Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Two arbitrary-order constraint-preserving schemes for the Yang–Mills equations on polyhedral meshes

  • Received: 15 June 2023 Revised: 10 May 2024 Accepted: 17 June 2024 Published: 24 June 2024
  • Two numerical schemes are proposed and investigated for the Yang–Mills equations, which can be seen as a nonlinear generalisation of the Maxwell equations set on Lie algebra-valued functions, with similarities to certain formulations of General Relativity. Both schemes are built on the Discrete de Rham (DDR) method, and inherit from its main features: an arbitrary order of accuracy, and applicability to generic polyhedral meshes. They make use of the complex property of the DDR, together with a Lagrange-multiplier approach, to preserve, at the discrete level, a nonlinear constraint associated with the Yang–Mills equations. We also show that the schemes satisfy a discrete energy dissipation (the dissipation coming solely from the implicit time stepping). Issues around the practical implementations of the schemes are discussed; in particular, the assembly of the local contributions in a way that minimises the price we pay in dealing with nonlinear terms, in conjunction with the tensorisation coming from the Lie algebra. Numerical tests are provided using a manufactured solution, and show that both schemes display a convergence in L2-norm of the potential and electrical fields in O(hk+1) (provided that the time step is of that order), where k is the polynomial degree chosen for the DDR complex. We also numerically demonstrate the preservation of the constraint.

    Citation: Jérôme Droniou, Jia Jia Qian. Two arbitrary-order constraint-preserving schemes for the Yang–Mills equations on polyhedral meshes[J]. Mathematics in Engineering, 2024, 6(3): 468-493. doi: 10.3934/mine.2024019

    Related Papers:

    [1] Xue Han, Tingting Wang . The hybrid power mean of the generalized Gauss sums and the generalized two-term exponential sums. AIMS Mathematics, 2024, 9(2): 3722-3739. doi: 10.3934/math.2024183
    [2] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [3] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
    [4] Wenpeng Zhang, Yuanyuan Meng . On the sixth power mean of one kind two-term exponential sums weighted by Legendre's symbol modulo p. AIMS Mathematics, 2021, 6(7): 6961-6974. doi: 10.3934/math.2021408
    [5] Jin Zhang, Wenpeng Zhang . A certain two-term exponential sum and its fourth power means. AIMS Mathematics, 2020, 5(6): 7500-7509. doi: 10.3934/math.2020480
    [6] Xiaoxue Li, Wenpeng Zhang . A note on the hybrid power mean involving the cubic Gauss sums and Kloosterman sums. AIMS Mathematics, 2022, 7(9): 16102-16111. doi: 10.3934/math.2022881
    [7] Wenpeng Zhang, Yuanyuan Meng . On the fourth power mean of one special two-term exponential sums. AIMS Mathematics, 2023, 8(4): 8650-8660. doi: 10.3934/math.2023434
    [8] Junfeng Cui, Li Wang . The generalized Kloosterman's sums and its fourth power mean. AIMS Mathematics, 2023, 8(11): 26590-26599. doi: 10.3934/math.20231359
    [9] Xiaoge Liu, Yuanyuan Meng . On the k-th power mean of one kind generalized cubic Gauss sums. AIMS Mathematics, 2023, 8(9): 21463-21471. doi: 10.3934/math.20231093
    [10] Xuan Wang, Li Wang, Guohui Chen . The fourth power mean of the generalized quadratic Gauss sums associated with some Dirichlet characters. AIMS Mathematics, 2024, 9(7): 17774-17783. doi: 10.3934/math.2024864
  • Two numerical schemes are proposed and investigated for the Yang–Mills equations, which can be seen as a nonlinear generalisation of the Maxwell equations set on Lie algebra-valued functions, with similarities to certain formulations of General Relativity. Both schemes are built on the Discrete de Rham (DDR) method, and inherit from its main features: an arbitrary order of accuracy, and applicability to generic polyhedral meshes. They make use of the complex property of the DDR, together with a Lagrange-multiplier approach, to preserve, at the discrete level, a nonlinear constraint associated with the Yang–Mills equations. We also show that the schemes satisfy a discrete energy dissipation (the dissipation coming solely from the implicit time stepping). Issues around the practical implementations of the schemes are discussed; in particular, the assembly of the local contributions in a way that minimises the price we pay in dealing with nonlinear terms, in conjunction with the tensorisation coming from the Lie algebra. Numerical tests are provided using a manufactured solution, and show that both schemes display a convergence in L2-norm of the potential and electrical fields in O(hk+1) (provided that the time step is of that order), where k is the polynomial degree chosen for the DDR complex. We also numerically demonstrate the preservation of the constraint.



    Let q,m,nZ+ with q>2 and m>n1. For any u,vZ, we are concerned with the two-term exponential sums

    G(u,v,m,n;q)=qj=1eq(ujm+vjn),

    where eq(x)=exp(2πix/q) and i2=1.

    For convenience, the following letters and symbols are commonly used in this paper and should be interpreted in the following sense unless otherwise stated.

    χ is Dirichlet character.

    χk is k-order Dirichlet character.

    ϕ(a) is Euler function.

    α is uniquely determined by 4p=α2+27β2 and α1mod3.

    τ(χ) is Gauss sums defined by

    τ(χ)=qs=1χ(s)eq(s).

    The mean value calculation and upper bound estimation of exponential sums has always been a classical problem in analytic number theory. As a special kind of exponential sums, Gauss sums have had an important effect on both cryptography and analytic number theory. Analytic number theory and cryptography will benefit greatly from any significant advancements made in this area. In this paper, we will estimate and calculate the fourth power mean value of two-term exponential sums weighted by a character χ3. In this field, many scholars have investigated the results of G(u,v,m,n;q) in various forms, and obtained many meaningful results, see [3,5,7,8,11,15]. For instance, Zhang and Zhang [9] obtained the power mean about G(u,v,3,1;p)

    p1u=1|pi=1ep(ui3+vi)|4={2p3p2 if3p1,2p37p2 if3p1,

    where p is an odd prime and v is not divisible by p.

    Wang and Zhang [6] obtained the eighth power mean of G(u,v,3,1;p)

    p1u=1|pi=1ep(ui3+vi)|8={7(2p53p4)if6p5,14p575p48p3α2if6p1.

    In addition, Zhang and Han [12] shown the power mean of G(1,v,3,1;p)

    p1v=1|pi=1ep(i3+vi)|6=5p48p3p2, (1.1)

    where p is an odd prime with 3ϕ(p).

    But if 3ϕ(p), whether there exists an exact formula for (1.1). Consider the mean of the simplest

    p1v=1|pi=1ep(i3+vi)|4. (1.2)

    It is worth mentioning that, Zhang and Zhang [10] studied the power mean of the exponential sums weight by χ2, one has the identities

    p1u=1χ2(u)|pi=1ep(ui3+i)|4={p2(ζ+3)if6p5,p2(ζ3)if6p1,

    where ζ=p1t=1(t1+¯tp) with ζZ satisfies inequality |ζ|2p.

    Cao and Wang (see Lemma 3 in [2]) proved the following conclusion, that is, if p is a prime with 3ϕ(p), then for any χ3modp, one has the identity

    p1u=1χ3(u)(pi=1ep(ui3+i))4=(¯χ3(3)3p¯χ3(3)p)τ2(¯χ3)αpτ(χ3).

    Unfortunately, this lemma is incorrect, there is a calculation error in it. It is precisely because of the computational error in this lemma that the main result in the whole text is wrong.

    The following year, Zhang and Meng [16] studied the power mean of G(u,1,3,1;p) weighted by χ2. In this paper, We intend to correct the error in [2] and give a correct conclusion. At the same time, as an application, we give an exact result for (1.2). That is, it will prove these two conclusions:

    Theorem 1. If p is a prime with 3ϕ(p), then we have

    p1u=1χ3(u)|pi=1ep(ui3+i)|4=αpτ(χ3)3pτ2(¯χ3).

    Theorem 2. If p is a prime with 3ϕ(p), then we have

    p1v=1|pi=1ep(i3+vi)|4=2p3p23pA2kpαAk,

    where Ak=ωk[αp2+((αp2)2p3)12]13+ωk[αp2((αp2)2p3)12]13, k=1,2 or 3 is dependent on p, and ω=1+3i2.

    Corollary 1. If p is a prime with 3ϕ(p), then we have the asymptotic formula

    p1v=1|pi=1ep(i3+vi)|4=2p3+O(p2).

    Corollary 2. If p is a prime with 3ϕ(p), then for any integer l, we have recursive formula

    Vl(p)=p1u=1ϑl(u)|pj=1ep(uj3+j)|4=αpp1u=1ϑl3(u)|pj=1ep(uj3+j)|4+3pp1u=1ϑl2(u)|pj=1ep(uj3+j)|4=αpVl3(p)+3pVl2(p),

    when l take 13, the following equations hold

    V1(p)=p1u=1ϑ(u)|pj=1ep(uj3+j)|4=5αp2,V2(p)=p1u=1ϑ2(u)|pj=1ep(uj3+j)|4=4p420p3α2p2,V3(p)=p1u=1ϑ3(u)|pj=1ep(uj3+j)|4=2αp422αp3,

    where ϑ(u)=pi=1ep(ui3).

    In fact, with the third-order linear recursive formula in Corollary 2 and its three initial values V1(p), V2(p) and V3(p), we can easily give the general term formula for the sequence {Vl(p)}.

    Corollary 3. If p is a prime with 3ϕ(p), then we have

    p1u=1|pj=1ep(uj3+j)pi=1ep(ui3)|4=54p3α4p2α227p2α4+2pα21.

    Before starting our proofs of main results, we present the proofs of several key equations in preparation for the next chapter. The properties of Gauss sums and reduced (complete) residue systems are used repeatedly in the proof. In addition, we will refer to the basic contents of number theory in references [1] and [14].

    Lemma 1. If p is a prime with 3ϕ(p), then

    τ3(χ3)+τ3(¯χ3)=αp. (2.1)

    Proof. This is consequence of [4] or [13], herein we omit it.

    Lemma 2. If p is a prime with 3ϕ(p), then

    pi=1pj=1ps=1¯χ3(i3+j3s31)=p(α3)+3τ3(¯χ3).

    Proof. Recall that τ(χ3)τ(¯χ3)=p and (2.1), we have

    pi=1pj=1ps=1¯χ3(i3+j3s31)=1τ(χ3)p1t=1χ3(t)pi=1pj=1ps=1ep(t(i3+j3s31))=1τ(χ3)p1t=1χ3(t)ep(t)(pi=1ep(it3))2(ps=1ep(st3))=1τ(χ3)p1t=1χ3(t)ep(t)(1+p1i=1(1+χ3(i)+¯χ3(i))ep(it))3=1τ(χ3)p1t=1χ3(t)ep(t)(¯χ3(t)τ(χ3)+χ3(t)τ(¯χ3))3=1τ(χ3)p1t=1χ3(t)ep(t)[τ3(χ3)+τ3(¯χ3)+3p(¯χ3(t)τ(χ3)+χ3(t)τ(¯χ3))]=αp+3pτ(χ3)τ(χ3)p1t=1ep(t)+3pτ(χ3)τ(¯χ3)p1t=1χ23(t)ep(t)=p(α3)+3pτ2(¯χ3)τ(χ3)=p(α3)+3τ3(¯χ3).

    This completes the proof.

    Lemma 3. If p is a prime with 3ϕ(p), then

    τ(¯χ3χ2)=¯χ3(2)τ2(χ3)τ(χ2)p.

    Proof. Recall that τ(χ3)τ(¯χ3)=p, we obtain

    pi=1χ3(i21)=pi=1χ3(i2+2i)=1τ(¯χ3)p1j=1¯χ3(j)p1i=1χ3(i)ep(j(i+2))=τ(χ3)τ(¯χ3)p1j=1χ3(j)ep(2j)=¯χ3(2)τ2(χ3)τ(¯χ3)=¯χ3(2)τ3(χ3)p. (2.2)

    From another perspective, we have

    pi=1χ3(i21)=1τ(¯χ3)p1j=1¯χ3(j)pi=1ep(j(i21))=1τ(¯χ3)p1j=1¯χ3(j)ep(j)pi=1ep(i2j)=1τ(¯χ3)p1j=1¯χ3(j)ep(j)[1+p1i=1(1+χ2(i))ep(ij)]=1τ(¯χ3)p1j=1¯χ3(j)ep(j)p1i=1χ2(i)ep(ij)=τ(χ2)τ(¯χ3)p1j=1¯χ3χ2(j)ep(j)=χ2(1)τ(χ2)τ(¯χ3χ2)τ(¯χ3)=χ2(1)τ(χ2)τ(¯χ3χ2)τ(χ3)p. (2.3)

    Combining (2.2) and (2.3), we determine the relationship equation between τ(¯χ3χ2), τ(χ3) and τ(χ2)

    τ(¯χ3χ2)=¯χ3(2)τ2(χ3)τ(χ2)p.

    This completes the proof.

    Lemma 4. If p is a prime with 3ϕ(p), then

    pi=1pj=1ps=1i+js10modp¯χ3(i3+j3s31)=¯χ3(3)τ3(¯χ3)p.

    Proof. Using Lemma 3, we have

    pi=1pj=1ps=1i+js10modp¯χ3(i3+j3s31)=pi=1pj=1ps=1i+j1modp¯χ3(i3+j3+3j2s+3js21)=χ3(4)pi=1pj=1ps=1i+j1modp¯χ3(4i3+j3+3j(2s+j)24)=χ3(4)τ(χ3)pi=1pj=1p1t=1i+j1modpχ3(t)ps=1ep(t(4i3+j3+3js24))=χ3(4)τ(χ3)pi=1pj=1p1t=1i+j1modpχ3(t)ep(t(4i3+j34))[1+p1s=1(1+χ2(s))ep(3jst)]=χ3(4)τ(χ3)pi=1pj=1p1t=1i+j1modpχ3(t)ep(t(4i3+j34))χ2(3jt)τ(χ2)=χ3(4)χ2(3)τ(χ2)τ(χ3)pi=1pj=1i+j1modpχ2(j)τ(χ3χ2)¯χ3χ2(4i3+j34)=χ3(4)χ2(3)τ(χ2)τ(χ3χ2)τ(χ3)pi=1χ2(1i)¯χ3χ2(3i3+3i23i3)=¯χ3(6)χ2(1)τ(χ2)τ(χ3χ2)τ(χ3)p1i=1¯χ3((i+2)2i)=¯χ3(6)χ2(1)τ(χ2)τ(χ3χ2)τ(χ3)p1i=1¯χ3(i)χ3(i+2)=¯χ3(6)χ2(1)τ(χ2)τ(χ3χ2)τ(χ3)p1i=1χ3(1+2¯i)=¯χ3(6)χ2(1)τ(χ2)τ(χ3χ2)τ(χ3)(1+pi=1χ3(i))=χ2(1)¯χ3(6)τ(χ2)τ(¯χ3)τ(χ3χ2)p=¯χ3(3)τ3(¯χ3)p.

    This completes the proof.

    Lemma 5. If p is a prime and 3ϕ(p), then

    pi=1pj=1ps=1¯χ3(i3+j3s3)ep(i+js)=3p+¯χ3(3)τ3(¯χ3).

    Proof. Note that τ(χ3)τ(¯χ3)=p and ¯χ3(i3)=1 with i is an integer relatively prime to p. Therefore we have

    pi=1pj=1ps=1¯χ3(i3+j3s3)ep(i+js)=pi=1pj=1¯χ3(i3+j3)ep(i+j)+pi=1pj=1ps=1¯χ3(i3+j31)ep(s(i+j1))pi=1pj=1¯χ3(i3+j31)=pi=1¯χ3(i3)ep(i)+pi=1pj=1¯χ3(i3+1)ep(j(i+1))pi=1¯χ3(i3+1)+ppi=1pj=1i+j1modp¯χ3(i3+j31)1τ(χ3)p1t=1χ3(t)pi=1pj=1ep(t(i3+j31))=p1i=1ep(i)+ppi=1i+10modp¯χ3(i3+1)1p1i=1(1+χ3(i)+¯χ3(i))¯χ3(i+1)+ppi=1pj=1i+j0modp¯χ3(i3+j3+3j2+3j)1τ(χ3)p1t=1χ3(t)ep(t)(pi=1ep(it3))2=1pi=1¯χ3(i+1)p1i=1χ3(i)¯χ3(i+1)p1i=1¯χ3(i)¯χ3(i+1)+ppj=1¯χ3(3j2+3j)1τ(χ3)p1t=1χ3(t)ep(t)[1+p1i=1(1+χ3(i)+¯χ3(i))ep(it)]2=1p1i=1¯χ3(1+¯i)p1i=1¯χ3(i2+i)+p¯χ3(3)p1j=1¯χ3(j2+j)1τ(χ3)p1t=1χ3(t)ep(t)(¯χ3(t)τ(χ3)+χ3(t)τ(¯χ3))2=1τ(χ3)(τ2(χ3)p1t=1¯χ3(t)ep(t)+τ2(¯χ3)p1t=1ep(t)+2pp1t=1χ3(t)ep(t))+(1+p¯χ3(3))1τ(χ3)p1s=1χ3(s)p1i=1¯χ3(i)ep(s(i+1))=1τ(χ3)(τ2(χ3)τ(¯χ3)τ2(¯χ3)+2pτ(χ3))τ2(¯χ3)τ(χ3)+p¯χ3(3)τ2(¯χ3)τ(χ3)=¯χ3(3)τ3(¯χ3)3p.

    This proves Lemma 5.

    Proof of Theorem 1. Recall that ¯χ3(i3)=1 with (i,p)=1. Hence

    p1u=1χ3(u)|pi=1ep(ui3+i)|4=pi=1pj=1ps=1pt=1p1u=1χ3(u)ep(u(i3+j3s3t3)+i+jst)=τ(χ3)pi=1pj=1ps=1pt=1¯χ3(i3+j3s3t3)ep(i+jst)=τ(χ3)pi=1pj=1ps=1p1t=1¯χ3(i3t3+j3t3s3t3t3)ep(it+jtstt)+τ(χ3)pi=1pj=1ps=1¯χ3(i3+j3s3)ep(i+js)=τ(χ3)pi=1pj=1ps=1¯χ3(i3+j3s31)pt=1ep(t(i+js1))+τ(χ3)p1i=0pj=1ps=1¯χ3(i3+j3s3)ep(i+js)τ(χ3)pi=1pj=1ps=1¯χ3(i3+j3s31)=pτ(χ3)pi=1pj=1ps=1i+js1modp¯χ3(i3+j3s31)τ(χ3)pi=1pj=1ps=1¯χ3(i3+j3s31)+τ(χ3)pi=1pj=1ps=1¯χ3(i3+j3s3)ep(i+js).

    Applying Lemmas 2, 4 and 5 we obtain

    p1u=1χ3(u)|pi=1ep(ui3+i)|4=τ(χ3)¯χ3(3)τ3(¯χ3)τ(χ3)(p(α3)+3τ3(¯χ3))+τ(χ3)(¯χ3(3)τ3(¯χ3)3p)=αpτ(χ3)3pτ2(¯χ3).

    Proof of Theorem 2. Based on Theorem 1 and the identities obtained in [9]

    p1u=1|pi=1ep(ui3+vi)|4={2p3p2 if3p1,2p37p2if3p1.

    We have

    p1v=1|pi=1ep(i3+vi)|4=p1v=1|pi=1ep((¯vi)3+i)|4=p1v=1(1+χ3(v)+¯χ3(v))|pi=1ep(vi3+i)|4=p1v=1|pi=1ep(vi3+i)|4+p1v=1χ3(v)|pi=1ep(vi3+i)|4+p1v=1¯χ3(v)|pi=1ep(vi3+i)|4=2p37p2αpτ(χ3)3pτ2(¯χ3)αpτ(¯χ3)3pτ2(χ3)=2p3p23p(τ(χ3)+τ(¯χ3))2αp(τ(χ3)+τ(¯χ3)). (3.1)

    Now we need to determine the value of the real number τ(χ3)+τ(¯χ3) in (3.1). For convenience, write the A=τ(χ3)+τ(¯χ3), we construct cubic equation A33pAαp=0 based on (2.1) and τ(χ3)τ(¯χ3)=p. According to Cardans formula (formula of roots of a cubic equation), the three roots of the equation are

    A1=[αp2+((αp2)2+(p)3)12]13+[αp2((αp2)2+(p)3)12]13,A2=ω[αp2+((αp2)2+(p)3)12]13+ω2[αp2((αp2)2+(p)3)12]13,A3=ω2[αp2+((αp2)2+(p)3)12]13+ω[αp2((αp2)2+(p)3)12]13,

    where ω=1+3i2.

    It is clear that all Ak (k=1,2 or 3) are real numbers, So A=A1,A2 or A3. Therefore, the proof of theorem is complete.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors gratefully appreciates the referees and editor for their helpful and detailed comments.

