Citation: Giancarlo Benettin, Antonio Ponno. Understanding the FPU state in FPU-like models[J]. Mathematics in Engineering, 2021, 3(3): 1-22. doi: 10.3934/mine.2021025
| [1] | Fermi E, Pasta J, Ulam S (1955) Studies of Non Linear Problems, Los-Alamos Internal Report, Document LA-1940. |
| [2] | Lazarus RB, Voorhees EA, Wells MB, et al. (1978) Computing at LASL in the 1949s and 1950s, Los Alamos internal note LA-6943-H, part Ⅲ. |
| [3] | Tuck JL, Menzell MT (1972) The superperiod of the nonlinear weighted string (FPU) problem. Adv Math 9: 399-407. |
| [4] | Campbell DK, Rosenau P, Zaslavsky GM (2005) Introduction: The "Fermi-Pasta-Ulam" problem-the first 50 years. Chaos 15: 015101. |
| [5] | Gallavotti G (2008) The Fermi-Pasta-Ulam Problem: A Status Report, Berlin-Heidelberg: Springer. |
| [6] | Zabusky NJ, Kruskal MD (1965) Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15: 240-245. |
| [7] | Izrailev FM, Chirikov BV (1966) Statistical properties of a nonlinear string. Sov Phys Dokl 11: 30-34. |
| [8] | Manakov SV (1974) Complete integrability and stochastization of discrete dynamical systems. Sov Phys JEPT 40: 269-274. |
| [9] | Ferguson WE, Flaschka H, McLaughlin DW (1982) Nonlinear Toda modes for the Toda chain. J Comput Phys 45: 157-209. |
| [10] | Benettin G, Ponno A (2011) Time-scales to equipartition in the Fermi-Pasta-Ulam problem: Finite-size effects and thermodynamic limit. J Stat Phys 144: 793-812. |
| [11] | Fucito E, Marchesoni F, Marinari E, et al. (1982) Approach to equilibrium in a chain of nonlinear oscillators. J Phys 43: 707-713. |
| [12] | Livi R, Pettini M, Ruffo S, et al. (1983) Relaxation to different stationary states in the Fermi-PastaUlam model. Phys Rev A 28: 3544-3552. |
| [13] | Kramer PR, Biello JA, L'vov YV (2003) Application of weak turbulence theory to FPU model, In: Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations (May 24-27, 2002, Wilmington, NC, USA), AIMS Conference Publications, 482-491. |
| [14] | Berchialla L, Galgani L, Giorgilli A (2004) Localization of energy in FPU chains. Discrete Cont Dyn-A 11: 855-866. |
| [15] | Bambusi D, Ponno A (2006) On metastability in FPU. Commun Math Phys 264: 539-561. |
| [16] | Benettin G, Carati A, Galgani L, et al. The Fermi-Pasta-Ulam problem and the metastability perspective, In: The Fermi-Pasta-Ulam Problem, Berlin: Springer, 151-189. |
| [17] | Carati A, Galgani L, Giorgilli A, et al. (2007) FPU phenomenon for generic initial data. Phys Rev E 76: 022104/1-4. |
| [18] | Carati A, Galgani L, Giorgilli A (2004) The Fermi-Pasta-Ulam problem as a challenge for the foundations of physics. Chaos 15: 015105. |
| [19] | Benettin G, Christodoulidi H, Ponno A (2013), The Fermi-Pasta-Ulam problem and its underlying integrable dynamics. J Stat Phys 152: 195-212. |
| [20] | Biello JA, Kramer PR, L'vov YV (2003) Stages of energy transfer in the FPU model, In: Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations (May 24-27, 2002, Wilmington, NC, USA), AIMS Conference Publications, 113-122. |
| [21] | Shepelyansky DL (1997) Low-energy chaos in the Fermi-Pasta-Ulam Problem. Nonlinearity 10: 1331-1338. |
| [22] | Benettin G, Livi R, Ponno A (2009) The Fermi-Pasta-Ulam problem: scaling laws vs. initial conditions. J Stat Phys 135: 873-893. |
| [23] | Livi R, Pettini M, Ruffo S, et al. (1985) Equipartition threshold in nonlinear large Hamiltonian systems: The Fermi-Pasta-Ulam model. Phys Rev A 31: 1039-1045. |
| [24] | Gardner CS, Green JM, Kruskal MD (1967) Method for solving the Korteweg-de Vries equation. Phys Rev Lett 19: 1095-1097. |
| [25] | Lax PD (1968) Integrals of nonlinear equations of evolution and solitary waves. Commun Pure Appl Math 21: 467-490. |
| [26] | Miura RM, Gardner CS, Kruskal MD (1968) Korteweg-de Vries equation and generalization, Ⅱ. Existence of conservation laws and constants of motion. J Math Phys 9: 1204-1209. |
| [27] | Zakharov VE, Feddeev LD (1971) Korteweg-de Vries equation: A completely integrable Hamiltonian system. Funct Anal Appl 5: 280-286. |
| [28] | Zakharov VE (1973) On stochastization of one dimensional chains of nonlinear oscillators. Sov Phys JETP 38: 108-110. |
| [29] | Toda M (1967) Vibration of a chain with nonlinear interaction. J Phys Soc Jpn 22: 431-436. |
| [30] | Toda M (1967) Wave propagation in anharmonic lattices. J Phys Soc Jpn 23: 501-506. |
| [31] | Toda M (1969) Mechanics and statistical mechanics of nonlinear chains. J Phys Soc Jpn 26: 109-111. |
| [32] | Toda M (1970) Waves in nonlinear lattice. Prog Theor Phys 45: 174-200. |
| [33] | Hénon M (1974) Integrals of the Toda lattice. Phys Rev B 9: 1921-1923. |
| [34] | Flaschka H (1974) The Toda lattice. Ⅱ. existence of integrals. Phys Rev B 9: 1924-1925. |
| [35] | Cecchetto M (2015) Normal modes and actions in the Toda Model, Master thesis of University of Padua, Dept. of Mathematics "Tullio Levi-Civita". |
| [36] | Henrici A, Kappeler T (2008) Global action-angle variables for the periodic Toda lattice. Int Math Res Not 2008: 1-52. |
| [37] | Henrici A, Kappeler T (2008) Global Birkhoff coordinates for the periodic Toda lattice. Nonlinearity 21: 2731-2758. |
| [38] | Bambusi D, Maspero A (2016) Birkhoff coordinates for the Toda Lattice in the limit of infinitely many particles with an application to FPU. J Funct Anal 270: 1818-1887. |