Review Topical Sections

Crosstalk among hormones and signaling networks during stomatal development in Arabidopsis hypocotyls

  • Received: 14 July 2016 Accepted: 23 September 2016 Published: 25 January 2016
  • During development, signaling networks specify stomatal cell fate and patterning in response to phytohormones. A number of studies in the past few years have revealed that brassinosteroids repress the signaling pathway that inactivates SPEECHLESS (SPCH), promoting stomatal cell fate determination in the hypocotyl. These plant hormones also control stomatal patterning specification by regulating genes in the TTG/BHLHs/MYBs/GL2 network. Gibberellins, like brassinosteroids, promote stomatal formation in the embryonic stem, which suggests that their signaling pathways may converge. These phytohormones also regulate LLM-domain B-GATA factors. The involvement of these factors as positive regulators of stomatal formation, which function upstream of SPCH, suggests that the brassinosteroid and gibberellin signaling pathways may converge to control stomatal cell fate specification. In addition, the leucine-rich repeat-containing receptor-like protein TOO MANY MOUTHS acts later than these hormones in the cell division sequence that triggers stomatal formation, and it also appears to control stomatal initiation in response to brassinosteroids. The emerging picture suggests that crosstalk among hormones and signaling networks guides stomatal cell fate determination and patterning in the hypocotyl.

    Citation: Laura Serna. Crosstalk among hormones and signaling networks during stomatal development in Arabidopsis hypocotyls[J]. AIMS Molecular Science, 2016, 3(4): 550-559. doi: 10.3934/molsci.2016.4.550

    Related Papers:

    [1] Robert E. Beardmore, Rafael Peña-Miller . Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits. Mathematical Biosciences and Engineering, 2010, 7(4): 923-933. doi: 10.3934/mbe.2010.7.923
    [2] Robert E. Beardmore, Rafael Peña-Miller . Rotating antibiotics selects optimally against antibiotic resistance, in theory. Mathematical Biosciences and Engineering, 2010, 7(3): 527-552. doi: 10.3934/mbe.2010.7.527
    [3] Xiaxia Kang, Jie Yan, Fan Huang, Ling Yang . On the mechanism of antibiotic resistance and fecal microbiota transplantation. Mathematical Biosciences and Engineering, 2019, 16(6): 7057-7084. doi: 10.3934/mbe.2019354
    [4] Jing Jia, Yanfeng Zhao, Zhong Zhao, Bing Liu, Xinyu Song, Yuanxian Hui . Dynamics of a within-host drug resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(2): 2219-2231. doi: 10.3934/mbe.2023103
    [5] Michele L. Joyner, Cammey C. Manning, Brandi N. Canter . Modeling the effects of introducing a new antibiotic in a hospital setting: A case study. Mathematical Biosciences and Engineering, 2012, 9(3): 601-625. doi: 10.3934/mbe.2012.9.601
    [6] Avner Friedman, Najat Ziyadi, Khalid Boushaba . A model of drug resistance with infection by health care workers. Mathematical Biosciences and Engineering, 2010, 7(4): 779-792. doi: 10.3934/mbe.2010.7.779
    [7] Xiaoxiao Yan, Zhong Zhao, Yuanxian Hui, Jingen Yang . Dynamic analysis of a bacterial resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(12): 20422-20436. doi: 10.3934/mbe.2023903
    [8] Natalia L. Komarova . Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2011, 8(2): 289-306. doi: 10.3934/mbe.2011.8.289
    [9] Qimin Huang, Mary Ann Horn, Shigui Ruan . Modeling the effect of antibiotic exposure on the transmission of methicillin-resistant Staphylococcus aureus in hospitals with environmental contamination. Mathematical Biosciences and Engineering, 2019, 16(5): 3641-3673. doi: 10.3934/mbe.2019181
    [10] Hermann Mena, Lena-Maria Pfurtscheller, Jhoana P. Romero-Leiton . Random perturbations in a mathematical model of bacterial resistance: Analysis and optimal control. Mathematical Biosciences and Engineering, 2020, 17(5): 4477-4499. doi: 10.3934/mbe.2020247
  • During development, signaling networks specify stomatal cell fate and patterning in response to phytohormones. A number of studies in the past few years have revealed that brassinosteroids repress the signaling pathway that inactivates SPEECHLESS (SPCH), promoting stomatal cell fate determination in the hypocotyl. These plant hormones also control stomatal patterning specification by regulating genes in the TTG/BHLHs/MYBs/GL2 network. Gibberellins, like brassinosteroids, promote stomatal formation in the embryonic stem, which suggests that their signaling pathways may converge. These phytohormones also regulate LLM-domain B-GATA factors. The involvement of these factors as positive regulators of stomatal formation, which function upstream of SPCH, suggests that the brassinosteroid and gibberellin signaling pathways may converge to control stomatal cell fate specification. In addition, the leucine-rich repeat-containing receptor-like protein TOO MANY MOUTHS acts later than these hormones in the cell division sequence that triggers stomatal formation, and it also appears to control stomatal initiation in response to brassinosteroids. The emerging picture suggests that crosstalk among hormones and signaling networks guides stomatal cell fate determination and patterning in the hypocotyl.


    [1] Gendreau E, Traas J, Desnos T, et al. (1997) Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol 114: 295-305. doi: 10.1104/pp.114.1.295
    [2] Hung C-Y, Lin Y, Zhang M, et al. (1998) A common position-dependent mechanism controls cell-type patterning and GLABRA2 regulation in the root and hypocotyl epidermis of Arabidopsis. Plant Physiol 117: 73-84. doi: 10.1104/pp.117.1.73
    [3] Berger F, Linstead P, Dolan L, et al. (1998) Stomata patterning on the hypocotyl of Arabidopsis thaliana is controlled by genes involved in the control of root epidermis patterning. Dev Biol 194: 226-234. doi: 10.1006/dbio.1997.8836
    [4] Saibo NJ, Vriezen WH, Beemster GT, et al. (2003) Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins . Plant J 33: 989-1000. doi: 10.1046/j.1365-313X.2003.01684.x
    [5] Fuentes S, Cañamero RC, Serna L (2012) Relationship between brassinosteroids and genes controlling stomatal production in the Arabidopsis hypocotyl. Int J Dev Biol 56: 675-680. doi: 10.1387/ijdb.120029ls
    [6] GudesblatGE,Schneider-PizońJ,BettiC,et al. (2012)SPEECHLESS integrates brassinosteroid and stomata signaling pathways. Nat Cell Biol 14: 548-554.
    [7] Bhave NS, Veley KM, Nadeau JA, et al. (2009) TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems. Planta 229: 357-367. doi: 10.1007/s00425-008-0835-9
    [8] Lee MM, Schiefelbein J (1999) WEREWOLF, a MYB-related protein in Arabidopis, is a position-dependent regulator of epidermal cell patterning. Cell 99: 473-483. doi: 10.1016/S0092-8674(00)81536-6
    [9] Bernhardt C, Zhao M, Gonzalez A, et al. (2005) The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis. Development 132: 291-298. doi: 10.1242/dev.01565
    [10] Walker AR, Davison PA, Bolognesi-Winfield AC, et al. (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11: 1337-1349. doi: 10.1105/tpc.11.7.1337
    [11] Payne CT, Zhang F, Lloyd AM (2000) GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 156: 1349-1362.
    [12] Zhang F, Gonzalez A, Zhao M, et al. (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130: 4859-4869. doi: 10.1242/dev.00681
    [13] Bernhardt C, Lee MM, Gonzalez A, et al. (2003) The bHLH genes GLABRA3. GL3, and ENHANCER OF GLABRA3. EGL3, specify epidermal cell fate in the Arabidopsis root. Development 130: 6431-6439.
    [14] Larkin JC, Brown ML, Schiefelbein J (2003) How cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis. Ann Rev Plant Biol 54: 403-430.
    [15] Schiefelbein J (2003) Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Curr Opin Plant Biol 6: 74-78. doi: 10.1016/S136952660200002X
    [16] Serna L (2004a) Epidermal cell patterning and differentiation throughout the apical-basal axis of the seedling. J Exp Bot 56: 1983-1989.
    [17] Serna L (2004b) A network of interacting factors triggering different cell fates. Plant Cell 16: 2258-2263.
    [18] Rerie WG, Feldmann KA, Marks MD (1994) The GLABRA2 gene encodes a homeodomain protein required for normal trichome development in Arabidopsis. Genes Dev 8: 1388-1399. doi: 10.1101/gad.8.12.1388
    [19] Di Cristina MD, Sessa G, Dolan L, et al. (1996) The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. Plant J 10: 393-402. doi: 10.1046/j.1365-313X.1996.10030393.x
    [20] Serna L (2008) CAPRICE positively regulates stomatal formation in the Arabidopsis hypocotyl. Plant Signal Behav 3: 1-6. doi: 10.4161/psb.3.1.5279
    [21] Esch JJ, Chen M, Sanders M, et al. (2003) A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis. Development 130: 5885-5894. doi: 10.1242/dev.00812
    [22] Kirik V, Simon M, Huelskamp M, et al. (2004) The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Dev Biol 268: 506-513. doi: 10.1016/j.ydbio.2003.12.037
    [23] RademacherW (2000)Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Ann RevPlant PhysiolPlant Mol Biol 51:501-531.
    [24] Behringer C,Schwechheimer C (2015) B-GATA transcription factors - insights into their structure, regulation, and role in plant development. Front Plant Sci 6: 90.
    [25] Klermund C,Ranftl QL,Diener J,et al. (2016) LLM-domain B-GATA transcription factors promote stomatal development downstream of light signaling pathways in Arabidopsis thaliana hypocotyls. Plant Cell 28: 646-660. doi: 10.1105/tpc.15.00783
    [26] Bai M-Y, Shang J-X, Oh E, et al. (2012) Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14: 810-817. doi: 10.1038/ncb2546
    [27] Gallego-Bartolomé J,Minguet EG,Grau-Enguix F, et al. (2012) Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proc Natl Acad Sci U S A 109: 13446-13451. doi: 10.1073/pnas.1119992109
    [28] Li QF,Wang C,Jiang L,et al. (2012) An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci Signal 5: ra72.
    [29] Serna L (2013) What causes opposing actions of brassinosteroids on stomatal development? Plant Physiol 162: 3-8. doi: 10.1104/pp.112.213058
    [30] Kim T-W, Michniewicz M, Bergmann DC, et al. (2012). Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482: 419-422. doi: 10.1038/nature10794
    [31] Khan M,Rozhon W,Bigeard J, et al. (2013). Brassinosteroid-regulated GSK3/Shaggy-like kinases phosphorylate mitogen-activated protein (MAP) kinase kinases, which control stomata development in Arabidopsis thaliana . J Biol Chem 288: 7519-7527. doi: 10.1074/jbc.M112.384453
    [32] Balcerowicz M,Ranjan A,Rupprecht L,et al. (2014) Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins. Development 141: 3165-3176. doi: 10.1242/dev.109181
    [33] Balcerowicz M,Hoecker U (2014) Auxin - a novel regulator of stomata differentiation. Trends Plant Sci 19: 747-749. doi: 10.1016/j.tplants.2014.10.006
    [34] Kuppusamy KT,Chen AY,Nemhauser JL (2009) Steroids are required for epidermal cell fate establishment in Arabidopsis roots. Proc Natl Acad Sci U S A 106: 8073-8076. doi: 10.1073/pnas.0811633106
    [35] Perazza D, Vachon G,Herzog M (1998) Gibberellins Promote Trichome Formation by Up-Regulating GLABROUS1 in Arabidopsis. Plant Physiol 117: 375-383. doi: 10.1104/pp.117.2.375
    [36] Nadeau JA, Sack FD (2002) Control of stomatal distribution on the Arabidopsis leaf surface. Science 296: 1697-1700. doi: 10.1126/science.1069596
    [37] Wang M,Yang K,Le J (2015) Organ-specific effects of brassinosteroids on stomatal production coordinate with the action of Too Many Mouths. J Integr Plant Biol 57: 247-255. doi: 10.1111/jipb.12285
    [38] MacAlister CA, Ohashi-Ito K, Bergmann DC (2007) Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature 445: 537-540. doi: 10.1038/nature05491
    [39] Pillitteri LJ, Sloan DB, Bogenschutz NL, et al. (2007) Termination of asymmetric cell division and differentiation of stomata. Nature 445, 501-505.
    [40] Robinson S, Barbier de Reuille P, Chan J, et al. (2011) Generation of spatial patterns through cell polarity switching. Science 333: 1436-1440. doi: 10.1126/science.1202185
  • This article has been cited by:

    1. Pleun J van Duijn, Marc JM Bonten, Antibiotic rotation strategies to reduce antimicrobial resistance in Gram-negative bacteria in European intensive care units: study protocol for a cluster-randomized crossover controlled trial, 2014, 15, 1745-6215, 10.1186/1745-6215-15-277
    2. Hildegard Uecker, Sebastian Bonhoeffer, Modeling antimicrobial cycling and mixing: Differences arising from an individual-based versus a population-based perspective, 2017, 294, 00255564, 85, 10.1016/j.mbs.2017.09.002
    3. Nicolas Houy, Julien Flaig, Optimal dynamic empirical therapy in a health care facility: A Monte-Carlo look-ahead method, 2021, 198, 01692607, 105767, 10.1016/j.cmpb.2020.105767
    4. Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits, 2010, 7, 1551-0018, 923, 10.3934/mbe.2010.7.923
    5. Nicolas Houy, Julien Flaig, Hospital-wide surveillance-based antimicrobial treatments: a Monte-Carlo look-ahead method, 2021, 01692607, 106050, 10.1016/j.cmpb.2021.106050
    6. Daniel Nichol, Peter Jeavons, Alexander G. Fletcher, Robert A. Bonomo, Philip K. Maini, Jerome L. Paul, Robert A. Gatenby, Alexander R.A. Anderson, Jacob G. Scott, Rustom Antia, Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance, 2015, 11, 1553-7358, e1004493, 10.1371/journal.pcbi.1004493
    7. François Blanquart, Evolutionary epidemiology models to predict the dynamics of antibiotic resistance, 2019, 12, 1752-4571, 365, 10.1111/eva.12753
    8. Nienke L Plantinga, Bastiaan HJ Wittekamp, Pleun J van Duijn, Marc JM Bonten, Fighting antibiotic resistance in the intensive care unit using antibiotics, 2015, 10, 1746-0913, 391, 10.2217/fmb.14.146
    9. Roger D. Kouyos, Pia Abel zur Wiesch, Sebastian Bonhoeffer, Christophe Fraser, Informed Switching Strongly Decreases the Prevalence of Antibiotic Resistance in Hospital Wards, 2011, 7, 1553-7358, e1001094, 10.1371/journal.pcbi.1001094
    10. Roderich Roemhild, Hinrich Schulenburg, Evolutionary ecology meets the antibiotic crisis, 2019, 2019, 2050-6201, 37, 10.1093/emph/eoz008
    11. Antonio L. C. Gomes, James E. Galagan, Daniel Segrè, James M. McCaw, Resource Competition May Lead to Effective Treatment of Antibiotic Resistant Infections, 2013, 8, 1932-6203, e80775, 10.1371/journal.pone.0080775
    12. Gabriel G. Perron, Sergey Kryazhimskiy, Daniel P. Rice, Angus Buckling, Multidrug Therapy and Evolution of Antibiotic Resistance: When Order Matters, 2012, 78, 0099-2240, 6137, 10.1128/AEM.01078-12
    13. D. E. Ramsay, J. Invik, S. L. Checkley, S. P. Gow, N. D. Osgood, C. L. Waldner, Application of dynamic modelling techniques to the problem of antibacterial use and resistance: a scoping review, 2018, 146, 0950-2688, 2014, 10.1017/S0950268818002091
    14. Xiao‐Jin Li, Yong Liu, Liang Du, Yan Kang, The Effect of Antibiotic‐Cycling Strategy on Antibiotic‐Resistant Bacterial Infections or Colonization in Intensive Care Units: A Systematic Review and Meta‐Analysis, 2020, 17, 1545-102X, 319, 10.1111/wvn.12454
    15. Hildegard Uecker, Sebastian Bonhoeffer, Antibiotic treatment protocols revisited: the challenges of a conclusive assessment by mathematical modelling, 2021, 18, 1742-5662, 20210308, 10.1098/rsif.2021.0308
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7431) PDF downloads(1034) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog