6] A. Kurganov and A. Polizzi, Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics, Netw. Heterog. Media, 4 (2009), 431-451. doi: 10.3934/nhm.2009.4.431
    [7] H. Y. Lee, H.-W. Lee and D. Kim, Steady-state solutions of hydrodynamic traffic models, Phys. Rev. E, 69 (2004), 016118-1-016118-7.
    [8] T. Li, Nonlinear dynamics of traffic jams, Physica D, 207 (2005), 41-51. doi: 10.1016/j.physd.2005.05.011
    [9] T. Li, Stability of traveling waves in quasi-linear hyperbolic systems with relaxation and diffusion, SIAM J. Math. Anal., 40 (2008), 1058-1075. doi: 10.1137/070690638
    [10] A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow," Cambridge Univ. Press, 2002.
    [11] M. J. Lighthill and G. B. Whitham, On kinematic waves: II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc., London, Ser. A, 229 (1955), 317-345.
    [12] T. Nagatani, The physics of traffic jams, Rep. Prog. Phys., 65 (2002), 1331-1386. doi: 10.1088/0034-4885/65/9/203
    [13] K. Nagel, Particle hopping models and traffic flow theory, Phys. Rev. E, 53 (1996), 4655-4672. doi: 10.1103/PhysRevE.53.4655
    [14] I. Prigogine and R. Herman, "Kinetic Theory of Vehicular Traffic," American Elsevier Publishing Company Inc., New York, 1971.
    [15] P. I. Richards, Shock waves on highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
    [16] A. Sopasakis and M. Katsoulakis, Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics, SIAM J. Appl. Math., 6 (2006), 921-944. doi: 10.1137/040617790
    [17] G. B. Whitham, "Linear and Nonlinear Waves," Wiley, New York, 1974.
  • This article has been cited by:

    1. Felisia Angela Chiarello, Paola Goatin, Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, 2018, 52, 0764-583X, 163, 10.1051/m2an/2017066
    2. Felisia Angela Chiarello, 2021, Chapter 5, 978-3-030-66559-3, 79, 10.1007/978-3-030-66560-9_5
    3. Giuseppe Maria Coclite, Francesco Gargano, Vincenzo Sciacca, Up-wind difference approximation and singularity formation for a slow erosion model, 2020, 54, 0764-583X, 465, 10.1051/m2an/2019068
    4. Yongki Lee, Hailiang Liu, Threshold for shock formation in the hyperbolic Keller–Segel model, 2015, 50, 08939659, 56, 10.1016/j.aml.2015.06.001
    5. Iasson Karafyllis, Dionysis Theodosis, Markos Papageorgiou, 2020, Using Nudging for the Control of a Non-Local PDE Traffic Flow Model, 978-1-7281-4149-7, 1, 10.1109/ITSC45102.2020.9294264
    6. Iasson Karafyllis, Dionysios Theodosis, Markos Papageorgiou, Analysis and control of a non-local PDE traffic flow model, 2022, 95, 0020-7179, 660, 10.1080/00207179.2020.1808902
    7. Gianluca Crippa, Elio Marconi, Laura V. Spinolo, Maria Colombo, Local limit of nonlocal traffic models: Convergence results and total variation blow-up, 2021, 38, 0294-1449, 1653, 10.1016/j.anihpc.2020.12.002
    8. Yongki Lee, Thresholds for shock formation in traffic flow models with nonlocal-concave-convex flux, 2019, 266, 00220396, 580, 10.1016/j.jde.2018.07.048
    9. Yongki Lee, Hailiang Liu, Thresholds for shock formation in traffic flow models with Arrhenius look-ahead dynamics, 2015, 35, 1553-5231, 323, 10.3934/dcds.2015.35.323
    10. Alexander Keimer, Lukas Pflug, Michele Spinola, Nonlocal Scalar Conservation Laws on Bounded Domains and Applications in Traffic Flow, 2018, 50, 0036-1410, 6271, 10.1137/18M119817X
    11. R.M. Colombo, G. Guerra, M. Herty, F. Marcellini, A hyperbolic model for the laser cutting process, 2013, 37, 0307904X, 7810, 10.1016/j.apm.2013.02.031
    12. Tong Li, Qualitative analysis of some PDE models of traffic flow, 2013, 8, 1556-181X, 773, 10.3934/nhm.2013.8.773
    13. Yongki Lee, Wave breaking in a class of non-local conservation laws, 2020, 269, 00220396, 8838, 10.1016/j.jde.2020.06.035
    14. Alexander Keimer, Lukas Pflug, On approximation of local conservation laws by nonlocal conservation laws, 2019, 475, 0022247X, 1927, 10.1016/j.jmaa.2019.03.063
    15. Alexander Keimer, Lukas Pflug, 2023, 15708659, 10.1016/bs.hna.2022.11.001
    16. Oluwaseun Farotimi, Kuppalapalle Vajravelu, Formulation of a maximum principle satisfying a numerical scheme for traffic flow models, 2020, 1, 2662-2963, 10.1007/s42985-020-00022-2
    17. Paola Goatin, Sheila Scialanga, Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, 2016, 11, 1556-1801, 107, 10.3934/nhm.2016.11.107
    18. Saeed Mohammadian, Zuduo Zheng, Md. Mazharul Haque, Ashish Bhaskar, Continuum modeling of freeway traffic flows: State-of-the-art, challenges and future directions in the era of connected and automated vehicles, 2023, 3, 27724247, 100107, 10.1016/j.commtr.2023.100107
    19. Said Belkadi, Mohamed Atounti, A class of central unstaggered schemes for nonlocal conservation laws: Applications to traffic flow models, 2024, 42, 2175-1188, 1, 10.5269/bspm.63895
    20. Yi Hu, Yongki Lee, Shijun Zheng, 2024, Chapter 13, 978-3-031-69709-8, 301, 10.1007/978-3-031-69710-4_13
    21. Alexander Keimer, Lukas Pflug, Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity, 2023, 361, 1778-3569, 1723, 10.5802/crmath.490
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4729) PDF downloads(113) Cited by(20)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog