In this paper, we investigate the existence of sign-changing and signed solutions for nonlinear elliptic equations driven by nonlocal integro-differential operators with critical or supercritical nonlinearity. By combining an appropriate truncation argument with a constrained minimization method and the Moser iteration method, we obtain a sign-changing solution and a signed solution for them under some suitable assumptions. As a particular case, we drive an existence theorem of sign-changing and signed solutions for the fractional Laplacian equations with critical or supercritical growth.
Citation: Kexin Ouyang, Xinmin Qu, Huiqin Lu. Sign-changing and signed solutions for fractional Laplacian equations with critical or supercritical nonlinearity[J]. Mathematical Modelling and Control, 2025, 5(1): 1-14. doi: 10.3934/mmc.2025001
In this paper, we investigate the existence of sign-changing and signed solutions for nonlinear elliptic equations driven by nonlocal integro-differential operators with critical or supercritical nonlinearity. By combining an appropriate truncation argument with a constrained minimization method and the Moser iteration method, we obtain a sign-changing solution and a signed solution for them under some suitable assumptions. As a particular case, we drive an existence theorem of sign-changing and signed solutions for the fractional Laplacian equations with critical or supercritical growth.
| [1] | D. Applebaum, Lévy processes and stochastic calculus, Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511809781 |
| [2] |
R. Servadei, E. Valdinoci, Fractional Laplacian equations with critivcal Sobolev exponent, Rev. Mat. Complut., 28 (2015), 655–676. https://doi.org/10.1007/S13163-015-0170-1 doi: 10.1007/S13163-015-0170-1
|
| [3] |
T. Qi, Y. Liu, Y. Zou, Existence result for a class of coupled fractional differential systems with integral boundary value conditions, J. Nonlinear Sci. Appl., 10 (2017), 4034–4045. https://doi.org/10.22436/jnsa.010.07.52 doi: 10.22436/jnsa.010.07.52
|
| [4] |
R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887–898. https://doi.org/10.1016/j.jmaa.2011.12.032 doi: 10.1016/j.jmaa.2011.12.032
|
| [5] |
R. Servadei, E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Cont. Dyn. Syst., 33 (2013), 2105–2137. https://doi.org/10.3934/dcds.2013.33.2105 doi: 10.3934/dcds.2013.33.2105
|
| [6] |
D. Zhao, New results on controllability for a class of fractional integrodifferential dynamical systems with delay in Banach spaces, Fractal Fract., 5 (2021), 89. https://doi.org/10.3390/fractalfract5030089 doi: 10.3390/fractalfract5030089
|
| [7] |
H. Lu, X. Zhang, Positive solution for a class of nonlocal elliptic equations, Appl. Math. Lett., 88 (2019), 125–131. https://doi.org/10.1016/j.aml.2018.08.019 doi: 10.1016/j.aml.2018.08.019
|
| [8] |
M. Mu, H. Lu, Existence and multiplicity of positive solutions for schr$\ddot{o}$dinger-kirchhoff-poisson System with Singularity, J. Funct. Spaces, 2017 (2017), 1–12. https://doi.org/10.1155/2017/5985962 doi: 10.1155/2017/5985962
|
| [9] |
H. Lu, Multiple positive solutions for singular semipositone periodic boundary value problems with derivative dependence, J. Appl. Math., 2012 (2012), 857–868. https://doi.org/10.1155/2012/295209 doi: 10.1155/2012/295209
|
| [10] |
B. Yan, D. Wang, The multiplicity of positive solutions for a class of nonlocal elliptic problem, J. Math. Anal. Appl., 442 (2016), 72–102. https://doi.org/10.1016/j.jmaa.2016.04.023 doi: 10.1016/j.jmaa.2016.04.023
|
| [11] |
Y. Wang, Y. Liu, Y. Cui, Multiple solutions for a nonlinear fractional boundary value problem via critical point theory, J. Funct. Spaces, 2017 (2017), 1–8. https://doi.org/10.1155/2017/8548975 doi: 10.1155/2017/8548975
|
| [12] |
Z. Zhang, K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456–463. https://doi.org/10.1016/j.jmaa.2005.06.102 doi: 10.1016/j.jmaa.2005.06.102
|
| [13] |
Z. Liu, Z. Wang, J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schr$\ddot{o}$dinger-Poisson system, Ann. Mat. Pura Appl., 195 (2016), 775–794. https://doi.org/10.1007/s10231-015-0489-8 doi: 10.1007/s10231-015-0489-8
|
| [14] |
Y. Wang, Y. Liu, Y. Cui, Multiple sign-changing solutions for nonlinear fractional Kirchhoff equations, Bound. Value Probl., 2018 (2018), 193. https://doi.org/10.1186/s13661-018-1114-8 doi: 10.1186/s13661-018-1114-8
|
| [15] |
Z. Liu, J. Sun, Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Differ. Equations, 172 (2001), 257–299. https://doi.org/10.1006/jdeq.2000.3867 doi: 10.1006/jdeq.2000.3867
|
| [16] |
B. Yan, C. An, The sign-changing solutions for a class of nonlocal elliptic problem in an annulus, Topol. Methods Nonlinear Anal., 55 (2020), 1. https://doi.org/10.12775/TMNA.2019.081 doi: 10.12775/TMNA.2019.081
|
| [17] |
H. Lu, Y. Wang, Y. Liu, Nodal solutions for some second-order semipositone integral boundary value problems, Abstr. Appl. Anal., 44 (2014), 1–6. https://doi.org/10.1155/2014/951824 doi: 10.1155/2014/951824
|
| [18] |
F. Jin, B. Yan, The sign-changing solutions for nonlinear elliptic problem with Carrier type, J. Math. Anal. Appl., 487 (2020), 124002. https://doi.org/10.1016/j.jmaa.2020.124002 doi: 10.1016/j.jmaa.2020.124002
|
| [19] |
Q. Li, K. Teng, W. Wang, J. Zhang, Existence of nontrivial solutions for fractional Schr$\ddot{o}$dinger equations with electromagnetic fields and critical or supercritical nonlinearity, Bound. Value Probl., 2020 (2020), 1120. https://doi.org/10.1186/s13661-020-01409-1 doi: 10.1186/s13661-020-01409-1
|
| [20] |
Y. Liu, Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations, J. Nonlinear Sci. Appl., 8 (2015), 340–353. https://doi.org/10.22436/JNSA.008.04.07 doi: 10.22436/JNSA.008.04.07
|
| [21] |
A. Mao, Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70 (2009), 1275–1287. https://doi.org/10.1016/j.na.2008.02.011 doi: 10.1016/j.na.2008.02.011
|
| [22] |
Z. Liu, F. Heerden, Z. Wang, Nodal type bound states of Schr$\ddot{o}$dinger equations via invariant set and minimax methods, J. Differ. Equations, 214 (2005), 358–390. https://doi.org/10.1016/j.jde.2004.08.023 doi: 10.1016/j.jde.2004.08.023
|
| [23] |
G. Gu, X. Tang, J. Shen, Multiple solutions for fractional Schr$\ddot{o}$dinger-Poisson system with critical or supercritical nonlinearity, Appl. Math. Lett., 111 (2021), 106605. https://doi.org/10.1016/j.aml.2020.106605 doi: 10.1016/j.aml.2020.106605
|
| [24] |
M. Wang, X. Qu, H. Lu, Ground state sign-changing solutions for fractional Laplacian equations with critical nonlinearity, AIMS Math., 6 (2021), 5028–5039. https://doi.org/10.3934/math.2021297 doi: 10.3934/math.2021297
|
| [25] |
H. Lu, X. Qu, J. Wang, Sign-changing and constant-sign solutions for elliptic problems involving nonlocal integro-differential operators, SN Partial Differ. Equations Appl., 2020 (2020), 33. https://doi.org/10.1007/s42985-020-00028-w doi: 10.1007/s42985-020-00028-w
|
| [26] |
R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67–102. https://doi.org/10.1090/S0002-9947-2014-05884-4 doi: 10.1090/S0002-9947-2014-05884-4
|
| [27] | H. Luo, Sign-changing solutions for non-local elliptic equations, Electron. J. Differ. Equations, 2017 (2017), 180. |