Loading [MathJax]/jax/output/SVG/jax.js

Feedback stabilization of a coupled string-beam system

  • Received: 01 December 2007 Revised: 01 September 2008
  • Primary: 93B07, 35M10, 35A25; Secondary: 42A16.

  • We consider a stabilization problem for a coupled string-beam system. We prove some decay results of the energy of the system. The method used is based on the methodology introduced in Ammari and Tucsnak [2] where the exponential and weak stability for the closed loop problem is reduced to a boundedness property of the transfer function of the associated open loop system. Morever, we prove, for the same model but with two control functions, independently of the length of the beam that the energy decay with a polynomial rate for all regular initial data. The method used, in this case, is based on a frequency domain method and combine a contradiction argument with the multiplier technique to carry out a special analysis for the resolvent.

    Citation: Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Feedback stabilization of a coupled string-beam system[J]. Networks and Heterogeneous Media, 2009, 4(1): 19-34. doi: 10.3934/nhm.2009.4.19

    Related Papers:

    [1] Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger . Feedback stabilization of a coupled string-beam system. Networks and Heterogeneous Media, 2009, 4(1): 19-34. doi: 10.3934/nhm.2009.4.19
    [2] Zhong-Jie Han, Gen-Qi Xu . Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks. Networks and Heterogeneous Media, 2010, 5(2): 315-334. doi: 10.3934/nhm.2010.5.315
    [3] Vilmos Komornik, Anna Chiara Lai, Paola Loreti . Simultaneous observability of infinitely many strings and beams. Networks and Heterogeneous Media, 2020, 15(4): 633-652. doi: 10.3934/nhm.2020017
    [4] Martin Gugat, Mario Sigalotti . Stars of vibrating strings: Switching boundary feedback stabilization. Networks and Heterogeneous Media, 2010, 5(2): 299-314. doi: 10.3934/nhm.2010.5.299
    [5] Zhong-Jie Han, Gen-Qi Xu . Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks and Heterogeneous Media, 2011, 6(2): 297-327. doi: 10.3934/nhm.2011.6.297
    [6] Dongyi Liu, Genqi Xu . Input-output L2-well-posedness, regularity and Lyapunov stability of string equations on networks. Networks and Heterogeneous Media, 2022, 17(4): 519-545. doi: 10.3934/nhm.2022007
    [7] Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger . Erratum and addendum to "Feedback stabilization of a coupled string-beam system" by K. Ammari, M. Jellouli and M. Mehrenberger; N. H. M: 4 (2009), 19--34. Networks and Heterogeneous Media, 2011, 6(4): 783-784. doi: 10.3934/nhm.2011.6.783
    [8] Zhong-Jie Han, Enrique Zuazua . Decay rates for 1d heat-wave planar networks. Networks and Heterogeneous Media, 2016, 11(4): 655-692. doi: 10.3934/nhm.2016013
    [9] Markus Dick, Martin Gugat, Günter Leugering . Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Networks and Heterogeneous Media, 2010, 5(4): 691-709. doi: 10.3934/nhm.2010.5.691
    [10] Yaru Xie, Genqi Xu . The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks and Heterogeneous Media, 2016, 11(3): 527-543. doi: 10.3934/nhm.2016008
  • We consider a stabilization problem for a coupled string-beam system. We prove some decay results of the energy of the system. The method used is based on the methodology introduced in Ammari and Tucsnak [2] where the exponential and weak stability for the closed loop problem is reduced to a boundedness property of the transfer function of the associated open loop system. Morever, we prove, for the same model but with two control functions, independently of the length of the beam that the energy decay with a polynomial rate for all regular initial data. The method used, in this case, is based on a frequency domain method and combine a contradiction argument with the multiplier technique to carry out a special analysis for the resolvent.


  • This article has been cited by:

    1. Genqi Xu, Min Li, Stability of Wave Networks on Elastic and Viscoelastic Media, 2021, 175, 0167-8019, 10.1007/s10440-021-00437-y
    2. Kaïs Ammari, Farhat Shel, 2022, Chapter 6, 978-3-030-86350-0, 115, 10.1007/978-3-030-86351-7_6
    3. Gimyong Hong, Hakho Hong, Stabilization of a 1-D transmission problem for the Rayleigh beam and string with localized frictional damping, 2022, 0, 1425-6908, 10.1515/jaa-2021-2082
    4. Gimyong Hong, Hakho Hong, Stabilization of transmission system of Kirchhoff plate and wave equations with a localized Kelvin–Voigt damping, 2021, 21, 1424-3199, 2239, 10.1007/s00028-021-00682-6
    5. Jianghao Hao, Peipei Wang, Uniform stability of transmission of wave-plate equations with source on Riemannian manifold, 2020, 268, 00220396, 6385, 10.1016/j.jde.2019.11.048
    6. Jianghao Hao, Mengxian Lv, Stabilization for Transmission Wave-Plate Equations with Acoustic/Memory Boundary Conditions, 2022, 32, 1050-6926, 10.1007/s12220-022-01003-0
    7. Kaïs Ammari, Farhat Shel, 2022, Chapter 4, 978-3-030-86350-0, 57, 10.1007/978-3-030-86351-7_4
    8. Farhat Shel, Thermoelastic stability of a composite material, 2020, 269, 00220396, 9348, 10.1016/j.jde.2020.06.055
    9. Kaïs Ammari, Serge Nicaise, Stabilization of a transmission wave/plate equation, 2010, 249, 00220396, 707, 10.1016/j.jde.2010.03.007
    10. Kaïs Ammari, Denis Mercier, Virginie Régnier, Julie Valein, Spectral analysis and stabilization of a chain of serially connected Euler-Bernoulli beams and strings, 2012, 11, 1553-5258, 785, 10.3934/cpaa.2012.11.785
    11. Kaïs Ammari, Farhat Shel, Stability of a tree‐shaped network of strings and beams, 2018, 41, 0170-4214, 7915, 10.1002/mma.5255
    12. Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui, Feedback stabilization of bilinear coupled hyperbolic systems, 2021, 14, 1937-1179, 3641, 10.3934/dcdss.2020434
    13. Fathi Hassine, Rapid Exponential Stabilization of a 1-D Transmission Wave Equation with In-domain Anti-damping, 2017, 19, 15618625, 2017, 10.1002/asjc.1509
    14. Mohammad Akil, Ibtissam Issa, Ali Wehbe, Energy decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping, 2023, 13, 2156-8472, 330, 10.3934/mcrf.2021059
    15. Xiaowei Zhao, George Weiss, Stability Properties of Coupled Impedance Passive LTI Systems, 2017, 62, 0018-9286, 5769, 10.1109/TAC.2017.2694558
    16. Yan-Fang Li, Zhong-Jie Han, Gen-Qi Xu, Explicit decay rate for coupled string-beam system with localized frictional damping, 2018, 78, 08939659, 51, 10.1016/j.aml.2017.11.003
    17. Kaïs Ammari, Michel Mehrenberger, Study of the nodal feedback stabilization of a string-beams network, 2011, 36, 1598-5865, 441, 10.1007/s12190-010-0412-9
    18. Bienvenido Barraza Martinez, Jairo Hernandez Monzon, Gustavo Vergara Rolong, Exponential stability of a damped beam-string-beam transmission problem, 2022, 2022, 1072-6691, 30, 10.58997/ejde.2022.30
    19. Anna Chiara Lai, Paola Loreti, Michel Mehrenberger, Observability of a string-beams network with many beams, 2023, 29, 1292-8119, 61, 10.1051/cocv/2023054
    20. Farhat Shel, Optimal polynomial thermoelastic stability of a composite material, 2023, 0, 2163-2480, 0, 10.3934/eect.2023046
    21. Bienvenido Barraza Martínez, Jonathan González Ospino, Jairo Hernández Monzón, Analysis of the exponential stability of a beam-string-beam transmission problem with local damping on the string, 2024, 77, 09473580, 100988, 10.1016/j.ejcon.2024.100988
    22. Peipei Wang, Yanting Wang, Fei Wang, Indirect stability of a 2D wave-plate coupling system with memory viscoelastic damping, 2024, 9, 2473-6988, 19718, 10.3934/math.2024962
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4616) PDF downloads(113) Cited by(22)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog