Citation: Davide Lovisolo, Marianna Dionisi, Federico A. Ruffinatti, Carla Distasi. Nanoparticles and potential neurotoxicity: focus on molecular mechanisms[J]. AIMS Molecular Science, 2018, 5(1): 1-13. doi: 10.3934/molsci.2018.1.1
[1] | Samantha B. Gacasan, Daniel L. Baker, Abby L. Parrill . G protein-coupled receptors: the evolution of structural insight. AIMS Biophysics, 2017, 4(3): 491-527. doi: 10.3934/biophy.2017.3.491 |
[2] | Anna Kahler, Heinrich Sticht . A modeling strategy for G-protein coupled receptors. AIMS Biophysics, 2016, 3(2): 211-231. doi: 10.3934/biophy.2016.2.211 |
[3] | Alyssa D. Lokits, Julia Koehler Leman, Kristina E. Kitko, Nathan S. Alexander, Heidi E. Hamm, Jens Meiler . A survey of conformational and energetic changes in G protein signaling. AIMS Biophysics, 2015, 2(4): 630-648. doi: 10.3934/biophy.2015.4.630 |
[4] | Tika Ram Lamichhane, Hari Prasad Lamichhane . Structural changes in thyroid hormone receptor-beta by T3 binding and L330S mutational interactions. AIMS Biophysics, 2020, 7(1): 27-40. doi: 10.3934/biophy.2020003 |
[5] | Hayet Saidani, Daria Grobys, Marc Léonetti, Hanna Kmita, Fabrice Homblé . Towards understanding of plant mitochondrial VDAC proteins: an overview of bean (Phaseolus) VDAC proteins. AIMS Biophysics, 2017, 4(1): 43-62. doi: 10.3934/biophy.2017.1.43 |
[6] | Sebastian Kube, Petra Wendler . Structural comparison of contractile nanomachines. AIMS Biophysics, 2015, 2(2): 88-115. doi: 10.3934/biophy.2015.2.88 |
[7] | Shivakumar Keerthikumar . A catalogue of human secreted proteins and its implications. AIMS Biophysics, 2016, 3(4): 563-570. doi: 10.3934/biophy.2016.4.563 |
[8] | Nicholas Spellmon, Xiaonan Sun, Wen Xue, Joshua Holcomb, Srinivas Chakravarthy, Weifeng Shang, Brian Edwards, Nualpun Sirinupong, Chunying Li, Zhe Yang . New open conformation of SMYD3 implicates conformational selection and allostery. AIMS Biophysics, 2017, 4(1): 1-18. doi: 10.3934/biophy.2017.1.1 |
[9] | Stephanie H. DeLuca, Samuel L. DeLuca, Andrew Leaver-Fay, Jens Meiler . RosettaTMH: a method for membrane protein structure elucidation combining EPR distance restraints with assembly of transmembrane helices. AIMS Biophysics, 2016, 3(1): 1-26. doi: 10.3934/biophy.2016.1.1 |
[10] | Ateeq Al-Zahrani, Natasha Cant, Vassilis Kargas, Tracy Rimington, Luba Aleksandrov, John R. Riordan, Robert C. Ford . Structure of the cystic fibrosis transmembrane conductance regulator in the inward-facing conformation revealed by single particle electron microscopy. AIMS Biophysics, 2015, 2(2): 131-152. doi: 10.3934/biophy.2015.2.131 |
Dedicated to Italo Capuzzo Dolcetta with friendship, respect, and admiration on the occasion of his retirement.
We consider the weakly coupled $ m $-system of Hamilton-Jacobi equations
$ \lambda v^ \lambda+Bv^ \lambda+H[v^ \lambda] = 0 \ \ \text{ in } \mathbb{T}^n,\;\;\;\;\left( {{{\rm{P}}_\lambda }} \right) $ |
where $ m\in \mathbb{N} $, $ \lambda $ is a nonnegative constant, called the discount factor in terms of optimal control. Here $ \mathbb{T}^n $ denotes the $ n $-dimensional flat torus, $ H = (H_i)_{i\in \mathbb{I}} $ is a family of Hamiltonians given by
$ Hi(x,p)=maxξ∈Ξ[−gi(x,ξ)⋅p−Li(x,ξ)],(H) $
|
where $ \mathbb{I} = \{1, \ldots, m\} $, $ \Xi $ is a given compact metric space, $ g = (g_i)_{i\in \mathbb{I}}\in C(\mathbb{T}^n \times \Xi, \mathbb{R}^n)^m $ and $ L = (L_i)_{i\in \mathbb{I}}\in C(\mathbb{T}^n \times \Xi)^m $. The unknown in $\left({{{\rm{P}}_\lambda }} \right)$ is an $ \mathbb{R}^m $-valued function $ v^ \lambda = (v^ \lambda_i)_{i\in \mathbb{I}} $ on $ \mathbb{T}^n $, $ B \, :\, C(\mathbb{T}^n)^m \to C(\mathbb{T}^n)^m $ is a linear map represented by a matrix $ B = (b_{ij})_{i, j\in \mathbb{I}}\in C(\mathbb{T}^n)^{m \times m} $, that is,
$ (Bu)_i(x) = (B(x)u(x))_i: = \sum\limits_{j\in \mathbb{I}}b_{ij}(x)u_j(x) \ \ \text{ for } (x,i)\in \mathbb{T}^n \times \mathbb{I}. $ |
We use the abbreviated notation $ H[v^ \lambda] $ to denote $ (H_i(x, Dv_i^ \lambda(x))_{i\in \mathbb{I}} $. The system is called weakly coupled since the $ i $-th equation depends on $ Dv^ \lambda $ only through $ Dv_i^ \lambda $ but not on $ Dv_j^ \lambda $, with $ j\not = i $. Problem $\left({{{\rm{P}}_\lambda }} \right)$ can be stated in the component-wise style as
$ \lambda v_i^ \lambda+\sum\limits_{j\in \mathbb{I}}b_{ij}(x)v_j^ \lambda+H_i(x,Dv_i^ \lambda) = 0 \ \ \text{ in } \mathbb{T}^n,\ i\in \mathbb{I}. $ |
We are mainly concerned with the asymptotic behavior of the solution $ v^ \lambda $ of $\left({{{\rm{P}}_\lambda }} \right)$ as $ \lambda \to 0+ $. Asymptotic problems in this class are called the vanishing discount problem, in view that the constant $ \lambda $ in $\left({{{\rm{P}}_\lambda }} \right)$ appears as a discount factor in the dynamic programming PDE in optimal control.
Recently, there has been a keen interest in the vanishing discount problem concerned with Hamilton-Jacobi equations and, furthermore, fully nonlinear degenerate elliptic PDEs. We refer to [1,7,10,12,19,20,23,24,25,27] for relevant work. The asymptotic analysis in these papers relies heavily on Mather measures or their generalizations and, thus, it is considered part of the Aubry-Mather and weak KAM theories. For the development of these theories we refer to [14,16,17] and the references therein.
We are here interested in the case of systems of Hamilton-Jacobi equations and, indeed, Davini and Zavidovique in [12] have established a general convergence result for the vanishing discount problem for $\left({{{\rm{P}}_\lambda }} \right)$. We establish a result (Theorem 9 below) similar to the main result of [12]. In establishing our convergence result, we adapt the argument in [23] (see also [18]) to the case of systems, especially, to construct generalized Mather measures for $\left({{{\rm{P}}_\lambda }} \right)$. Regarding the recent developments of the weak KAM theory and asymptotic analysis in its influence for systems, we refer to [5,6,26,28,29,30,33].
The new argument, which is different from that of [12], makes it fairly easy to build a generalized Mather measure for systems in a wide class. One advantage of our argument is that it allows us to treat the case where the coupling matrix $ B $ in $\left({{{\rm{P}}_\lambda }} \right)$ depends on the space variable $ x\in \mathbb{T}^n $. As in [20,23], our approach is applicable to the system with nonlinear coupling of fully nonlinear second-order elliptic PDEs, but we restrict ourselves in this paper to the case of the linearly coupled system of first-order Hamilton-Jacobi equations. Another possible approach for constructing generalized Mather measures is the so-called adjoint method (see [5,15,19,27,33]).
This paper is part 1 of our study of the vanishing discount problem for weakly coupled systems of Hamilton-Jacobi equations and deals only with the linear coupling and with compact control sets $ \Xi $. These restrictions make the presentation of our results clear and transparent. In part 2 [20], we remove these restrictions and establish a general convergence result extending Theorem 9 below. Sections 5 and 6 are devoted to the study of ergodic problems of the form $ Bu+H[u] = c $, where $ c\in \mathbb{R}^m $ is an unknown as well. Also, thanks to the linearity of the coupling, our results on the ergodic problems are applied to extend the scope of Theorem 9. On the other hand, the role of the ergodic problem, with general right-hand side $ c $, is not clear at least for the author in the vanishing discount problem for the systems with the nonlinear coupling.
In this paper, we adopt the notion of viscosity solution to $\left({{{\rm{P}}_\lambda }} \right)$, for which the reader may consult [2,4,8,31].
To proceed, we give our main assumptions on the system $\left({{{\rm{P}}_\lambda }} \right)$.
We assume that $ H $ is coercive, that is, for any $ i\in \mathbb{I} $,
$ lim|p|→∞minx∈TnHi(x,p)=∞.(C) $
|
This is a convenient assumption, under which any upper semicontinuous subsolution of $\left({{{\rm{P}}_\lambda }} \right)$ is Lipschitz continuous on $ \mathbb{T}^n $.
We assume that $ B(x) = (b_{ij}(x)) $ is a monotone matrix for every $ x\in \mathbb{T}^n $, that is, it satisfies
$\text{for}\ \text{any}\ x\in {{\mathbb{T}}^{n}},\ \text{if}\ u={{({{u}_{i}})}_{i\in \mathbb{I}}}\in {{\mathbb{R}}^{m}}\ \text{and}\ {{u}_{k}}=\underset{i\in \mathbb{I}}{\mathop{\max }}\,{{u}_{i}}\ge 0,\ \text{then}\ {{(B(x)u)}_{k}}\ge 0.\ \ \ \ \left( \text{M} \right)$ |
This is a natural assumption that $\left({{{\rm{P}}_\lambda }} \right)$ should possess the comparison principle between a subsolution and a supersolution.
In what follows we set, for $ \lambda\geq 0 $,
$ B^ \lambda = \lambda I+B, $ |
and $\left({{{\rm{P}}_\lambda }} \right)$ can be written as
$ B^ \lambda v^ \lambda+H[v^ \lambda] = 0 \ \ \text{ in } \mathbb{T}^n. $ |
We use the symbol $ u\leq v $ (resp., $ u\geq v $) for $ m $-vectors $ u, v\in \mathbb{R}^n $ to indicate $ u_i\leq v_i $ (resp., $ u_i\geq v_i $) for all $ i\in \mathbb{I} $.
The following theorem is well-known: see [13,22] for instance.
Theorem 1. Assume (C) and (M). Let $ \lambda > 0 $. Then the exists a unique solution $ v^ \lambda\in \operatorname{Lip}(\mathbb{T}^n)^m $ of $\left({{{\rm{P}}_\lambda }} \right)$. Also, if $ v = (v_i), w = (w_i) $ are, respectively, upper and lower semicontinuous on $ \mathbb{T}^n $ and a subsolution and a supersolution of $\left({{{\rm{P}}_\lambda }} \right)$, then $ v\leq w $ on $ \mathbb{T}^n $.
Henceforth, let $ {\bf{1}} $ denote the vector $ (1, \ldots, 1)\in \mathbb{R}^m $.
Outline of proof. We follow the line of the arguments in [22]. Although [22] is concerned with the case when the domain is an open subset of a Euclidean space, the results in [22] is valid in the case when the domain is $ \mathbb{T}^n $.
Choose a large constant $ C > 0 $ so that the constant functions $ \pm C {\bf{1}} $ are a supersolution and a subsolution of $\left({{{\rm{P}}_\lambda }} \right)$, respectively. (See also (2.3) below.) According to [22,Theorems 3.3,Lemma 4.8], there is a function $ v^ \lambda = (v_i^ \lambda)_{i\in \mathbb{I}} \, :\, \mathbb{T}^n \to \mathbb{R}^m $ such that the upper and lower semicontinuous envelopes $ (v^ \lambda)^* $ and $ v^ \lambda_* $ are a subsolution and a supersolution of $\left({{{\rm{P}}_\lambda }} \right)$, respectively. By the coercivity assumption (C), we find (see [9,Theorem I.14], [21,Example 1]) that the functions $ (v_i^ \lambda)^* $ are Lipschitz continuous on $ T^n $. Let $ R_1 > 0 $ be a Lipschitz bound of the functions $ (v_i^ \lambda)^* $. To take into account the Lipschitz property of $ (v_i^ \lambda)^* $, we modify the Hamiltonian $ H $. Fix any $ M > 0 $ so that
$ max(x,ξ,i)∈Tn×Ξ×I|gi(x,ξ)|<M, $
|
(1.1) |
and choose constants $ N > 0 $ and $ R_2 > 0 $ so that
$ H_i(x,p)\geq M|p|-N \ \ \text{ for } (x,p,i) \in \mathbb{T}^n \times B_{R_1} \times \mathbb{I}, $ |
and, in view of (1.1),
$ H_i(x,p)\leq M|p|-N \ \ \text{ for } (x,p,i) \in \mathbb{T}^n \times B_{R_2} \times \mathbb{I}. $ |
Define $ G = (G_i)_{i\in \mathbb{I}}\in C(\mathbb{T}^n \times \mathbb{R}^n)^m $ by
$ G_i(x,p) = H_i(x,p)\vee (M|p|-N). $ |
By the choice of $ R_1 $, it is easy to see that $ (v^ \lambda)^* $ is a subsolution of
$ λu+Bu+G[u]=0 Tn. $
|
(1.2) |
Also, since $ G\geq H $, $ v_*^ \lambda $ is a supersolution of (1.2). Observe furthermore that, if $ |p|\geq R_2 $, then
$ G_i(x,p) = M|p|-N \ \ \text{ for } (x,i)\in \mathbb{T}^n \times \mathbb{I}, $ |
the functions $ G_i $ are uniformly continuous on $ \mathbb{T}^n \times B_{R_2} $, and hence, for some continuous function $ \omega $ on $ [0, \, \infty) $, with $ \omega(0) = 0 $,
$ |G_i(x,p)-G_i(y,p)|\leq \omega(|x-y|) \ \ \text{ for } (x,y,p)\in( \mathbb{T}^n)^2 \times \mathbb{R}^n,\,i\in \mathbb{I}. $ |
The last inequality above shows that $ G $ satisfies [22,(A.2)], which allows us to apply [22,Theorem 4.7], to conclude that $ (v^ \lambda)^*\leq v^ \lambda_* $ on $ \mathbb{T}^n $ and, moreover, that $ v^ \lambda\in \operatorname{Lip}(\mathbb{T}^n)^* $. Similarly, we deduce that the comparison assertion is valid. Thus, $ v^ \lambda $ is a unique solution of $\left({{{\rm{P}}_\lambda }} \right)$.
Regarding the coercivity (C), the following proposition is well-knwon.
Proposition 2. The function given by (H) satisfies (C) if and only if there exists $ \delta > 0 $ such that
$ Bδ⊂co{gi(x,ξ):ξ∈Ξ} for(x,i)∈Tn×I, $
|
(1.3) |
where $ \, \operatorname{co} $ designates "convex hull" and $ B_ \delta $ denotes the open ball with origin at the origin and radius $ \delta $.
Outline of proof. Set $ C(x, i) = \operatorname{co} \{g_i(x, \xi) \, :\, \xi\in \Xi\}. $ Assume that (1.3) is valid for some $ \delta > 0 $ and observe that
$ Hi(x,p,u)≥maxξ∈Ξ−gi(x,ξ)⋅p−max(x,i,ξ)∈Tn×I×ΞLi(x,ξ)=maxq∈C(x,i)−q⋅p−max(x,i,ξ)∈Tn×I×ΞLi(x,ξ)≥supq∈Bδ−q⋅p−max(x,i,ξ)∈Tn×I×ΞLi(x,ξ)=δ|p|−max(x,i,ξ)∈Tn×I×ΞLi(x,ξ), $
|
which shows that (C) holds.
Next, assume that (1.3) does not hold for any $ \delta > 0 $. Then there exists $ (x_k, i_k)\in \mathbb{T}^n \times \mathbb{I} $ for each $ k\in \mathbb{N} $ such that
$ B_{1/k} \setminus C(x_k,i_k)\not = \emptyset. $ |
For each $ k\in \mathbb{N} $ select $ q_k\in B_{1/k} \setminus C(x_k, i_k) $ and $ r_k\in C(x_k, i_k) $ so that $ r_k $ is the point of $ C(x_k, i_k) $ closest to $ q_k $. (Notice that $ C(x_k, i_k) $ is a compact convex set.) Setting $ \nu_k = (q_k-r_k)/|q_k-r_k| $, we find that
$ \nu_k\cdot (q-r_k)\leq 0 \ \ \text{ for } q\in C(x_k,i_k). $ |
Sending $ k\to\infty $ along an appropriate subsequence, say $ (k_j)_{j\in \mathbb{N}} $, we find that there are a unit vector $ \nu = \lim_{j\to\infty} \nu_{k_j} $ of $ \mathbb{R}^n $, $ r = \lim_{j\to\infty}r_{k_j}\in \mathbb{R}^n $ and $ (x, i)\in \mathbb{T}^n \times \mathbb{I} $ such that
$ r\in C(x,i) \ \ \text{ and } \ \ \nu\cdot (q-r)\leq 0 \ \ \text{ for } q\in C(x,i). $ |
If $ r\not = 0 $, then we have $ \nu = -r/|r| $, since $ \lim_{k\to\infty}q_k = 0 $, and the inequality above reads
$ \nu\cdot q\leq -|r| \lt 0 \ \ \text{ for } q\in C(x,i). $ |
These observations imply that for $ t > 0 $,
$ H_{i}(x,-t\nu) = \max\limits_{\xi\in \Xi} tg_i(x,\xi)\cdot \nu -\min\limits_{\xi\in \Xi} L_i(x,\xi) \leq -\min\limits_{\xi\in \Xi} L_i(x,\xi), $ |
which shows that (C) does not hold. This completes the proof.
The rest of this paper is organized as follows. In Section 2, we recall some basic facts concerning monotone matrices. In Section 3, we study viscosity Green-Poisson measures for our system, which are crucial in our asymptotic analysis. We establish the main result for the vanishing discount problem in Section 4. We study the ergodic problem (P$ _0 $) in the cases when $ B $ is irreducible, and $ B $ is a constant matrix, respectively, in Sections 5 and 6, and combine the results with the analysis on the vanishing discount problem of Section 4.
Here we are concerned with $ m \times m $ real matrix $ B = (b_{ij})_{i, j\in \mathbb{I}} $.
Let $ e_i $ denote the vector $ (e_{i1}, \ldots, e_{im}) $, with $ e_{ii} = 1 $ and $ e_{ij} = 0 $ if $ i\not = j $.
Lemma 3. Let $ B = (b_{ij}) $ be a real $ m \times m $ matrix. It is monotone if and only if
$ bij≤0 ifi≠j and ∑j∈Ibij≥0 fori∈I. $
|
(2.1) |
We remark that if $ B $ satisfies (2.1), then
$ bii=∑j∈Ibij−∑j≠ibij≥0. $
|
(2.2) |
Proof. We assume first that $ B $ is monotone. Since
$ {\bf{1}}_{i} = 1 = \max\limits_{j} {\bf{1}}_{j} \gt 0, $ |
By the monotonicity of $ B $, we have
$ 0≤(B1)i=m∑j=1bij1j=m∑j=1bij for i∈I. $
|
(2.3) |
Similarly, if $ i\not = j $ and $ t\geq 0 $, then we have $ 1 = (e_i-te_j)_i = \max_{k\in \mathbb{I}}(e_i-te_j)_k $ and hence,
$ 0\leq (B(e_i-te_j))_i = b_{ii}-tb_{ij}, $ |
from which we find by sending $ t\to \infty $ that
$ b_{ij}\leq 0. $ |
Hence, (2.1) is satisfied.
Next, we assume that (2.1) holds. Let $ u\in \mathbb{R}^m $ satisfy
$ u_k = \max\limits_{i\in \mathbb{I}}u_i\geq 0. $ |
Then we observe that, since $ u_k\geq u_j $ for all $ j\in \mathbb{I} $,
$ (Bu)_k = \sum\limits_{j\in \mathbb{I}}b_{kj}u_j = b_{kk}u_k +\sum\limits_{j\neq k}b_{kj}u_j = b_{kk}u_k+\sum\limits_{j\neq k}b_{kj}u_k = u_k\sum\limits_{j\in \mathbb{I}}b_{kj}\geq 0. $ |
Thus, $ B $ is monotone.
Lemma 4. Let $ u\in \mathbb{R}^m $ and $ C\geq 0 $ be a constant. Let $ B $ be an $ m \times m $ real monotone matrix. Then we have
$ B(u-C {\bf{1}})\leq Bu\leq B(u+C {\bf{1}}). $ |
Proof. Using Lemma 3, we see that
$ (B {\bf{1}})_i = \sum\limits_{j\in \mathbb{I}}b_{ij}\geq 0 \ \ \text{ for } i\in \mathbb{I}, $ |
which states that $ B {\bf{1}}\geq 0 $. It is then obvious to compute that
$ B(u+C {\bf{1}})-Bu = CB {\bf{1}}, \quad Bu-B(u-C {\bf{1}}) = CB {\bf{1}} \ \ \text{ and } \ \ CB {\bf{1}}\geq 0 $ |
and therefore,
$ B(u+C {\bf{1}})\geq Bu\geq B(u-C {\bf{1}}). $ |
For $ \lambda\geq 0 $ we write $ \mathcal{F}(\lambda) $ for the set of all $ (\phi, u)\in C(\mathbb{T}^n \times \Xi)^m \times C(\mathbb{T}^n)^m $ such that $ u $ is a subsolution of
$ B^ \lambda u+H_{\phi}[u] = 0 \ \ \text{ in } \mathbb{T}^n, $ |
where $ H_{\phi} = (H_{\phi, i})_{i\in \mathbb{I}} $ and
$ H_{\phi.i}(x,p) = \max\limits_{\xi\in \Xi}(-g_i(x,\xi)\cdot p -\phi_i(x,\xi)). $ |
In the above, since $ \phi $ is bounded on $ \mathbb{T}^n \times \Xi $, if $ H $ satisfies (C), then $ H_\phi $ satisfies (C).
Lemma 5. The set $ \mathcal{F}(\lambda) $ is a convex cone in $ C(\mathbb{T}^n \times \Xi)^m \times C(\mathbb{T}^n)^m $ with vertex at the origin.
Proof. Recall [3,Remark 2.5] that for any $ u\in Lip(\mathbb{T}^n)^m $, $ u $ is a subsolution of
$ B^ \lambda u+H[u] = 0 \ \ \text{ in } \mathbb{T}^n $ |
if and only if for any $ i\in \mathbb{I} $,
$ (B^ \lambda u)_i(x)+H_i(x,Du_i(x))\leq 0 \ \ \text{ a.e. in } \mathbb{T}^n, $ |
and by the coercivity (C) that for any $ (\phi, u)\in \mathcal{F}(\lambda) $, we have $ u\in \operatorname{Lip}(\mathbb{T}^n)^m $.
Fix $ (\phi, u), (\psi, v)\in \mathcal{F}(\lambda) $ and $ t, s\in[0, \infty) $. Fix $ i\in \mathbb{I} $ and observe that
$ (Bλu)i(x)+Hϕ,i(x,Dui(x))≤0 a.e. in Tn,(Bλv)i(x)+Hψ,i(x,Dvi(x))≤0 a.e. in Tn, $
|
which imply that there is a set $ N\subset \mathbb{T}^n $ of Lebesgue measure zero such that
$ (Bλu)i(x)≤g(x,ξ)⋅Dui(x)+ϕi(x.ξ) for all (x,ξ)∈Tn∖N×Ξ,(Bλv)i(x)≤gi(x,ξ)⋅Dvi(x)+ψi(x,ξ) for all (x,ξ)∈Tn∖N×Ξ. $
|
Multiplying the first and second by $ t $ and $ s $, respectively, adding the resulting inequalities and setting $ w = tu+sv $, we obtain
$ (B^ \lambda w)_i(x)\leq g(x,\xi)\cdot Dw_i(x) +(t\phi_i+s\psi)(x.\xi) \ \ \text{ for all } (x,\xi) \in \mathbb{T}^n \setminus N\, \times\, \Xi, $ |
which readily implies that $ t(\phi, u)+s(\psi, v)\in \mathcal{F}(\lambda) $.
We refer the reader to [23,Lemma 2.2] for another proof of the above lemma.
We establish a representation formula for the solution of $\left({{{\rm{P}}_\lambda }} \right)$, with $ \lambda > 0 $, by modifying the argument in [23] (see also [18]).
For any nonnegative Borel measure $ \nu $ on $ \mathbb{T}^n \times \Xi $ and $ \phi\in C(\mathbb{T}^n \times \Xi) $, we write
$ \langle{\nu,\phi}\rangle = \int_{ \mathbb{T}^n \times \Xi}\phi(x,\xi)\nu(dx,\,d\xi). $ |
Similarly, for any collection $ \nu = (\nu_i)_{i\in \mathbb{I}} $ of nonnegative Borel measures on $ \mathbb{T}^n \times \Xi $ and $ \phi = (\phi_i)\in C(\mathbb{T}^n \times \Xi)^m $, we write
$ \langle{\nu,\phi}\rangle = \sum\limits_{i\in \mathbb{I}}\langle{\nu_i,\phi_i}\rangle\in \mathbb{R}. $ |
Note that any collection $ \nu = (\nu_i)_{i\in \mathbb{I}} $ of nonnegative Borel measures on $ \mathbb{T}^n \times \Xi $ is regarded as a nonnegative Borel measure on $ \mathbb{T}^n \times \Xi \times \mathbb{I} $ and vice versa.
We set
$ \rho_i(x): = \sum\limits_{j\in \mathbb{I}}b_{ij}(x) \ \ \text{ for } i\in \mathbb{I}. $ |
Note that
$ B1=(b11(x)⋯b1m(x)⋮⋮bm1(x)⋯bmm(x))(1⋮1)=(ρ1(x)⋮ρm(x)) and Bλ1=(λ+ρ1(x)⋮λ+ρm(x)). $
|
(3.1) |
By assumption (M) and Lemma 3, we have $ \rho_i\geq 0 $ on $ \mathbb{T}^n $ for all $ i\in \mathbb{I} $.
Given a constant $ \lambda > 0 $, let $ \operatorname{\mathbb{P}}_{B^ \lambda} $ denote the set of of nonnegative Borel measures $ \nu = (\nu_i)_{i\in \mathbb{I}} $ on $ \mathbb{T}^n \times \Xi \times \mathbb{I} $ such that
$ \langle{\nu,B^ \lambda}\rangle = 1. $ |
The last condition reads
$ \sum\limits_{i\in \mathbb{I}}( \lambda |\nu_i|+\langle{\nu_i,\rho_i}\rangle) = 1, $ |
where $ |\nu_i| $ denotes the total mass of $ \nu_i $ on $ \mathbb{T}^n \times \Xi $. Note as well that $ \operatorname{\mathbb{P}}_{B^ \lambda} $ can be identified with the space of Borel probability measures on $ \mathbb{T}^n \times \Xi \times \mathbb{I} $ by the correspondence between $ \nu = (\nu_i)_{i\in \mathbb{I}} $ and $ \sum_{i\in \mathbb{I}}(\lambda+\rho_i)\nu_i\otimes \delta_i $, where $ \otimes $ indicates the product of two measures and $ \delta_i $ denotes the Dirac measure at $ i $. If we set $ \mu: = \sum_{i\in \mathbb{I}}(\lambda+\rho_i)\nu_i\otimes \delta_i $ and consider $ \mu $ as a collection $ (\mu_i) $ of measures on $ \mathbb{T}^n \times \Xi $, then $ \nu_i = (\lambda+\rho_i)^{-1}\mu_i $. We denote simply by $ \operatorname{\mathbb{P}} $ the space of Borel probability measures on $ \mathbb{T}^n \times \Xi \times \mathbb{I} $.
For $ \lambda\geq 0 $ and $ (z, k)\in \mathbb{T}^n \times \mathbb{I} $ we set
$ \mathcal{G}(z,k, \lambda): = \{\phi-u_k(z) B^ \lambda {\bf{1}} \,:\, (\phi,u)\in \mathcal{F}( \lambda)\}\subset C( \mathbb{T}^n \times \Xi)^m, $ |
and
$ \mathcal{G} \,^\prime(z,k, \lambda) = \{\nu = (\nu_i)_{i\in \mathbb{I}}\in \operatorname{\mathbb{P}}_{B^ \lambda} \,:\, \langle{\nu,f}\rangle \geq 0 \ \ \text{ for } \ f = (f_i)\in \mathcal{G}(z,k, \lambda)\}. $ |
Theorem 6. Assume (H), (C) and (M). Let $ \lambda > 0 $ and $ (z, k)\in \mathbb{T}^n \times \mathbb{I} $. Let $ v^ \lambda\in C(\mathbb{T}^n \times \mathbb{I}) $ be the unique solution of $\left({{{\rm{P}}_\lambda }} \right)$. Then there exists a $ \nu^{z, k, \lambda} = (\nu^{z, k, \lambda}_i)_{i\in \mathbb{I}}\in \mathcal{G} \, ^\prime(z, k, \lambda) $ such that
$ vλk(z)=⟨νz,k,λ,L⟩. $
|
(3.2) |
We remark that for any $ \nu\in \mathcal{G} \, ^\prime(z, k, \lambda) $ we have $ \langle{\nu, L}\rangle\geq v_k^ \lambda(z)\langle{\nu, B^ \lambda}\rangle = v_k^ \lambda(z) $ and, accordingly, in the theorem above, the measures $ \nu^{z, k, \lambda} $ has the minimizing property:
$ vλk(z)=⟨νz,k,λ,L⟩=minν∈G′(z,k,λ)⟨ν,L⟩. $
|
(3.3) |
We call any minimizing family $ (\nu_i)_{i\in \mathbb{I}}\in \operatorname{\mathbb{P}}_{B^ \lambda} $ of the optimization problem above a viscosity Green-Poisson measure for $\left({{{\rm{P}}_\lambda }} \right)$.
Proof. Note first that $ (L, v^ \lambda)\in \mathcal{F}(\lambda) $ and hence, for any $ \nu\in \mathcal{G} \, ^\prime (z, k, \lambda) $,
$ 0≤⟨ν,L−vλk(z)Bλ⟩=⟨ν,L⟩−vλk(z)⟨ν,Bλ⟩=⟨ν,L⟩−vλk(z). $
|
(3.4) |
Next, we show that
$ sup(ϕ,u)∈F(λ)infν∈PBλ⟨ν,L−ϕ+(uk(z)−vλk(z))Bλ⟩=0. $
|
(3.5) |
Note that for $ z\in \mathbb{T}^n $,
$ sup(ϕ,u)∈F(λ)infν∈PBλ⟨ν,L−ϕ+(uk(z)−vλk(z))Bλ⟩≥infν∈PBλ⟨ν,L−ϕ+(uk(z)−vλk(z))Bλ⟩|(ϕ,u)=(L,vλ)=0. $
|
Hence, in order to prove (3.5), we only need to show that
$ sup(ϕ,u)∈F(λ)infν∈PBλ⟨ν,L−ϕ+(uk(z)−vλk(z))Bλ⟩≤0. $
|
(3.6) |
We postpone the proof of (3.6) and, assuming temporarily that (3.5) is valid, we prove that there exists $ \nu\in \mathcal{G} \, ^\prime(z, k, \lambda) $ such that
$ vλk(z)=⟨ν,L⟩, $
|
(3.7) |
which, together with (3.4), completes the proof.
To prove (3.7), we observe that $ \operatorname{\mathbb{P}}_{B^ \lambda} $ and, by Lemma 5, $ \mathcal{F}(\lambda) $ are convex,
$ \operatorname{\mathbb{P}}_{B^ \lambda}\ni \nu\mapsto \langle{\nu,L-\phi+(u_k(z)-v_k^ \lambda(z))B^ \lambda}\rangle $ |
is convex and continuous, in the topology of weak convergence of measures, for any $ (\phi, u)\in \mathcal{F}(\lambda) $ and
$ \mathcal{F}( \lambda)\ni (\phi,u)\mapsto \langle{\nu,L-\phi+(u_k(z)-v_k^ \lambda(z))B^ \lambda}\rangle $ |
is concave and continuous for any $ \nu\in \operatorname{\mathbb{P}}_{B^ \lambda} $. Hence, noting moreover that $ \mathbb{T}^n \times \Xi \times \mathbb{I} $ is a compact set, we apply the minimax theorem ([34,32]), to find from (3.5) that
$ 0=sup(ϕ,u)∈F(λ)minν∈PBλ⟨ν,L−ϕ+(uk(z)−vλk(z))Bλ⟩=minν∈PBλsup(ϕ,u)∈F(λ)⟨ν,L−ϕ+(uk(z)−vλk(z))Bλ⟩. $
|
(3.8) |
Observe by using the cone property of $ \mathcal{F}(\lambda) $ that
$ \sup\limits_{(\phi,u)\in \mathcal{F}( \lambda)}\langle{\nu, u_k(z)B^ \lambda -\phi}\rangle = {0 if ν∈G′(z,k,λ),∞ if ν∈PBλ∖G′(z,k,λ). $
|
This and (3.8) yield
$ 0=minν∈PBλsup(ϕ,u)∈F(λ)⟨ν,L−ϕ+(uk(z)−vλk(z)Bλ⟩=minν∈G′(z,k,λ)sup(ϕ,u)∈F(λ)⟨ν,L−vλk(z)Bλ⟩=minν∈G′(z,k,λ)⟨ν,L−vλk(z)Bλ⟩=minν∈G′(z,k,λ)(⟨ν,L⟩−vλk(z)⟨ν,Bλ⟩)=minν∈G′(z,k,λ)⟨ν,L⟩−vλk(z), $
|
which proves (3.7).
It remains to show (3.6). For this, we argue by contradiction and thus suppose that (3.6) does not hold. Accordingly, we have
$ \sup\limits_{(\phi,u)\in \mathcal{F}( \lambda)}\inf\limits_{\nu\in \operatorname{\mathbb{P}}_{B^ \lambda}} \langle{\nu,L-\phi+(u_k(z)-v_k^ \lambda(z))B^ \lambda}\rangle \gt \varepsilon $ |
for some $ \varepsilon > 0 $. We may select $ (\phi, u)\in \mathcal{F}(\lambda) $ so that
$ \inf\limits_{\nu\in \operatorname{\mathbb{P}}_{B^ \lambda}}\langle{\nu,L-\phi+(u_k(z)-v_k^ \lambda(z))B^ \lambda}\rangle \gt \varepsilon. $ |
That is, for any $ \nu\in \operatorname{\mathbb{P}}_{B^ \lambda} $, we have
$ \langle{\nu,L-\phi+(u_k(z)-v_k^ \lambda(z))B^ \lambda}\rangle \gt \varepsilon = \langle{\nu, \varepsilon B^ \lambda}\rangle. $ |
Plugging $ \nu = (\lambda+\rho_i)^{-1} \delta_{(x, \xi, i)}\in \operatorname{\mathbb{P}}_{B^ \lambda} $, with any $ (x, \xi, i)\in \mathbb{T}^n \times \Xi \times \mathbb{I} $, into the above, we find that
$ (L_i-\phi_i)(x,\xi)-(v_k^ \lambda(z)-u_k(z)- \varepsilon)(B^ \lambda {\bf{1}})_i \gt 0. $ |
Hence, we have
$ \phi(x,\xi) \lt L(x,\xi)+(u_k(z)-v_k^ \lambda(z)- \varepsilon)B^ \lambda {\bf{1}} \ \ \text{ for } (x.\xi)\in \mathbb{T}^n \times \mathbb{R}^n. $ |
This ensures that $ u $ is a subsolution of
$ B^ \lambda u+H[u] = (u_k(z)-v_k^ \lambda(z)- \varepsilon)B^ \lambda {\bf{1}} \ \ \text{ in } \mathbb{T}^n, $ |
which implies that $ u-(u_k(z)-v_k^ \lambda(z)- \varepsilon) {\bf{1}} $ is a subsolution of $\left({{{\rm{P}}_\lambda }} \right)$. By comparison (Theorem 1), we get
$ u(x)-(u_k(z)-v_k^ \lambda(z)- \varepsilon)\leq v^ \lambda(x) \ \ \text{ for } x\in \mathbb{T}^n. $ |
The $ k $-th component of the above, evaluated at $ x = z $, yields an obvious contradiction. Thus we conclude that (3.6) holds.
We have the following characterization of $ \mathcal{G} \, ^\prime(z, k, \lambda) $.
Proposition 7. Assume (H), (C) and (M) hold. Let $ \nu = (\nu_i)_{i\in \mathbb{I}}\in \operatorname{\mathbb{P}}_{B^ \lambda} $ and $ (z, k, \lambda)\in \mathbb{T}^n \times \mathbb{I} \times(0, \infty) $. Then we have $ \nu\in \mathcal{G} \, ^\prime(z, k, \lambda) $ if and only if
$ ∑i∈I⟨νi,(Bλψ)i−gi⋅Dψi⟩=ψk(z) for ψ=(ψi)i∈I∈C1(Tn)m. $
|
(3.9) |
Proof. Assume first that $ \nu\in \mathcal{G} \, ^\prime(z, k, \lambda) $. Fix any $ \psi = (\psi_i)_{i\in \mathbb{I}} \in C^1(\mathbb{T}^n)^m $ and define $ \phi = (\phi_i)_{i\in \mathbb{I}}\in C(\mathbb{T}^n \times \mathbb{I})^m $ by
$ \phi_i(x,\xi) = (B^ \lambda \psi)_i(x) -g_i(x,\xi)\cdot D\psi_i(x). $ |
Observe that $ u: = \pm\psi $ satisfy, respectively,
$ B^ \lambda u+H_{\pm\phi}[u] = 0 \ \ \text{ in } \mathbb{T}^n, $ |
and, hence,
$ \pm(\phi,\psi)\in \mathcal{F}( \lambda). $ |
Since $ \nu\in \mathcal{G} \, ^\prime(z, k, \lambda) $, we have
$ \pm \psi_k(z)\leq \langle{\nu,\pm\phi}\rangle = \pm\langle{\nu,\phi}\rangle, $ |
respectively, which shows that (3.9) is valid.
Now, assume that (3.9) is satisfied. Fix any $ (u, \phi)\in \mathcal{F}(\lambda) $. As noted in the proof of Theorem 1, we have $ u\in \operatorname{Lip}(\mathbb{T}^n) $. By the standard mollification technique, given a positive constant $ \varepsilon > 0 $, we can approximate $ u $ by a smooth function $ u^ \varepsilon $ so that
$ \max\limits_{ \mathbb{T}^n}|u-u^ \varepsilon| \lt \varepsilon \ \ \text{ and } \ \ B^ \lambda u^ \varepsilon+H_\phi[u^ \varepsilon]\leq \varepsilon B^ \lambda {\bf{1}} \ \ \text{ in } \mathbb{T}^n. $ |
The last inequality reads
$ B^ \lambda u^ \varepsilon_i(x)-g_i(x,\xi)\cdot Du^ \varepsilon_i(x)-\phi_i(x,\xi)\leq \varepsilon (B^ \lambda {\bf{1}})_i(x) \ \ \text{ for } (x,\xi,i)\in \mathbb{T}^n \times \mathbb{R}^n \times \mathbb{I}. $ |
Integrating the above by $ \nu_i $, summing up in $ i\in \mathbb{I} $ and using (3.9), we get
$ u^ \varepsilon_k(z)-\langle{\nu,\phi}\rangle\leq \varepsilon\langle{\nu,B^ \lambda}\rangle = \varepsilon. $ |
Sending $ \varepsilon\to 0 $ shows that $ \nu\in \mathcal{G} \, ^\prime(z, k, \lambda) $.
It is convenient to restate the theorem above as follows. For $ \mu = (\mu_i)_{i\in \mathbb{I}}\in \operatorname{\mathbb{P}} $ and $ \lambda > 0 $, consider $ \nu = (\nu_i)_{i\in \mathbb{I}}\in \operatorname{\mathbb{P}}_{B^ \lambda} $ given by
$ \nu_i: = ( \lambda+\rho_i)^{-1}\mu_i = \frac{1}{(B^ \lambda {\bf{1}})_i}\mu_i. $ |
(Notice by the above definition that $ \langle{\nu, B^ \lambda}\rangle = \langle{\mu, }\rangle = 1 $.) Observe that for $ \phi = (\phi_i)_{i\in \mathbb{I}}\in C(\mathbb{T}^n \times \Xi)^m $,
$ \langle{\nu,\phi}\rangle = \sum\limits_{i\in \mathbb{I}}\langle{\nu_i,\phi_i}\rangle = \sum\limits_{i\in \mathbb{I}}\langle{\mu_i, ( \lambda+\rho_i)^{-1}\phi_i}\rangle, $ |
and that for any $ (z, k)\in \mathbb{T}^n \times \mathbb{I} $, we have $ \nu\in \mathcal{G} \, ^\prime(z, k, \lambda) $ if and only if
$ ∑i∈I⟨μi,(λ+ρi)−1ϕi⟩≥uk(z) for (ϕ,u)∈F(λ). $
|
(3.10) |
The condition above is stated in the spirit of Proposition 7 as
$ \sum\limits_{i\in \mathbb{I}}\langle{\mu_i,( \lambda+\rho_i)^{-1}((B^ \lambda\psi)_i -g_i\cdot D\psi_i)}\rangle = \psi_k(z) \ \ \text{ for } \ \psi = (\psi_i)_{i\in \mathbb{I}}\in C^1( \mathbb{T}^n)^m. $ |
We define
$ \operatorname{\mathbb{P}}(z,k, \lambda) = \{\mu = (\mu_i)_{i\in \mathbb{I}}\in \operatorname{\mathbb{P}} \,:\, \mu \text{ satisfies (3.10)}\}. $ |
The following proposition is an immediate consequence of Theorem 6.
Corollary 8. Assume (H), (C) and (M). Let $ \lambda > 0 $ and $ (z, k)\in \mathbb{T}^n \times \mathbb{I} $. Let $ v^ \lambda\in C(\mathbb{T}^n \times \mathbb{I}) $ be the unique solution of $\left({{{\rm{P}}_\lambda }} \right)$. Then there exists a $ \mu^{z, k, \lambda} = (\mu^{z, k, \lambda}_i)_{i\in \mathbb{I}}\in \operatorname{\mathbb{P}}(z, k, \lambda) $ such that
$ vλk(z)=∑i∈I⟨μz,k,λi,(λ+ρi)−1Li⟩=minμ=(μi)i∈I∈P(z,k,λ) ∑i∈I⟨μi,(λ+ρi)−1Li⟩. $
|
(3.11) |
We study the asymptotic behavior of the solution $ v^ \lambda $ of $\left({{{\rm{P}}_\lambda }} \right)$, with $ \lambda > 0 $, as $ \lambda\to 0 $.
We make a convenient assumption on the system (P$ _0 $):
$ \text{problem}\ ({{\text{P}}_{0}})\ \text{has}\ \text{a}\ \text{solution}\ {{v}_{0}}\in \operatorname{Lip}({{\mathbb{T}}^{n}}).\text{ } $ |
If $ \rho_i > 0 $ for all $ i\in \mathbb{I} $, then Theorem 1 assures that there exists a unique solution $ v_0 $ of (E). In this situation, it is not difficult to show that the uniform convergence, as $ \lambda \to 0+ $, of $ v^ \lambda $ to the unique solution $ v_0 $ on $ \mathbb{T}^n $. In general, existence and uniqueness of a solution of (P$ _0 $) may fail. In fact, one can prove at least in the case when the $ b_{ij} $ are constants (see Theorem 18) that there exists $ c\in \mathbb{R}^m $ such that
$ Bu+H[u]=c in Tn $
|
(4.1) |
has a solution $ v_0\in \operatorname{Lip}(\mathbb{T}^n) $ and possibly multiple solutions. If such a $ c = (c_i) $ exists, then the introduction of a new family of Hamiltonians,
$ \widetilde H = (\widetilde H_i)_{i\in \mathbb{I}}, \quad \text{ with }\widetilde H_i(x,p) = H_i(x,p)-c_i, $ |
allows us to view (4.1) as in the form of (P$ _0 $). The link between two vanishing discount problems for the original $\left({{{\rm{P}}_\lambda }} \right)$ and for $\left({{{\rm{P}}_\lambda }} \right)$, with $ \widetilde H $ in place of $ H $, is discussed in Sections 5 and 6.
Theorem 9. Assume (H), (C), (M) and (E). Let $ v^ \lambda $ be the unique solution of $\left({{{\rm{P}}_\lambda }} \right)$ for $ \lambda > 0 $. Then there exists a solution $ v^0\in \operatorname{Lip}(\mathbb{T}^n)^m $ of (P$ _0 $) such that the functions $ v_i^ \lambda $ converge to $ v_i^0 $ uniformly on $ \mathbb{T}^n $ as $ \lambda\to 0 $ for all $ i\in \mathbb{I} $.
Lemma 10. Under the hypotheses of Theorem 9, there exists a constant $ C_0 > 0 $ such that for any $ \lambda > 0 $,
$ |vλi(x)|≤C0 for(x,i)∈Tn×I. $
|
(4.2) |
Proof. Let $ v_0 = (v_{0, i})_{i\in \mathbb{I}}\in \operatorname{Lip}(\mathbb{T}^n)^m $ be the solution of (P$ _0 $). Choose a constant $ C_0 > 0 $ so that
$ |v_{0,i}(x)|\leq C_1 \ \ \text{ for } (x,i)\in \mathbb{T}^n \times \mathbb{I}, $ |
and observe by the monotonicity of $ B $ (Lemma 4) that $ v_0+C_1 {\bf{1}} $ and $ v_0-C_1 {\bf{1}} $ are a supersolution and a subsolution of (P$ _0 $), respectively. Noting that $ v_0+C_1 {\bf{1}}\geq 0 $ and $ v_0-C_1 {\bf{1}}\leq 0 $, we deduce that $ v_0+C_1 {\bf{1}}\geq 0 $ and $ v_0-C_1 {\bf{1}}\leq 0 $ are a supersolution and a subsolution of $\left({{{\rm{P}}_\lambda }} \right)$ for any $ \lambda > 0 $, respectively. By comaprison (Theorem 1), we see that, for any $ \lambda > 0 $, $ v_0-C_1 {\bf{1}}\leq v^ \lambda\leq v_0+C_1 {\bf{1}} $ on $ \mathbb{T}^n $ and, moreover, $ -2C_1 {\bf{1}}\leq v^ \lambda\leq 2C_1 {\bf{1}} $ on $ \mathbb{T}^n $. Thus, (4.2) holds with $ C_0 = 2C_1 $.
Lemma 11. Under the hypotheses of Theorem 9, the family $ (v^ \lambda)_{ \lambda\in(0, \, 1)} $ is equi-Lipschitz continuous on $ \mathbb{T}^n $.
Indeed, the family $ (v^ \lambda)_{ \lambda > 0} $ is equi-Lipschitz continuous on $ \mathbb{T}^n $, which we do not need here.
Proof. By Lemma 10, there is a constant $ C_0 > 0 $ such that
$ |(B^ \lambda v^ \lambda(x))_i|\leq C_0 \ \ \text{ for } (x,i, \lambda)\in \mathbb{T}^n \times \mathbb{I} \times(0,\,1). $ |
Hence, as $ v^ \lambda $ is a solution of $\left({{{\rm{P}}_\lambda }} \right)$, we deduce by (C) that there exists a constant $ C_1 > 0 $ such that the $ v_i^ \lambda $ are subsolutions of $ |Du|\leq C_1 $ in $ \mathbb{T}^n $. It is a standard fact that the $ v_i^ \lambda $ are Lipschitz continuous on $ \mathbb{T}^n $ with $ C_1 $ as their Lipschitz bound.
In the proof of Theorem 9, Corollary 8 has a crucial role. We need also results for $ \lambda = 0 $ similar to the corollary.
We consider the condition for $ \mu\in \operatorname{\mathbb{P}} $,
$ ⟨μ,ϕ⟩≥0 for (ϕ,u)∈F(0). $
|
(4.3) |
We denote by $ \operatorname{\mathbb{P}}(0) $ the subset of $ \operatorname{\mathbb{P}} $ consisting of those $ \mu $ which satisfy (4.3).
Theorem 12. Assume (H), (C), (M) and (E). Assume that $ \rho_i = 0 $ on $ \mathbb{T}^n $ for every $ i\in \mathbb{I} $. Then there exists a $ \mu^0 = (\mu_i^0)_{i\in \mathbb{I}}\in \operatorname{\mathbb{P}}(0) $ such that
$ 0=⟨μ0,L⟩=minμ∈P(0)⟨μ,L⟩. $
|
(4.4) |
Proof. We fix a $ (z, k)\in \mathbb{T}^n \times \mathbb{I} $. By Corollary 8, for each $ \lambda > 0 $ there exists $ \mu^ \lambda = (\mu_i^ \lambda)_{i\in \mathbb{I}}\in \operatorname{\mathbb{P}}(z, k, \lambda) $ such that
$ λvλk(z)=∑i∈Iλ⟨μλi,λ−1Li⟩=⟨μλ,L⟩. $
|
(4.5) |
Since $ (\mu^ \lambda)_{ \lambda > 0} $ is a family of Borel probability measures on a compact space $ \mathbb{T}^n \times \Xi \times \mathbb{I} $, there exists a sequence $ (\lambda_j)_{j\in \mathbb{N}}\subset (0, \, 1) $ converging to zero such that the sequence $ (\mu^{ \lambda_j})_{j\in \mathbb{N}} $ converges weakly in the sense of measures to a Borel probability measure $ \mu^0 $ on $ \mathbb{T}^n \times \Xi \times \mathbb{I} $. It follows from (4.5) and Lemma 10 that
$ 0 = \langle{\mu^0,L}\rangle. $ |
Observe that if $ (\phi, u)\in \mathcal{F}(0) $, then, for any $ \lambda > 0 $, $ u $ is a subsolution of
$ B^ \lambda u+H_\phi[u] = \lambda u \ \ \text{ in } \mathbb{T}^n, $ |
and hence, $ (\psi, u) \in \mathcal{F}(\lambda) $, with $ \psi(x, \xi) = \phi(x, \xi)+ \lambda u(x) $. Hence, the inclusion $ \mu^ \lambda\in \mathcal{G} \, ^\prime(z, k, \lambda) $ yields
$ u_k(z)\leq \sum\limits_{i\in \mathbb{I}}\langle{\mu_i^ \lambda, \lambda^{-1}(\phi_i+ \lambda u_i)}\rangle = \lambda\langle{\mu^ \lambda,\phi}\rangle+\langle{\mu^ \lambda,u}\rangle. $ |
Multiplying the above by $ \lambda $ and sending $ \lambda = \lambda_j \to 0 $, in view of Lemma 10, we get
$ 0\leq \langle{\mu^0,\phi}\rangle. $ |
This shows that $ \mu^0\in \operatorname{\mathbb{P}}(0) $. These observations together with (4.3) for $ \mu\in \operatorname{\mathbb{P}}(0) $ guarantee that
$ 0 = \langle{\mu^0,L}\rangle = \min\limits_{\mu\in \operatorname{\mathbb{P}}(0)}\langle{\mu,L}\rangle. $ |
We state a characterization of $ \operatorname{\mathbb{P}}(0) $ in the next, similar to Proposition 7, which we leave to the reader to verify.
Proposition 13. Assume (H), (C) and (M). Let $ \mu = (\mu_i)_{i\in \mathbb{I}}\in \operatorname{\mathbb{P}} $. We have $ \mu\in \operatorname{\mathbb{P}}(0) $ if and only if
$ \sum\limits_{i\in \mathbb{I}}\langle{\mu_i,(B\psi)_i-g_i\cdot D\psi_i}\rangle = 0 \ \ \mathit{\text{for}} \ \psi = (\psi_i)_{i\in \mathbb{I}}\in C^1( \mathbb{T}^n)^m. $ |
We call any minimizer $ \mu\in \operatorname{\mathbb{P}}(0) $ of the optimization problem (4.4) a viscosity Mather measure.
We denote by $ \mathbb{M}_+ $ the set of all Borel nonnegative measures $ \mu = (\mu_i)_{i\in \mathbb{I}} $ on $ \mathbb{T}^n \times \Xi \times \mathbb{I} $. We set
$ \mathbb{M}_+(0) = \{\mu\in \mathbb{M}_+ \,:\, \mu \text{ satisfies (4.3)}\}. $ |
Theorem 14. Let $ (z, k)\in \mathbb{T}^n \times \mathbb{I} $. Assume (H), (C), (M) and (E). For any $ \lambda > 0 $, let $ v^{ \lambda} $ be the unique solution of $\left({{{\rm{P}}_\lambda }} \right)$ and $ \mu^ \lambda \in \operatorname{\mathbb{P}}(z, k, \lambda) $ be a minimizer of (3.11). Then there exists a subsequence of $ (\lambda_j) $, which is denoted again by the same symbol, such that, as $ j\to\infty $,
$ \frac{ \lambda_j}{ \lambda_j+\rho_i}\mu_i^{ \lambda_j} \to \mu_i^0 $ |
weakly in the sense of measures for some $ \mu^0 = (\mu^0_i)_{i\in \mathbb{I}}\in \mathbb{M}_+(0) $, and $ \mu^0 $ satisfies
$ ⟨μ0,L⟩=0. $
|
(4.6) |
In particular,
$ 0=⟨μ0,L⟩=minμ∈M+(0)⟨μ,L⟩. $
|
(4.7) |
Notice that the minimization problem (4.7) is trivial since $ \mu^0 = 0 $ is a minimizer.
Proof. The proof is similar to that of Theorem 12.
We fix a $ (z, k)\in \mathbb{T}^n \times \mathbb{I} $. For each $ \lambda > 0 $, we have
$ λvλk(z)=∑i∈Iλ⟨μλi,(λ+ρi)−1Li⟩. $
|
(4.8) |
Observe that
$ \langle{ \lambda( \lambda+\rho_i)^{-1}\mu^ \lambda_i,}\rangle\leq \langle{\mu^ \lambda_i,}\rangle = \sum\limits_{i\in \mathbb{I}}|\mu_i^ \lambda| = 1. $ |
Accordingly, since $ \mathbb{T}^n \times \Xi \times \mathbb{I} $ is a compact metric space, the families $ (\lambda(\lambda+\rho_i)^{-1}\mu_i^ \lambda)_{ \lambda = \lambda_j, j\in \mathbb{N}} $ have a common subsequence, along which all the families converge to some Borel nonnegative measures $ \mu^0_i $ weakly in the sense of measures. We may assume by replacing the original sequence $ (\lambda_j) $ by its subsequence that
$ \frac{ \lambda_j}{ \lambda_j+\rho_i}\mu_i^{ \lambda_j} \to \mu_i^0 $ |
weakly in the sense of measures. Combining this with (4.8) yields
$ 0 = \sum\limits_{i\in \mathbb{I}}\langle{\mu^0_i,L_i}\rangle = \langle{\mu^0,L}\rangle. $ |
It is obvious to see that $ \mu^0\in \mathbb{M}_+ $.
Let $ (\phi, u)\in \mathcal{F}(0) $. As before, we have $ (\psi, u) \in \mathcal{F}(\lambda) $, with $ \psi(x, \xi) = \phi(x, \xi)+ \lambda u(x) $ and moreover
$ u_k(z)\leq \sum\limits_{i\in \mathbb{I}}\langle{\mu_i^ \lambda,( \lambda+\rho_i)^{-1}(\phi_i+ \lambda u_i)}\rangle = \langle{\mu^ \lambda,( \lambda+\rho_i)^{-1}\phi}\rangle+ \lambda\langle{\mu^ \lambda,( \lambda+\rho_i)^{-1}u}\rangle. $ |
Multiplying the above by $ \lambda $ and sending $ \lambda = \lambda_j \to 0 $, we get
$ 0\leq \langle{\mu^0,\phi}\rangle. $ |
This shows that $ \mu^0\in \mathbb{M}_+(0) $.
Proof of Theorem 9. Let $ \mathcal{V} $ denote the set of accumulation points $ v = (v_i)\in C(\mathbb{T}^n)^m $ in the space $ C(\mathbb{T}^n)^m $ of $ v^ \lambda $ as $ \lambda\to 0 $. In view of the Ascoli-Arzela theorem, Lemmas 4.2 and 4.3 guarantee that the family $ (v^ \lambda)_{ \lambda\in(0, \, 1)} $ is relatively compact in $ C(\mathbb{T}^n)^m $. In particular, the set $ \mathcal{V} $ is nonempty. Note by the stability of the viscosity property under uniform convergence that any $ v\in \mathcal{V} $ is a solution of (P$ _0 $).
If $ \mathcal{V} $ is a singleton, then it is obvious that the whole family $ (v^ \lambda)_{ \lambda > 0} $ converges to the unique element of $ \mathcal{V} $ in $ C(\mathbb{T}^n)^m $ as $ \lambda\to 0 $.
We need only to show that $ \mathcal{V} $ is a singleton. It is enough to show that for any $ v, w\in \mathcal{V} $ and $ (z, k)\in \mathbb{T}^n \times \mathbb{I} $, the inequality $ w_k(z)\leq v_k(z) $ holds.
Fix any $ v, w\in \mathcal{V} $ and $ (z, k)\in \mathbb{T}^n \times \mathbb{I} $. Select sequences $ (\lambda_j) $ and $ (\delta_j) $ converging to zero so that
$ v^{ \lambda_j} \to v,\ \ v^{ \delta_j} \to w \ \ \text{ in } C(T^n)^m \ \ \text{ as } j\to\infty. $ |
By Corollary 8, there exists a sequence $ (\mu^j)_{j\in \mathbb{N}} $ such that
$ μj∈G′(z,k,λj) and vλjk(z)=∑i∈I⟨μji,(λj+ρi)−1Li⟩ for j∈N. $
|
(4.9) |
In view of Theorem 14, we may assume by passing to a subsequence if necessary that, as $ j\to\infty $,
$ \frac{ \lambda_j}{ \lambda_j+\rho_i}\mu_i^j \to \mu_i^0 \ \ \text{ weakly in the sense of measures} $ |
for all $ i\in \mathbb{I} $ and for some $ \mu^0 = (\mu^0_i)_{i\in \mathbb{I}}\in \mathbb{M}_+(0) $ and, moreover,
$ 0=⟨μ0,L⟩. $
|
(4.10) |
Since $ (L- \lambda v^ \lambda, v^ \lambda)\in \mathcal{F}(0) $ and $ \mu^0\in \mathbb{M}_+(0) $, in view of (4.10), we have
$ 0\leq \langle{\mu^0,L- \lambda v^ \lambda}\rangle = \langle{\mu^0,L}\rangle-\langle{\mu^0, \lambda v^ \lambda}\rangle = - \lambda\langle{\mu^0,v^ \lambda}\rangle, $ |
which yields after dividing by $ \lambda > 0 $ and then sending $ \lambda \to 0 $ along $ \lambda = \delta_j $
$ ⟨μ0,w⟩≤0. $
|
(4.11) |
Now, note that $ w $ is a solution of
$ B^ \lambda w+H[w] = \lambda w \ \ \text{ in } \mathbb{T}^n, $ |
and thus, $ (L+ \lambda w, w)\in \mathcal{F}(\lambda) $ and infer by (4.9) that
$ w_k(z)\leq \sum\limits_{i\in \mathbb{I}}\langle{\mu^j_i,( \lambda_j+\rho_i)^{-1}(L_i+ \lambda_j w_i)}\rangle = v_k^{ \lambda_j}(z)+ \lambda_j\sum\limits_{i\in \mathbb{I}}\langle{\mu^j_i,( \lambda_j+\rho_i)^{-1}w_i}\rangle. $ |
Sending $ j\to\infty $ now yields
$ w_k(z)\leq v_k(z)+\langle{\mu^0,w}\rangle. $ |
This together with (4.11) shows that $ w_k(z)\leq v_k(z) $, which completes the proof.
We consider the problem of finding $ c = (c_i)_{i\in \mathbb{I}}\in \mathbb{R}^m $ and $ v = (v_i)_{i\in \mathbb{I}}\in C(\mathbb{T}^n)^m $ such that $ v $ is a solution of
$ Bv+H[v]=c in Tn. $
|
(5.1) |
The pair of such $ c $ and $ v $ is also called a solution of (5.1). This problem is called the ergodic problem in this paper although the term, ergodic problem, should be used only when the condition that $ \sum_{j\in \mathbb{I}}b_{ij}(x) = 0 $ holds for some $ (i, x)\in \mathbb{I} \times \mathbb{T}^n $.
Henceforth, $ D(x) $ denotes the diagonal matrix
$ D(x) = \operatorname{diag}(\rho_1(x),\ldots,\rho_m(x)) \ \ \ \text{ for } x\in \mathbb{T}^n, $ |
where, as before, $ \rho_i(x) = \sum_{j\in \mathbb{I}}b_{ij}(x) $.
Throughout this section, we treat the case when
$ B(x) is irreducible. $
|
(5.2) |
The irreducibility of $ B(x) $ is stated as follows: for any nonempty subset $ I $ of $ \mathbb{I} $, which is not identical to $ \mathbb{I} $, there exists a pair of $ i\in I $ and $ j\in \mathbb{I} \setminus I $ such that $ b_{ij}(x)\not = 0 $.
The following result has been established in Davini-Zavidovique [11,Theorem 2.10] (see also [6,30]).
Proposition 15. Assume (H), (C), (M), (5.2), and that
$ ∑j∈Ibij(x)=0 for all(i,x)∈I×Tn. $
|
(5.3) |
Then there exist $ c_0\in \mathbb{R} $ and $ v_0\in \operatorname{Lip}(\mathbb{T}^n)^m $ such that the pair $ (c_0 {\bf{1}}, v_0) $ is a solution of (5.1).
We remark that (5.3) is satisfied if and only if $ B(x) {\bf{1}} = 0 $ for all $ x\in \mathbb{T}^n $, which holds if and only if $ \rho_i(x) = 0 $ for all $ (i, x)\in \mathbb{I} \times \mathbb{T}^n $.
The next theorem states the central result of this section.
Theorem 16. Assume (H), (C), (M), (5.2), and (5.3). Let $ v^ \lambda $ be the unique solution of $\left({{{\rm{P}}_\lambda }} \right)$ for $ \lambda > 0 $. Then there exists a constant $ c^0\in \mathbb{R} $ and a function $ v^0\in \operatorname{Lip}(\mathbb{T}^n)^m $ such that the functions $ v^ \lambda+ \lambda^{-1}c^0 {\bf{1}} $ converge to $ v^0 $ uniformly on $ \mathbb{T}^n $ as $ \lambda\to 0 $. Moreover, the pair $ (c^0 {\bf{1}}, v^0) $ is a solution of (5.1).
Proof. Thanks to Proposition 15, there exists a solution $ (c_0, v_0)\in \mathbb{R}^m \times C(\mathbb{T}^n)^m $ of (5.1). We set $ \widetilde H = H-c_0 {\bf{1}} $, and note that, since $ B(x) {\bf{1}} = 0 $ for all $ x\in \mathbb{T}^n $, the function $ w^ \lambda: = v^ \lambda+ \lambda^{-1}c_0 {\bf{1}} $ satisfies, in the viscosity sense,
$ \lambda w^ \lambda+Bw^ \lambda+ \widetilde H[w^ \lambda] = \lambda v^ \lambda +c_0 {\bf{1}}+Bv^ \lambda+H[v^ \lambda]-c_0 {\bf{1}} = 0. $ |
By Theorem 9, there exists a solution $ v^0\in \operatorname{Lip}(\mathbb{T}^n)^m $ of $ Bv^0+ \widetilde H[v^0] = 0 $ in $ \mathbb{T}^n $ such that, as $ \lambda\to 0+ $, $ w^ \lambda\to v^0 $ in $ C(\mathbb{T}^n)^m $. Noting that $ (c_0 {\bf{1}}, v^0) $ is a solution of (5.1), we finish the proof.
The condition (5.3) in Proposition 15 can be removed and the following theorem is valid.
Theorem 17. Assume (H), (C), (M), and (5.2). Then there exist $ c^0\in \mathbb{R} $ and $ v^0 = (v^0_i)_{i\in \mathbb{I}}\in \operatorname{Lip}(\mathbb{T}^n)^m $ such that the pair $ (c^0 {\bf{1}}, v^0) $ is a solution of (5.1).
Proof. For $ x\in \mathbb{I} \times \mathbb{T}^n $, we set
$ B^0(x) = (b^0_{ij}(x)): = B(x)-D(x). $ |
and note that $ B^0(x) $ is irreducible and (5.3) holds with $ b_{ij}(x) $ replaced by $ b^0_{ij}(x) $. Note also that $ \rho_i(x)\geq 0 $ for all $ (i, x)\in \mathbb{I} \times \mathbb{T}^n $.
Thanks to Proposition 15, there exist $ c^0\in \mathbb{R} $ and $ v = (v_i)\in \operatorname{Lip}(\mathbb{T}^n)^m $ which solve
$ B^0v+H[v] = c^0 {\bf{1}} \ \ \text{ in } \mathbb{T}^n. $ |
We choose a constant $ C > 0 $ so that $ \max_{(i, x)\in \mathbb{I} \times \mathbb{T}^n}|v_i(x)|\leq C $ and set $ v^\pm(x) = v(x)\pm C {\bf{1}} $, respectively. Observe that, since $ v^+_i(x)\geq 0 $ and $ v^-_i(x)\leq 0 $ for all $ (i, x)\in \mathbb{I} \times \mathbb{T}^n $, the functions $ u = v^+ $ and $ u = v^- $ are a supersolution and subsolution of
$ B^0u+Pu+H[u] = c^0 {\bf{1}} \ \ \text{ in } \mathbb{T}^n, $ |
that is, $ Bu+H[u] = c^0 {\bf{1}} \ \ \text{ in } \mathbb{T}^n $, respectively. In view of the Perron method, the function $ v^0 = (v^0_i)_{i\in \mathbb{I}}\in \operatorname{Lip}(\mathbb{T}^n) $ given by
$ v0i(x)=sup{ui(x):u=(ui)∈C(Tn)m is a subsolution of Bu+H[u]=c01 in Tn,v−≤u≤v+ in Tn}, $
|
is a solution of (5.1), with $ c = c^0 {\bf{1}} $.
Even without the assumption (5.3), it is immediate from Theorem 9 that, under the hypotheses of Theorem 17, if $ c^0 = 0 $, then the convergence holds for the whole family of the solutions $ v^ \lambda $ of $\left({{{\rm{P}}_\lambda }} \right)$, with $ \lambda > 0 $. A typical case when $ c^0 = 0 $ is given by [6,Theorem 4.2] (see also [11,28]).
Throughout this section we assume that $ B $ is a constant matrix, that is, independent of $ x\in \mathbb{T}^n $.
The main results in this section are as follows.
Theorem 18. Assume (H), (C), (M), and that $ B $ is a constant matrix. Then (5.1) has a solution $ (c, v)\in \mathbb{R}^m \times C(\mathbb{T}^n)^m $.
Theorem 19. Under the same hypotheses of Theorem 18, let $ (c, v_0)\in \mathbb{R}^m \times C(\mathbb{T}^n)^m $ be a solution of (5.1) and let $ v^ \lambda $ be the unique solution of $\left({{{\rm{P}}_\lambda }} \right)$ for $ \lambda > 0 $. Then there exists a function $ v^0\in C(\mathbb{T}^n)^m $ such that the functions $ v^ \lambda+(\lambda I+B)^{-1}c $ converge to $ v^0 $ uniformly on $ \mathbb{T}^n $ as $ \lambda\to 0 $. Moreover, the pair $ (c, v^0) $ is a solution of (5.1).
Proof. It is well-known (and easily checked) that due to the monotonicity of $ B $, $ (\lambda I+B) $ is invertible for any $ \lambda > 0 $. We set $ \widetilde H(x, p) = H(x, p)-c $ for $ (x, p)\in \mathbb{T}^n \times \mathbb{R}^n $ and also $ w^ \lambda(x) = v^ \lambda(x)+(\lambda I+B)^{-1}c $ for $ x\in \mathbb{T}^n $. Observe that, in the viscosity sense,
$ λwλ(x)+Bwλ(x)+˜H[wλ]=λvλ+Bvλ+H[vλ]−c+λ(λI+B)−1c+B(λI+B)−1c=0 in Tn. $
|
It is clear that $ \widetilde H $ satisfies (H) and (C) and that $ v_0 $ is a solution of $ Bu+ \widetilde H[u] = 0 $ in $ \mathbb{T}^n $. By Theorem 9, we conclude that there exists a solution $ v^0\in C(\mathbb{T}^n)^m $ of $ Bu+ \widetilde H[u] = 0 $ in $ \mathbb{T}^n $ such that $ w^ \lambda \to v^0 $ in $ C(\mathbb{T}^n)^m $ as $ \lambda\to 0+ $. Noting that $ (c, v^0) $ is a solution of (5.1), we finish the proof.
For the proof of Theorem 18, we begin with a preliminary remark on the permutations.
For a given permutation $ \pi \, :\, \mathbb{I} \to \mathbb{I} $, we define the $ m \times m $ matrix $ P $ by
$ P=(δπ(i),j)i,j∈I, $
|
(6.1) |
where $ \delta_{ij} = \delta_{i, j}: = 1 $ if $ i = j $ and $ = 0 $ otherwise. Note that $ P^{-1} = (\delta_{i, \pi(j)})_{i, j\in \mathbb{I}} = P^ \mathrm{T} $ and that for any $ u = (u_i)_{i\in \mathbb{I}} $,
$ Pu = P (u1⋮um) = (uπ(1)⋮uπ(m)) . $
|
The system of Hamilton-Jacobi equations
$ λu+Bu+H[u]=0 $
|
(6.2) |
can be written component-wise as
$ \lambda u_{\pi(i)}+(Bu)_{\pi(i)}+H_{\pi(i)}[u_{\pi(i)}] = 0 \ \ \text{ for } i\in \mathbb{I}. $ |
By the use of $ P $, the system above is expressed as
$ \lambda (Pu)_i+(PBu)_i+(PH)_{i}[(Pu)_i] = 0, $ |
and furthermore, if $ v = Pu $,
$ λ(v)i+(PBPTv)i+(PH)i[vi]=0. $
|
(6.3) |
Set $ A = (a_{ij})_{i, j\in \mathbb{I}} = PBP^ \mathrm{T} $ and observe that if $ B $ is monotone, then
$ a_{ij} = \sum\limits_{k,l\in \mathbb{I}} \delta_{i,\pi(k)}b_{kl} \delta_{\pi(l),j} = b_{\pi^{-1}(i),\pi^{-1}(j)} {≥0 if i=j,≤0 if i≠j, $
|
and
$ \sum\limits_{j\in \mathbb{I}}a_{ij} = \sum\limits_{j\in \mathbb{I}}b_{\pi^{-1}(i),\pi^{-1}(j)} = \sum\limits_{j\in \mathbb{I}}b_{\pi^{-1}(i),j}\geq 0. $ |
Consequently, if $ B $ is monotone, then $ PBP^ \mathrm{T} $ is monotone as well, and the system (6.2), by using the permutation matrix $ P $, is converted to (6.3).
Proof of Theorem 18. It is well-known (see for instance [35,Section 2.3]) that, given a monotone matrix $ B $, one can find a permutation $ \pi \, :\, \mathbb{I}\to \mathbb{I} $ such that
$ PBPT=(B(1)0⋯0∗B(2)⋱⋮⋮⋱⋱0∗⋯∗B(rp)), $
|
(6.4) |
where, $ P $ is given by (6.1), $ B^{(1)} $ is a diagonal matrix of order $ r_1 $ and, for $ 1 < i\leq p $, $ B^{(i)} $ are irreducible matrices of order $ r_i $. In view of the preliminary remark before this proof, to seek for a solution of (5.1), we may and do assume henceforth $ B $ has the normal form of the right hand side of (6.4).
Set
$ s_k = \sum\limits_{1\leq i \lt k} r_i \ \ \text{ and } \ \ \mathbb{I}_k = \{s_k+1,\ldots,s_k+r_k\} \ \ \text{ for } k\in\{1,\ldots,p\}. $ |
Notice that $ s_1 = 0 $. If $ r_1\geq 1 $, then we first show that there exist an $ r_1 $-vector $ c^{(1)} = (c^{(1)}_i)_{i\in \mathbb{I}_1}\in \mathbb{R}^{r_1} $ and a function $ v^{(1)} = (v^{(1)}_i)_{i\in \mathbb{I}_1}\in C(\mathbb{T}^n)^{r_1} $ such that $ v^{(1)} $ is a solution of
$ B(1)v(1)+H(1)[v(1)]=c(1) in Tn, $
|
(6.5) |
where $ H^{(1)} = (H_i)_{i\in \mathbb{I}_1} $. The system is, in fact, a collection of single equations
$ biiv(1)i+H(1)i[v(1)i]=c(1)i in Tn, with i∈I1, $
|
(6.6) |
and thus the existence of a solution $ (c^{(1)}, v^{(1)}) $ of (6.5) is a classical result. Indeed, for each $ i\in \mathbb{I}_1 $, if $ b_{ii}^{(1)} > 0 $, then (6.6) has a (unique) solution $ v_i^{(1)}\in \operatorname{Lip}(\mathbb{T}^n) $ for any choice of $ c_i^{(1)} $. If $ b_{ii}^{(1)} = 0 $, then (6.6) has a solution $ (c_i^{(1)}, v_i^{(1)})\in \mathbb{R} \times \operatorname{Lip}(\mathbb{T}^n) $ (see unpublished work by Lions PL, Papanicolaou G, and Varadhan S: Homogenization of Hamilton-Jacobi equations). If $ r_1 = m $, then we are done.
Next, assume that $ r_1 < m $ (and equivalently, $ 1 < p $) and we show that there exist a vector $ c^{(2)} = (c^{(2)}_i)_{i\in \mathbb{I}_2}\in \mathbb{R}^{r_2} $ and a function $ v^{(2)} = (v^{(2)}_i)_{i\in \mathbb{I}_2}\in C(\mathbb{T}^n)^{r_2} $ such that $ v^{(2)} $ is a solution of the system
$ B(2)v(2)+H(2)[v(2)]=c(2) in Tn, $
|
(6.7) |
where
$ H(2)i(x,p)=Hi(x,p)−∑j∈I1bi,jv(1)j(x) for i∈I2. $
|
(6.8) |
According to Proposition 15, there exist $ c^{(2)} = (c^{(2)}_i)_{i\in \mathbb{I}_2}\in \mathbb{R}^{r_2} $ and $ v^{(2)} = (v^{(2)}_i)_{i\in \mathbb{I}_2}\in C(\mathbb{T}^n)^{r_2} $ which satisfy (6.7). This way (by induction), we find $ c^{(1)}, \ldots, c^{(p)} $ and $ v^{(1)}, \ldots, v^{(p)} $ such that
$ c^{(k)}\in \mathbb{R}^{r_k} \ \ \text{ and } \ \ v^{(k)}\in C( \mathbb{T}^n)^{r_k} \ \ \text{ for } k\in\{1,\ldots,p\}, $ |
and $ v^{(k)} $ satisfies
$ B(k)v(k)+H(k)[v(p)]=c(k) in Tn, for k∈{1,…,p}. $
|
(6.9) |
where
$ H(k)i(x,p)=Hi(x,p)−∑1≤j<k∑q∈Ijbi,qv(j)q(x) for i∈Ik. $
|
(6.10) |
We define $ c = (c_i)_{i\in \mathbb{I}}\in \mathbb{R}^m $ and $ v = (v_i)_{i\in \mathbb{I}}\in C(\mathbb{T}^n)^m $ by setting
$ c_i = c_i^{(k)} \ \ \text{ and } \ \ v_i = v_i^{(k)} \ \ \text{ for } i\in \mathbb{I}_k,\, k\in\{1,\ldots,p\}, $ |
and observe that
$ Bv+H[v] = c \ \ \text{ in } \mathbb{T}^n. $ |
This completes the proof.
The author would like to thank the anonymous referee for useful and critical comments on the original version of this paper, which have helped significantly to improve the presentation. This work is partially supported by the JSPS KAKENHI #16H03948, #18H00833, #20K03688, and #20H01817.
The author declares no conflicts of interest in this paper.
[1] |
Gendelman HE, Mosley RL, Boska MD, et al. (2014) The promise of nanoneuromedicine. Nanomedicine (London, U.K.) 9: 171–176. doi: 10.2217/nnm.14.17
![]() |
[2] |
Hu YL, Gao JQ (2010) Potential neurotoxicity of nanoparticles. Int J Pharm 394: 115–121. doi: 10.1016/j.ijpharm.2010.04.026
![]() |
[3] |
Yang Z, Liu ZW, Allaker RP, et al. (2010) A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 7: S411–S422. doi: 10.1098/rsif.2010.0158.focus
![]() |
[4] |
Win-Shwe TT, Fujimaki H (2011) Nanoparticles and neurotoxicity. Int J Mol Sci 12: 6267–6280. doi: 10.3390/ijms12096267
![]() |
[5] |
Karmakar A, Zhang Q, Zhang Y (2014) Neurotoxicity of nanoscale materials. J Food Drug Anal 22: 147–160. doi: 10.1016/j.jfda.2014.01.012
![]() |
[6] | Feng X, Chen A, Zhang Y, et al. (2015) Central nervous system toxicity of metallic nanoparticles. Int J Nanomedicine 10: 4321–4340. |
[7] | Larner SF, Wang J, Goodman J, et al. (2017) In Vitro Neurotoxicity Resulting from Exposure of Cultured Neural Cells to Several Types of Nanoparticles. J Cell Death 10: 1179670717694523. |
[8] |
Ariano P, Zamburlin P, Gilardino A, et al. (2011) Interaction of spherical silica nanoparticles with neuronal cells: size-dependent toxicity and perturbation of calcium homeostasis. Small 7: 766–774. doi: 10.1002/smll.201002287
![]() |
[9] |
Podila R, Brown JM (2013) Toxicity of engineered nanomaterials: a physicochemical perspective. J Biochem Mol Toxicol 27: 50–55. doi: 10.1002/jbt.21442
![]() |
[10] |
Dante S, Petrelli A, Petrini EM, et al. (2017) Selective Targeting of Neurons with Inorganic Nanoparticles: Revealing the Crucial Role of Nanoparticle Surface Charge. ACS Nano 11: 6630–6640. doi: 10.1021/acsnano.7b00397
![]() |
[11] |
Xu F, Piett C, Farkas S, et al. (2013) Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons. Mol Brain 6: 29. doi: 10.1186/1756-6606-6-29
![]() |
[12] | Skalska J, Strużyńska L (2015) Toxic effects of silver nanoparticles in mammals – does a risk of neurotoxicity exist? Folia Neuropathol 53: 281–300. |
[13] | Cupaioli FA, Zucca FA, Boraschi D, et al. (2014) Engineered nanoparticles. How brain friendly is this new guest? Prog Neurobiol 119–120: 20–38. |
[14] |
Skalska J, Frontczak-Baniewicz M, Strużyńska L (2015) Synaptic degeneration in rat brain after prolonged oral exposure to silver nanoparticles. Neurotoxicology 46: 145–154. doi: 10.1016/j.neuro.2014.11.002
![]() |
[15] | Wu T, He K, Ang S, et al. (2016) Impairments of spatial learning and memory following intrahippocampal injection in rats of 3-mercaptopropionic acid-modified CdTe quantum dots and molecular mechanisms. Int J Nanomedicine 11: 2737–2755. |
[16] | Ema M, Okuda H, Gamo M, et al. (2107) A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod Toxicol 67: 149–164. |
[17] |
Wang Y, Xiong L, Tang M (2017) Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease. J Appl Toxicol 37: 644–667. doi: 10.1002/jat.3451
![]() |
[18] |
Wang J, Rahman MF, Duhart HM, et al. (2009) Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles. Neurotoxicology 30: 926–933. doi: 10.1016/j.neuro.2009.09.005
![]() |
[19] | Umezawa M, Tainaka H, Kawashima N, et al. (2102) Effect of fetal exposure to titanium dioxide nanoparticle on brain development - brain region information. J Toxicol Sci 37: 1247–1252. |
[20] |
Migliore L, Uboldi C, Di Bucchianico S, et al. (2015) Nanomaterials and neurodegeneration. Environ Mol Mutagen 56: 149–170. doi: 10.1002/em.21931
![]() |
[21] |
Stoccoro A, Karlsson HL, Coppede` F, et al. (2013) Epigenetic effects of nano-sized materials. Toxicology 313: 3–14. doi: 10.1016/j.tox.2012.12.002
![]() |
[22] |
Soenen SJ, Rivera-Gil P, Montenegro JM, et al. (2011) Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6: 446–465. doi: 10.1016/j.nantod.2011.08.001
![]() |
[23] |
Trickler WJ, Lantz SM, Murdock RC, et al. (2010) Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol Sci 118: 160–170. doi: 10.1093/toxsci/kfq244
![]() |
[24] |
Oberdörster G, Elder A, Rinderknecht A (2009) Nanoparticles and the brain: cause for concern? J Nanosci Nanotechnol 9: 4996–5007. doi: 10.1166/jnn.2009.GR02
![]() |
[25] |
Valdiglesias V, Kiliç G, Costa C, et al. (2015) Effects of iron oxide nanoparticles: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Environ Mol Mutagen 56: 125–148. doi: 10.1002/em.21909
![]() |
[26] |
Song B, Zhang Y, Liu J, et al. (2016) Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress? Nanoscale Res Lett 11: 291. doi: 10.1186/s11671-016-1508-4
![]() |
[27] |
Wang J, Deng X, Zhang F, et al. (2014) ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in cultured primary astrocytes. Nanoscale Res Lett 9: 117. doi: 10.1186/1556-276X-9-117
![]() |
[28] |
Marano F, Hussain S, Rodrigues-Lima F, et al. (2011) Nanoparticles: molecular targets and cell signalling. Arch Toxicol 85: 733–741. doi: 10.1007/s00204-010-0546-4
![]() |
[29] |
Lundqvist M, Stigler J, Elia G, et al. (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105: 14265–14270. doi: 10.1073/pnas.0805135105
![]() |
[30] |
Hellstrand E, Lynch I, Andersson A, et al. (2009) Complete high-density lipoproteins in nanoparticle corona. FEBS J 276: 3372–3381. doi: 10.1111/j.1742-4658.2009.07062.x
![]() |
[31] |
Lynch I, Cedervall T, Lundqvist M, et al. (2007) The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 134-135: 167–174. doi: 10.1016/j.cis.2007.04.021
![]() |
[32] |
Gromnicova R, Yilmaz CU, Orhan N, et al. (2016) Localization and mobility of glucose-coated gold nanoparticles within the brain. Nanomedicine (London, U.K.) 11: 617–625. doi: 10.2217/nnm.15.215
![]() |
[33] |
Xie H, Wu J (2016) Silica nanoparticles induce alpha-synuclein induction and aggregation in PC12-cells. Chem Biol Interact 258: 197–204. doi: 10.1016/j.cbi.2016.09.006
![]() |
[34] |
Corazzari I, Gilardino A, Dalmazzo S, et al. (2013) Localization of CdSe/ZnS quantum dots in the lysosomal acidic compartment of cultured neurons and its impact on viability: potential role of ion release. Toxicol In Vitro 27: 752–759. doi: 10.1016/j.tiv.2012.12.016
![]() |
[35] |
Erriquez J, Bolis V, Morel S, et al. (2015) Nanosized TiO2 is internalized by dorsal root ganglion cells and causes damage via apoptosis. Nanomedicine 11: 1309–1319. doi: 10.1016/j.nano.2015.04.003
![]() |
[36] |
Huefner A, Kuan WL, Müller KH, et al. (2016) Characterization and Visualization of Vesicles in the Endo-Lysosomal Pathway with Surface-Enhanced Raman Spectroscopy and Chemometrics. ACS Nano 10: 307–316. doi: 10.1021/acsnano.5b04456
![]() |
[37] |
Petters C, Thiel K, Dringen R (2016) Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes. Nanotoxicology 10: 332–342. doi: 10.3109/17435390.2015.1071445
![]() |
[38] |
Xia T, Kovochich M, Liong M, et al. (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2: 85–96. doi: 10.1021/nn700256c
![]() |
[39] |
Long TC, Saleh N, Tilton RD, et al. (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40: 4346–4352. doi: 10.1021/es060589n
![]() |
[40] |
Huerta-Garcia E, Perez-Arizti JA, Marquez-Ramirez SG, et al. (2014) Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells. Free Radical Biol Med 73: 84–94. doi: 10.1016/j.freeradbiomed.2014.04.026
![]() |
[41] |
Wang J, Sun P, Bao Y, et al. (2011) Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicol In Vitro 25: 242–250. doi: 10.1016/j.tiv.2010.11.010
![]() |
[42] |
Wang J, Sun P, Bao Y, et al. (2012) Vitamin E renders protection to PC12 cells against oxidative damage and apoptosis induced by single-walled carbon nanotubes. Toxicol In Vitro 26: 32–41. doi: 10.1016/j.tiv.2011.10.004
![]() |
[43] | Sheng L, Ze Y, Wang L, et al. (2015) Mechanisms of TiO2 nanoparticle-induced neuronal apoptosis in rat primary cultured hippocampal neurons. J Biomed Mater Res A 103: 1141–1149. |
[44] | Wilson CL, Natarajan V, Hayward SL, et al. (2105) Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles. Nanoscale 7: 18477–18488. |
[45] |
Zieminska E, Stafiej A, Struzynska L (2014) The role of the glutamatergic NMDA receptor in nanosilver-evoked neurotoxicity in primary cultures of cerebellar granule cells. Toxicology 315: 38–48. doi: 10.1016/j.tox.2013.11.008
![]() |
[46] |
Coccini T, Grandi S, Lonati D, et al. (2015) Comparative cellular toxicity of titanium dioxide nanoparticles on human astrocyte and neuronal cells after acute and prolonged exposure. Neurotoxicology 48: 77–89. doi: 10.1016/j.neuro.2015.03.006
![]() |
[47] |
Costa CS., Ronconi JV, Daufenbach JF, et al. (2010). In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol Cell Biochem 342: 51–56. doi: 10.1007/s11010-010-0467-9
![]() |
[48] |
Pisanic TR 2nd, Blackwell JD, Shubayev VI, et al. (2007) Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 28: 2572–2581. doi: 10.1016/j.biomaterials.2007.01.043
![]() |
[49] |
Prabhu BM, Ali SF, Murdock RC, et al. (2010) Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology 4: 150–160. doi: 10.3109/17435390903337693
![]() |
[50] |
Hong F, Sheng L, Ze Y, et al. (2015) Suppression of neurite outgrowth of primary cultured hippocampal neurons is involved in impairment of glutamate metabolism and NMDA receptor function caused by nanoparticulate TiO2. Biomaterials 53: 76–85. doi: 10.1016/j.biomaterials.2015.02.067
![]() |
[51] |
Wang F, Jiao C, Liu J, et al. (2011) Oxidative mechanisms contribute to nanosize silican dioxide-induced developmental neurotoxicity in PC12 cells. Toxicol In Vitro 25: 1548–1556. doi: 10.1016/j.tiv.2011.05.019
![]() |
[52] | Kang Y, Liu J, Song B, et al. (2106) Potential Links between Cytoskeletal Disturbances and Electroneurophysiological Dysfunctions Induced in the Central Nervous System by Inorganic Nanoparticles. Cell Physiol Biochem 40: 1487–1505. |
[53] |
Etem EO, Bal R, Akagac AE, et al. (2014) The effects of hydrated C(60) fullerene on gene expression profile of TRPM2 and TRPM7 in hyperhomocysteinemic mice. J Recept Signal Transduct Res 34: 317–324. doi: 10.3109/10799893.2014.896381
![]() |
[54] | Colombo E, Feyen P, Antognazza MR, et al. (2016) Nanoparticles: A Challenging Vehicle for Neural Stimulation. Front Neurosci 10: 105. |
[55] |
Kumari M, Rajak S, Singh SP, et al. (2012) Repeated oral dose toxicity of iron oxide nanoparticles: biochemical and histopathological alterations in different tissues of rats. J Nanosci Nanotechnol 12: 2149–2159. doi: 10.1166/jnn.2012.5796
![]() |
[56] | Guo D, Bi H, Wang D, et al. (2103) Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells. Int J Biochem Cell Biol 45: 1849–1859. |
[57] |
Hamill OP, Marty A, Neher E, et al. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391: 85–100. doi: 10.1007/BF00656997
![]() |
[58] |
Zhao J, Xu L, Zhang T, et al. (2009) Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology 30: 220–230. doi: 10.1016/j.neuro.2008.12.005
![]() |
[59] |
Tang M, Xing T, Zeng J, et al. (2008) Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons. Environ Health Perspect 116: 915–922. doi: 10.1289/ehp.11225
![]() |
[60] |
Liu Z, Ren G, Zhang T, et al. (2009) Action potential changes associated with the inhibitory effects on voltage gated sodium current of hippocampal CA1 neurons by silver nanoparticles. Toxicology 264: 179–184. doi: 10.1016/j.tox.2009.08.005
![]() |
[61] |
Liu Z, Liu S, Ren G, et al. (2011) Nano-CuO inhibited voltage-gated sodium current of hippocampal CA1 neurons via reactive oxygen species but independent from G-proteins pathway. J Appl Toxicol 31: 439–445. doi: 10.1002/jat.1611
![]() |
[62] | Busse M, Kraegeloh A, Stevens D, et al. (2010) Modeling the effects of nanoparticles on neuronal cells: from ionic channels to network dynamics. Conf Proc IEEE Eng Med Biol Soc: 3816–3819. |
[63] |
Liu Z, Ren G, Zhang T, et al. (2011) The inhibitory effects of nano-Ag on voltage-gated potassium currents of hippocampal CA1 neurons. Environ Toxicol 26: 552–558. doi: 10.1002/tox.20586
![]() |
[64] |
Shan D, Xie Y, Ren G, et al. (2012) Inhibitory effect of tungsten carbide nanoparticles on voltage-gated potassium currents of hippocampal CA1 neurons. Toxicol Lett 209: 129–135. doi: 10.1016/j.toxlet.2011.12.001
![]() |
[65] |
Xu LJ, Zhao JX, Zhang T, et al. (2009) In vitro study on influence of nano particles of CuO on CA1 pyramidal neurons of rat hippocampus potassium currents. Environ Toxicol 24: 211–217. doi: 10.1002/tox.20418
![]() |
[66] |
Salinas K, Kereselidze Z, DeLuna F, et al. (2014) Transient extracellular application of gold nanostars increases hippocampal neuronal activity. J Nanobiotechnol 12: 31. doi: 10.1186/s12951-014-0031-y
![]() |
[67] |
Xu H, Bai J, Meng J, et al. (2009) Multi-walled carbon nanotubes suppress potassium channel activities in PC12 cells. Nanotechnology 20: 285102. doi: 10.1088/0957-4484/20/28/285102
![]() |
[68] |
Gavello D, Vandael DH, Cesa R, et al. (2012) Altered excitability of cultured chromaffin cells following exposure to multi-walled carbon nanotubes. Nanotoxicology 6: 47–60. doi: 10.3109/17435390.2011.553294
![]() |
[69] |
Gleichmann M, Mattson MP (2011) Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal 14: 1261–1273. doi: 10.1089/ars.2010.3386
![]() |
[70] |
Lovisolo D, Gilardino A, Ruffinatti FA (2014) When neurons encounter nanoobjects: spotlight on calcium signalling. Int J Environ Res Public Health 11: 9621–9637. doi: 10.3390/ijerph110909621
![]() |
[71] |
Tang M, Wang M, Xing T, et al. (2008) Mechanisms of unmodified CdSe quantum dot-induced elevation of cytoplasmic calcium levels in primary cultures of rat hippocampal neurons. Biomaterials 29: 4383–4391. doi: 10.1016/j.biomaterials.2008.08.001
![]() |
[72] |
Jakubek LM, Marangoudakis S, Raingo J, et al. (2009) The inhibition of neuronal calcium ion channels by trace levels of yttrium released from carbon nanotubes. Biomaterials 30: 6351–6357. doi: 10.1016/j.biomaterials.2009.08.009
![]() |
[73] |
Liu Z, Zhang T, Ren G, et al. (2012) Nano-Ag inhibiting action potential independent glutamatergic synaptic transmission but increasing excitability in rat CA1 pyramidal neurons. Nanotoxicology 6: 414–423. doi: 10.3109/17435390.2011.583996
![]() |
[74] |
Gilardino A, Catalano F, Ruffinatti FA, et al. (2015) Interaction of SiO2 nanoparticles with neuronal cells: Ionic mechanisms involved in the perturbation of calcium homeostasis. Int J Biochem Cell Biol 66: 101–111. doi: 10.1016/j.biocel.2015.07.012
![]() |
[75] |
Wei H, Deng F, Chen Y, et al. (2014) Ultrafine carbon black induces glutamate and ATP release by activating connexin and pannexin hemichannels in cultured astrocytes. Toxicology 323: 32–41. doi: 10.1016/j.tox.2014.06.005
![]() |
[76] |
Clapham DE (2007) Calcium signaling. Cell 131: 1047–1058. doi: 10.1016/j.cell.2007.11.028
![]() |
[77] |
Patel R, Sesti F (2016) Oxidation of ion channels in the aging nervous system. Brain Res 1639: 174–185. doi: 10.1016/j.brainres.2016.02.046
![]() |
[78] |
Haase A, Rott S, Mantion A, et al. (2012) Effects of silver nanoparticles on primary mixed neural cell cultures: Uptake, oxidative stress and acute calcium responses. Toxicol Sci 126: 457–468. doi: 10.1093/toxsci/kfs003
![]() |
[79] |
Tang M, Li Z, Chen L, et al. (2009) The effect of quantum dots on synaptic transmission and plasticity in the hippocampal dentate gyrus area of anesthetized rats. Biomaterials 30: 4948–4955. doi: 10.1016/j.biomaterials.2009.06.012
![]() |
[80] |
Gramowski A, Flossdorf J, Bhattacharya K, et al. (2010) Nanoparticles induce changes of the electrical activity of neuronal networks on microelectrode array neurochips. Environ Health Perspect 118: 1363–1369. doi: 10.1289/ehp.0901661
![]() |
[81] |
Gao X, Yin S, Tang M, et al. (2011) Effects of developmental exposure to TiO2 nanoparticles on synaptic plasticity in hippocampal dentate gyrus area: an in vivo study in anesthetized rats. Biol Trace Elem Res 143: 1616–1628. doi: 10.1007/s12011-011-8990-4
![]() |
[82] |
Jung S, Bang M, Kim BS, et al. (2014) Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. PLoS One 9: e91360. doi: 10.1371/journal.pone.0091360
![]() |
1. | Jakob Schneider, Ksenia Korshunova, Zeineb Si Chaib, Alejandro Giorgetti, Mercedes Alfonso-Prieto, Paolo Carloni, Ligand Pose Predictions for Human G Protein-Coupled Receptors: Insights from the Amber-Based Hybrid Molecular Mechanics/Coarse-Grained Approach, 2020, 60, 1549-9596, 5103, 10.1021/acs.jcim.0c00661 | |
2. | Stefano Capaldi, Eda Suku, Martina Antolini, Mattia Di Giacobbe, Alejandro Giorgetti, Mario Buffelli, Allosteric sodium binding cavity in GPR3: a novel player in modulation of Aβ production, 2018, 8, 2045-2322, 10.1038/s41598-018-29475-7 | |
3. | Jinan Wang, Yinglong Miao, 2019, 116, 9780128155615, 397, 10.1016/bs.apcsb.2018.11.011 | |
4. | Filippo Baldessari, Riccardo Capelli, Paolo Carloni, Alejandro Giorgetti, Coevolutionary data-based interaction networks approach highlighting key residues across protein families: The case of the G-protein coupled receptors, 2020, 18, 20010370, 1153, 10.1016/j.csbj.2020.05.003 |