    This work is supported by Hainan Provincial Natural Science Foundation of China (123RC473) and Natural Science Foundation of China (12126357).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] D. A. Di Pietro, J. Droniou, Homological- and analytical-preserving serendipity framework for polytopal complexes, with application to the DDR method, ESAIM: M2AN, 57 (2023), 191–225. https://doi.org/10.1051/m2an/2022067 doi: 10.1051/m2an/2022067
    [2] J. Droniou, T. A. Oliynyk, J. J. Qian, A polyhedral discrete de rham numerical scheme for the Yang–Mills equations, J. Comput. Phys., 478 (2023), 111955. https://doi.org/10.1016/j.jcp.2023.111955 doi: 10.1016/j.jcp.2023.111955
    [3] D. N. Arnold, R. S. Falk, R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15 (2006), 1–155. https://doi.org/10.1017/S0962492906210018 doi: 10.1017/S0962492906210018
    [4] D. Arnold, Finite element exterior calculus, Society for Industrial and Applied Mathematics, 2018. https://doi.org/10.1137/1.9781611975543
    [5] D. N. Arnold, R. S. Falk, R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc., 47 (2010), 281–354. https://doi.org/10.1090/S0273-0979-10-01278-4 doi: 10.1090/S0273-0979-10-01278-4
    [6] A. Gillette, K. Hu, S. Zhang, Nonstandard finite element de Rham complexes on cubical meshes, Bit Numer. Math., 60 (2020), 373–409. https://doi.org/10.1007/s10543-019-00779-y doi: 10.1007/s10543-019-00779-y
    [7] D. Arnold, K. Hu, Complexes from complexes, Found. Comput. Math., 21 (2021), 1739–1774. https://doi.org/10.1007/s10208-021-09498-9
    [8] D. Di Pietro, M. Hanot, A discrete three-dimensional{\rm{div}}div complex on polyhedral meshes with application to a mixed formulation of the biharmonic problem, arXiv, 2023. https://doi.org/10.48550/arXiv.2305.05729
    [9] L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, H(div) and H(curl)-conforming VEM, Numer. Math., 133 (2016), 303–332. https://doi.org/10.1007/s00211-015-0746-1 doi: 10.1007/s00211-015-0746-1
    [10] L. Beirão da Veiga, F. Brezzi, F. Dassi, L. D. Marini, A. Russo, A family of three-dimensional virtual elements with applications to magnetostatics, SIAM J. Numer. Anal., 56 (2018), 2940–2962. https://doi.org/10.1137/18M1169886 doi: 10.1137/18M1169886
    [11] D. A. Di Pietro, J. Droniou, F. Rapetti, Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra, Math. Models Methods Appl. Sci., 30 (2020), 1809–1855. https://doi.org/10.1142/S0218202520500372 doi: 10.1142/S0218202520500372
    [12] D. A. Di Pietro, J. Droniou, An arbitrary-order discrete de Rham complex on polyhedral meshes: exactness, Poincaré inequalities, and consistency, Found. Comput. Math., 23 (2023), 85–164. https://doi.org/10.1007/s10208-021-09542-8 doi: 10.1007/s10208-021-09542-8
    [13] D. A. Di Pietro, J. Droniou, An arbitrary-order method for magnetostatics on polyhedral meshes based on a discrete de Rham sequence, J. Comput. Phys., 429 (2021), 109991. https://doi.org/10.1016/j.jcp.2020.109991 doi: 10.1016/j.jcp.2020.109991
    [14] D. A. Di Pietro, J. Droniou, A discrete de Rham method for the Reissner-Mindlin plate bending problem on polygonal meshes, arXiv, 2021. https://doi.org/10.48550/arXiv.2105.11773
    [15] D. A. Di Pietro, J. Droniou, A fully discrete plates complex on polygonal meshes with application to the Kirchhoff–Love problem, Math. Comp., 92 (2023), 51–77. https://doi.org/10.1090/mcom/3765 doi: 10.1090/mcom/3765
    [16] L. Chen, X. Huang, Decoupling of mixed methods based on generalized Helmholtz decompositions, SIAM J. Numer. Anal., 56 (2018), 2796–2825. https://doi.org/10.1137/17M1145872 doi: 10.1137/17M1145872
    [17] L. Chen, X. Huang, Finite elements for{\rm{div}}- and{\rm{div}}div-conforming symmetric tensors in arbitrary dimension, SIAM J. Numer. Anal., 60 (2022), 1932–1961. https://doi.org/10.1137/21M1433708 doi: 10.1137/21M1433708
    [18] L. Beirão da Veiga, F. Dassi, D. A. Di Pietro, J. Droniou, Arbitrary-order pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes, Comput. Meth. Appl. Mech. Eng., 397 (2022), 115061. https://doi.org/10.1016/j.cma.2022.115061 doi: 10.1016/j.cma.2022.115061
    [19] L. Beirão da Veiga, F. Dassi, G. Vacca, The stokes complex for virtual elements in three dimensions, Math. Models Methods Appl. Sci., 30 (2020), 477–512. https://doi.org/10.1142/S0218202520500128 doi: 10.1142/S0218202520500128
    [20] S. H. Christiansen, R. Winther, On constraint preservation in numerical simulations of Yang–Mills equations, SIAM J. Sci. Comput., 28 (2006), 75–101. https://doi.org/10.1137/040616887 doi: 10.1137/040616887
    [21] Y. Berchenko-Kogan, A. Stern, Charge-conserving hybrid methods for the Yang–Mills equations, SMAI J. Comput. Math., 7 (2021), 97–119. https://doi.org/10.5802/smai-jcm.73 doi: 10.5802/smai-jcm.73
    [22] D. Alic, C. Bona-Casas, C. Bona, L. Rezzolla, C. Palenzuela, Conformal and covariant formulation of the Z4 system with constraint-violation damping, Phys. Rev. D, 85 (2012), 064040. https://doi.org/10.1103/PhysRevD.85.064040 doi: 10.1103/PhysRevD.85.064040
    [23] O. Brodbeck, S. Frittelli, P. Hübner, O. A. Reula, Einstein's equations with asymptotically stable constraint propagation, J. Math. Phys., 40 (1999), 909–923. https://doi.org/10.1063/1.532694 doi: 10.1063/1.532694
    [24] J. Frauendiener, T. Vogel, Algebraic stability analysis of constraint propagation, Class. Quantum Grav., 22 (2005), 1769. https://doi.org/10.1088/0264-9381/22/9/019 doi: 10.1088/0264-9381/22/9/019
    [25] C. Gundlach, G. Calabrese, I. Hinder, J. M. Martín-García, Constraint damping in the Z4 formulation and harmonic gauge, Class. Quantum Grav., 22 (2005), 3767. https://doi.org/10.1088/0264-9381/22/17/025 doi: 10.1088/0264-9381/22/17/025
    [26] H. Friedrich, Hyperbolic reductions for Einstein's equations, Class. Quantum Grav., 13 (1996), 1451. https://doi.org/10.1088/0264-9381/13/6/014 doi: 10.1088/0264-9381/13/6/014
    [27] A. Anderson, Y. Choquet-Bruhat, J. W. York Jr., Einstein-Bianchi hyperbolic system for general relativity, Topol. Methods Nonlinear Anal., 10 (1997), 353–373. https://doi.org/10.12775/TMNA.1997.037 doi: 10.12775/TMNA.1997.037
    [28] D. A. Di Pietro, J. Droniou, The Hybrid High-Order method for polytopal meshes: design, analysis, and applications, Springer Cham, 2020. https://doi.org/10.1007/978-3-030-37203-3
    [29] F. Bonaldi, D. A. Di Pietro, J. Droniou, K. Hu, An exterior calculus framework for polytopal methods, arXiv, 2023. https://doi.org/10.48550/arXiv.2303.11093
    [30] D. A. Di Pietro, J. Droniou, S. Pitassi, Cohomology of the discrete de Rham complex on domains of general topology, Calcolo, 60 (2023), 32. https://doi.org/10.1007/s10092-023-00523-7 doi: 10.1007/s10092-023-00523-7
    [31] D. A. Di Pietro, J. Droniou, A third Strang lemma and an Aubin-Nitsche trick for schemes in fully discrete formulationn, Calcolo, 55 (2018), 40. https://doi.org/10.1007/s10092-018-0282-3 doi: 10.1007/s10092-018-0282-3
  • This article has been cited by:

    1. Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas, On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions, 2022, 7, 2473-6988, 12718, 10.3934/math.2022704
    2. M. Vellappandi, Venkatesan Govindaraj, José Vanterler da C. Sousa, Fractional optimal reachability problems with ψ ‐Hilfer fractional derivative , 2022, 45, 0170-4214, 6255, 10.1002/mma.8168
    3. Fidel Meléndez-Vázquez, Guillermo Fernández-Anaya, Aldo Jonathan Muñóz-Vázquez, Eduardo Gamaliel Hernández-Martínez, Generalized conformable operators: Application to the design of nonlinear observers, 2021, 6, 2473-6988, 12952, 10.3934/math.2021749
    4. Hamid Lmou, Khalid Hilal, Ahmed Kajouni, Serkan Araci, A New Result for ψ -Hilfer Fractional Pantograph-Type Langevin Equation and Inclusions, 2022, 2022, 2314-4785, 1, 10.1155/2022/2441628
    5. Ravi P. Agarwal, Afrah Assolami, Ahmed Alsaedi, Bashir Ahmad, Existence Results and Ulam–Hyers Stability for a Fully Coupled System of Nonlinear Sequential Hilfer Fractional Differential Equations and Integro-Multistrip-Multipoint Boundary Conditions, 2022, 21, 1575-5460, 10.1007/s12346-022-00650-6
    6. Abdulwasea Alkhazzan, Wadhah Al-Sadi, Varaporn Wattanakejorn, Hasib Khan, Thanin Sitthiwirattham, Sina Etemad, Shahram Rezapour, A new study on the existence and stability to a system of coupled higher-order nonlinear BVP of hybrid FDEs under the p-Laplacian operator, 2022, 7, 2473-6988, 14187, 10.3934/math.2022782
    7. Sina Etemad, Iram Iqbal, Mohammad Esmael Samei, Shahram Rezapour, Jehad Alzabut, Weerawat Sudsutad, Izzet Goksel, Some inequalities on multi-functions for applying in the fractional Caputo–Hadamard jerk inclusion system, 2022, 2022, 1029-242X, 10.1186/s13660-022-02819-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(971) PDF downloads(112) Cited by(0)

Figures and Tables

Figures(2)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog