Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js
Research article Special Issues

Improvement of flatness for vector valued free boundary problems

  • For a vectorial Bernoulli-type free boundary problem, with no sign assumption on the components, we prove that flatness of the free boundary implies C1, α regularity, as well-known in the scalar case [1,4]. While in [15] the same result is obtained for minimizing solutions by using a reduction to the scalar problem, and the NTA structure of the regular part of the free boundary, our result uses directly a viscosity approach on the vectorial problem, in the spirit of [8]. We plan to use the approach developed here in vectorial free boundary problems involving a fractional Laplacian, as those treated in the scalar case in [10,11].

    Citation: Daniela De Silva, Giorgio Tortone. Improvement of flatness for vector valued free boundary problems[J]. Mathematics in Engineering, 2020, 2(4): 598-613. doi: 10.3934/mine.2020027

    Related Papers:

    [1] Khalid K. Ali, K. R. Raslan, Amira Abd-Elall Ibrahim, Mohamed S. Mohamed . On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type. AIMS Mathematics, 2023, 8(8): 18206-18222. doi: 10.3934/math.2023925
    [2] Xiulin Hu, Lei Wang . Positive solutions to integral boundary value problems for singular delay fractional differential equations. AIMS Mathematics, 2023, 8(11): 25550-25563. doi: 10.3934/math.20231304
    [3] Manal Elzain Mohamed Abdalla, Hasanen A. Hammad . Solving functional integrodifferential equations with Liouville-Caputo fractional derivatives by fixed point techniques. AIMS Mathematics, 2025, 10(3): 6168-6194. doi: 10.3934/math.2025281
    [4] Chuanli Wang, Biyun Chen . An hp-version spectral collocation method for fractional Volterra integro-differential equations with weakly singular kernels. AIMS Mathematics, 2023, 8(8): 19816-19841. doi: 10.3934/math.20231010
    [5] Idris Ahmed, Sotiris K. Ntouyas, Jessada Tariboon . Separated boundary value problems via quantum Hilfer and Caputo operators. AIMS Mathematics, 2024, 9(7): 19473-19494. doi: 10.3934/math.2024949
    [6] Reny George, Sina Etemad, Ivanka Stamova, Raaid Alubady . Existence of solutions for [p,q]-difference initial value problems: application to the [p,q]-based model of vibrating eardrums. AIMS Mathematics, 2025, 10(2): 2321-2346. doi: 10.3934/math.2025108
    [7] Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042
    [8] Ravi P. Agarwal, Bashir Ahmad, Hana Al-Hutami, Ahmed Alsaedi . Existence results for nonlinear multi-term impulsive fractional q-integro-difference equations with nonlocal boundary conditions. AIMS Mathematics, 2023, 8(8): 19313-19333. doi: 10.3934/math.2023985
    [9] Sadia Arshad, Iram Saleem, Ali Akgül, Jianfei Huang, Yifa Tang, Sayed M Eldin . A novel numerical method for solving the Caputo-Fabrizio fractional differential equation. AIMS Mathematics, 2023, 8(4): 9535-9556. doi: 10.3934/math.2023481
    [10] Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059
  • For a vectorial Bernoulli-type free boundary problem, with no sign assumption on the components, we prove that flatness of the free boundary implies C1, α regularity, as well-known in the scalar case [1,4]. While in [15] the same result is obtained for minimizing solutions by using a reduction to the scalar problem, and the NTA structure of the regular part of the free boundary, our result uses directly a viscosity approach on the vectorial problem, in the spirit of [8]. We plan to use the approach developed here in vectorial free boundary problems involving a fractional Laplacian, as those treated in the scalar case in [10,11].


    Jackson [25] introduced quantum calculus. Then, it was later developed by Al-Salam who started fitting the concept of q–fractional calculus [7]. Agarwal continued studying certain q–fractional integrals and derivatives [3]. Furthermore, some researchers have also studied q–difference equations (for more details, see [1,2,5,6,8,9,15,23,24,26,27,33,39,40]). On the one hand, fractional differential equations have gained a considerable importance due to their applications in various fields of sciences, such as physics, mechanics, chemistry, and engineering (see [17,18,19,20,21]). In [22], El-Sayed discussed a class of nonlinear functional differential equations of arbitrary orders, and Lakshmikantham [30] initiated the basic theory for fractional functional differential equations.

    In 1996, Delbosco et al. investigated Dβu(t)=(t,u) with initial condition: u(a)=η, where a>0, ηR and βJ:=(0,1) [16]. In 2005, Bai et al. presented the boundary problem:

    Dβ0u(t)=h(t,u(t)),

    under conditions: u(0)=u(1)=0, where tJ, 0<β2, and Dβ0 is the Riemann-Liouville standard derivative [11]. In 2008, Qiu et al. studied the equation with conditions: u(0)=u(1)=u(1)=0, where tJ, 2<β<3, Dβ0+ is the Caputo derivative and h:ˉJ×[0,)[0,), here ˉJ:=[0,1], is such that limt0+h(t,.)= [34]. In 2010, Agarwal et al. considered the singular fractional Dirichlet problem:

    Dβu(t)+h(t,u(t),Dγu(t))=0,

    with the boundary value condition: u(0)=u(1)=0, where β(1,2], γ>0, βγ1, hCar(ˉJ×(0,)×R), h is positive and singular at t=0, and D is the usual Riemann-Liouville derivative [4]. In 2012, Cabada et al. investigated the existence of positive solution for the following nonlinear fractional differential equation:

    {Dβu(t)=h(t,u(t))u(0)=u(1)=0,u(1)=10u(ξ)dξ,

    where 0<t<1, 2<β<3 and h:ˉJ×[0,)[0,) is a continuous function [13]. In 2014, Li reviewed the problem:

    CDβu(t)+h(t,u(t),Dγu(t))=0,

    for each tJ, under conditions: u(0)=u(0)=0 and u(1)=CDβu(1), where β(2,3), γJ, h:(0,1]×R2R is continuous function that may be singular at t=0, CDβ is the standard Caputo derivative [31]. In 2016, the fractional integro-differential equation

    Dγu(t)=h(t,u(t),u(t),Dαu(t),Iβu(t)),

    under conditions u(0)=u(η), u(1)=ν0u(ξ)dξ and u(i)(0)=0 for i=2,,[γ]1 was investigated, where tJ, γ[2,3), uˉB=C1(ˉJ), α,η,νJ, β>1 and h:ˉJ×R4R is a function such that h(t,.,.,.,.) is singular at some point tˉJ [44]. In 2017, Shabibi et al. studied the singular fractional integro-differential equation:

    CDβu(t)+h(t,u(t),u(t),cDγu(t),μ(u(t)))=0,

    where μ(u(t))=t0f(ξ)u(ξ)dξ, under boundary conditions: u(0)=u(0) and u(1)=CDγu(t), where tJ, uˉB, β>2, 0<γ,a<1, fˉL=L1(ˉJ), f1=m, h(t,u1,u2,u3,u4) is singular at some points tˉJ and CDβ is the Caputo fractional derivative [45]. In 2020, Samei considered the singular system of q–differential equations:

    {Dα1qu(t)=g1(t,u(t),v(t)),Dα2qv(t)=g2(t,u(t),v(t)),

    with conditions: u(0)=v(0)=0, u(i)(0)=v(i)(0)=0, for i=2,,n1 and

    u(1)=[Iγ1q(w1(t)u(t))]t=1,v(1)=[Iγ2q(w2(t)v(t))]t=1,

    where Dαjq is the q–derivative of fractional order αj, αj(n,n+1] with n3, Iγjq is the q–integral of fractional order γj, γj1, gjC(E), gj are singular at t=0 and satisfy the local Carathéodory condition on E=(0,1]×(0,)×(0,), and wjˉL are non-negative such that

    [Iγjq(wj(t))]t=1[0,12),

    for j=1,2 [37]. Also, Liang et al. [32] investigated a nonlinear problem of regular and singular fractional q–differential equation:

    cDαqu(t)=h(t,u(t),u(t),cDβqu(t)),

    with conditions: u(0)=c1u(1), u(0)=c2cDβqu(1) and u(k)(0)=0 for all 2kn1, here n1<α<n with n3, β,q,c1J, 0<c2<Γq(2β), function h is a Lκ-Carathéodory and h(t,u1,u2,u3) may be singular. Similarly, some related results have been obtained in [28,36,38]. Dassios et al. used a generalized system of differential equations of fractional order:

    Tλdλ(t)dt=Hdλ(t)+KE(ωrefωCol(t)),

    to incorporate memory into an electricity market model by constructing the fractional-order dynamical model, studying its solutions, and providing the closed formulas of solutions, where dλ(t)dt, λ(t) are the marginal electricity price and electricity price, respectively, ωref represents the reference frequency, ωCol(t) represents the frequency of the Col, that is, ωrefωCol(t) is the deviation frequency of the CoI with respect to the reference frequency, Tλ is the time constant, Hd is the deviation with respect to a perfect tracking integrator, and for a low-pass filter, it is Hd=1, and KE can be used as feedback gain [14].

    Using the ideas from these works, we investigate the existence of solutions for the following nonlinear pointwise defined fractional q–integro-differential equation:

    Dαqu(t)=w(t,u(t),Dβqu(t),t0f(ξ)u(ξ)dξ,φ(u(t))), (1.1)

    for qJ, under boundary conditions: b0u(r)dr=0, u(1)=u(a) and u(j)(0)=0 for j2, here α2, a,b,βJ, φ:ˉBˉB is a map such that

    φ(u1)φ(u2)c1u1u2+c2u1u2,

    for some non-negative real numbers c1 and c2 belonging to [0,) and all u1,u2ˉB, where Dαq and Dβq are the Caputo fractional q–derivatives of order α and β, respectively, which are defined in (2.11), and wˉL is singular at some points tˉJ.

    In fact, the non-constant real-valued function u on the interval I=[a,b] is said to be singular on I, if it is continuous, and there exists a set SI of measure 0 such that for all t outside of S, u(t) exists, and it is zero, that is, the derivative of u vanish almost everywhere. We say that, Dαqu(t)+g(t)=0 is a pointwise defined equation on ˉJ if there exists set SˉJ such that the measure of Sc is zero, and the equation holds on S [44].

    In Section 2, we recall some essential definitions of Caputo fractional q–derivative. Section 3 contains our main results of this work, while an example is presented to support the validity of our obtained results. An application with some needed algorithms for the problems are given in Section 4. In Section 5, conclusion is presented.

    Throughout the paper, we apply the notations of time scales calculus [12]. The Caputo fractional q–derivative is considered here on

    Ts0={0}{s:s=s0q},

    for all N, s0R and qJ. If there is no confusion concerning s0, we denote Ts0 by T. Let pR. Let us define [p]q=(1qp)(1q)1 [25]. The q–factorial function (vw)()q with N0 is defined by

    (vw)()q=1k=0(vwqk),(v,wR), (2.1)

    and (vw)(0)q=1, where N0:={0,1,2,3,} [2]. Also, for σR, we have:

    (vw)(σ)q=vσk=0vwqkvwqσ+k,(v,wR). (2.2)

    In [10], the authors proved that (vw)(σ+ν)q=(vw)(σ)q(vqσw)(ν)q and

    (avaw)(σ)q=aσ(vw)(σ)q,

    for each v,wR. If w=0, then it is clear that v(σ)=vσ. The q–Gamma function is given by

    Γq(v)=(1q)1v(1q)(v1)q,

    where vR{,2,1,0} [25]. In fact, by using (2.2), we have

    Γq(v)=(1q)1vk=01qk+11qv+k1,(vR). (2.3)

    Note that, Γq(v+1)=[v]qΓq(v) [10]HY__HY, Lemma 1]. For a function u:TR, the q–derivative of u, is

    Dq[u](t)=(ddt)qu(t)=u(t)u(qt)(1q)t, (2.4)

    for all tT{0}, and Dq[u](0)=limt0Dq[u](t) [2]. Also, the higher order q–derivative of the function u is defined by Dnq[u](t)=Dq[Dn1q[u]](t), for all n1, where D0q[u](t)=u(t) [2]. In fact,

    Dnq[u](t)=1tn(1q)nnk=0(1qn)(k)q(1q)(k)qqku(tqk), (2.5)

    for tT{0} [9].

    Remark 2.1. By using Eq (2.1), we can change Eq (2.5) into the following:

    Dnq[u](t)=1tn(1q)nnk=0k1i=0(1qin)k1i=0(1qi+1)qku(tqk). (2.6)

    The q–integral of the function u is defined by

    Iq[u](t)=t0u(ξ)dqξ=t(1q)k=0qku(tqk), (2.7)

    for 0tb, provided that the series is absolutely convergent [2]. If a is in [0,b], then

    bau(ξ)dqξ=Iq[u](b)Iq[u](a)=(1q)k=0qk[bu(bqk)au(aqk)], (2.8)

    whenever the series converges. The operator Inq is given by I0q[u](t)=u(t) and

    Inq[u](t)=Iq[In1q[u]](t),

    for n1 and uC([0,b]) [2]. It has been proven that

    Dq[Iq[u]](t)=u(t),Iq[Dq[u]](t)=u(t)u(0),

    whenever the function u is continuous at t=0 [2]. The fractional Riemann-Liouville type q–integral of the function u is defined by

    Iσq[u](t)=1Γq(σ)t0(tξ)(σ1)qu(ξ)dqξ,I0q[u](t)=u(t), (2.9)

    for tˉJ and σ>0 [9,23].

    Remark 2.2. By using Eqs (2.2), (2.3) and (2.7), we obtain:

    1Γq(σ)t0(tξ)(σ1)qu(ξ)dqξ=1Γq(σ)t0tσ1i=0tξqitξqσ+i1u(ξ)dqξ=tσ(1q)σi=01qσ+i11qi+1k=0qki=01qk+i1qσ+k+i1u(tqk).

    Therefore, we have:

    Iσq[u](t)=tσ(1q)σlimnnk=0qkni=0(1qσ+i1)(1qk+i)(1qi+1)(1qσ+k+i1)u(tqk), (2.10)

    The Caputo fractional q–derivative of the function u is defined by

    CDσq[u](t)=I[σ]σq[D[σ]q[u]](t)=1Γq([σ]σ)t0(tξ)([σ]σ1)qD[σ]q[u](ξ)dqξ (2.11)

    for tˉJ and σ>0 [23,35]. It has been proven that

    Iνq[Iσq[u]](t)=Iσ+νq[u](t),CDσq[Iσq[u]](t)=u(t),

    where σ,ν0 [23]. Also,

    Iσq[Dnq[u]](t)=Dnq[Iσq[u]](t)n1k=0tσ+knΓq(σ+kn+1)Dkq[u](0),

    where σ>0 and n1 [23].

    Remark 2.3. From Eq (2.3), Remark 2.1, and Eq (2.10) in Remark 2.2, we obtain:

    1Γq([σ]σ)t0(tξ)([σ]σ1)qD[σ]q[u](ξ)dqξ=1Γq([σ]σ)t0t[σ]σ1[i=0tsqitsq[σ]σ1+i]×(1t[σ](1q)[σ][σ]k=0[k1i=0(1qi[σ])(1qi+1)]qku(xqk))dqs=1tσ(1q)σ[σ]k=0([i=0(1q[σ]σ+i1)(1qk+i)(1qi+1)(1q[σ]σ1+k+i)]×([σ]m=0[m1i=0(1qi[σ])(1qi+1)]qmu(tqk+m))).

    Thus, we have:

    CDσq[u](t)=1tσ(1q)σ[σ]limnnk=0([ni=0(1q[σ]σ+i1)(1qk+i)(1qi+1)(1q[σ]σ1+k+i)]×([σ]m=0[m1i=0(1qi[σ])(1qi+1)]qmu(tqk+m))). (2.12)

    The authors in [41] presented all algorithms and MATLAB code's lines to simplify q–factorial functions (vw)(n)q, (vw)(σ)q, Γq(v), Iq[u](t), and some necessary equations.

    Lemma 2.4. [27,29] For σ>0, the general solution of the fractional q–differential equation CDσu(t)=0 is given by u(t)=n1i=0eiti, where eiR for i=0,1,2,,n1 and n=[σ]+1 here [σ] denotes the integer part of the real number σ.

    We use the three norms: u=suptˉJ|u(t)|,

    (u,u)=max{u,u},

    and u1=ˉJ|u(ξ)|dξ in ˉA=C(ˉJ), ˉB=C1(ˉJ), and ˉL=L1(ˉJ), respectively. Let Ψ be the family of nondecreasing functions \mathtt{ψ} : [0, \infty) \to [0, \infty) such that \sum_{n = 1}^{\infty} \mathtt{ψ}^{n}(t) < \infty , for all t > 0 . Let T : \mathcal{X} \to \mathcal{X} and \alpha : \mathcal{X} \times \mathcal{X} \to (0, \infty) . T is called an \alpha -admissible mapping if \alpha(u_1, u_2) \geq 1 implies that \alpha(T(u_1), T(u_2)) \geq 1 for each u_1, u_2 in \mathcal{X} .

    Definition 2.5. [42] Let (\mathcal{X}, \rho) be a metric space, where \mathtt{ψ} \in \Psi and \alpha : \mathcal{X}^2 \to [0, \infty) is a map. A self-map T defined on \mathcal{X} is called an \alpha - \mathtt{ψ} -contraction whenever

    \alpha( u_1, u_2) \rho \left( T(u_1), T(u_2) \right) \leq \mathtt{ψ} \left( \rho( u_1, u_2) \right),

    for each u_1, u_2 \in \mathcal{X} .

    Lemma 2.6. [42]Let (\mathcal{X}, \rho) be a complete metric space and T : \mathcal{X} \to \mathcal{X} be a continuous, \alpha- admissible and \alpha \mathtt{ψ} –contraction, then T has a fixed point whenever there exists u_{0} \in \mathcal{X} such that \alpha(u_{0}, T (u_{0})) \geq 1 .

    Lemma 2.7. [43,46]If x \in \bar{\mathcal{A}} \cap \bar{\mathcal{L}} with \mathbb{D}_q^{\alpha} x\in \mathcal{A} \cap \mathcal{L} , then

    \mathbb{I}_q^{\alpha} \mathbb{D}_q^{\alpha} u(t) = u(t) + \sum\limits_{i = 1}^{n} c_i t^{\alpha - i},

    where [\alpha]\leq n < [\alpha] +1 , and c_i is some real number.

    Let us first prove the following essential lemma:

    Lemma 3.1. Suppose that \alpha \geq 2 , q \in J and g\in \bar{\mathcal{L}} . The solution of the boundary value problem: \mathbb{D}_q^{\alpha} u(t) = g(t) with boundary conditions is expressed as:

    \begin{cases} u^{(j)} (0) = 0 &\; \; \; ;j = 2,3,4,\dots,\\ u'(1) = u(a) & \; \; \; ;\forall a \in J,\\ \int_{0}^{b} u({\xi}) \, \mathrm{d} \xi = 0 &\; \; \; ;\forall b \in J, \end{cases}

    is

    u(t) = \int^1_0 G_q( t, \xi) g(\xi) \, \mathrm{d}_q\xi,

    on a time scale \mathbb{T}_{t_0} where G_q(t, s) is expressed as:

    \begin{eqnarray} \begin{cases} -A_0 ( t -s)_q^{(\alpha - 1)} + A_1(t)( 1 -s)_q^{(\alpha - 2)} + A_2(t) (a - s)_q^{(\alpha - 1)} + A_3(t) (b -s)_q^{(\alpha)} & s\leq \min\{a,b\};\\ -A_0 ( t -s)_q^{(\alpha - 1)} + A_1(t) (1 - s)_q^{(\alpha-2)} + A_2(t) (a- s )_q^{(\alpha-1)} &b\leq s \leq a;\\ - A_0 ( t -s)_q^{(\alpha - 1)} + A_1(t) ( 1 -s)_q^{(\alpha-2)} + A_3(t) (b - s)_q^{(\alpha)} & a \leq s \leq b;\\ -A_0 ( t -s)_q^{(\alpha - 1)} + A_1(t) (1 -s)_q^{(\alpha-2)} &s \geq \max\{ a,b\}; \end{cases} \end{eqnarray} (3.1)

    whenever 0\leq s \leq t \leq 1 ,

    \begin{eqnarray} \begin{cases} A_1(t)( 1-s)_q^{(\alpha - 2)} + A_2(t) (a - s)_q^{(\alpha - 1)} + A_3 (b -s)_q^{(\alpha)} & s\leq \min\{a,b\};\\ A_1(t) (1 -s)_q^{(\alpha-2)} + A_2(t) (a- s)_q^{(\alpha-1)} &b\leq s \leq a;\\ A_1(t) ( 1 -s)_q^{(\alpha-2)} + A_3(t) (b - s)_q^{(\alpha)} &a \leq s \leq b;\\ A_1(t) (1 - s)_q^{(\alpha-2)} &s \geq \max\{a,b \}; \end{cases} \end{eqnarray} (3.2)

    whenever 0 \leq t \leq s \leq 1 . Also

    \begin{equation} \begin{cases} A_0 & = \frac{1}{\Gamma_q( \alpha )}, \\ A_1(t) & = \frac{ b(1- a + t ) - \mu(a, b)}{\mu(a,b) \Gamma_q(\alpha - 1 ) }, \\ A_2(t) & = \frac{ \mu(a, b) + b (a + t-1)}{ \mu(a, b) \Gamma_q( \alpha)},\\ A_3(t) & = \frac{\mu(a, b) ( 1- a )+ t }{\mu(a, b) \Gamma_q(\alpha+1 )}, \end{cases} \end{equation} (3.3)

    and

    \begin{equation} \mu(a,b ) = b (1-a ) + \frac{b^2}{2} > 0. \end{equation} (3.4)

    Proof. Consider the problem: \mathbb{D}_q^{\alpha} u(t) = g(t) . Using Lemma 2.7, it is deduced that u(t) = - \mathbb{I}_q^\alpha g(t) + c_0 + c_1 t , where c_0 , c_1 are some real numbers, and \mathbb{I}_q^\alpha is Riemann-Liouville type q –integral of order \alpha . Hence, u'(t) = - \mathbb{I}_q^{\alpha -1} g(t) + c_1 where \mathbb{I}_q^{\alpha -1} is a fractional Riemann-Liouville type q –integral of order \alpha -1 . By applying condition u'(1) = u(a) , we get:

    - \mathbb{I}_q^{\alpha -1} g(1) + c_1 = - \mathbb{I}_q^\alpha g(a) + c_0 + c_{1} a,

    and so c_0 = - \mathbb{I}_q^{\alpha -1} g(1) + \mathbb{I}_q^\alpha g(a) + (1- a) c_{1} . one can easily check that

    \int_0^{b} u(r) \, \mathrm{d}r = - \mathbb{I}_q^{\alpha + 1} g(b) - b \mathbb{I}_q^{\alpha -1} g(1) + \mu \mathbb{I}_q^\alpha g(a) + bc_1(1- a ) + \frac{1}{2} c_{1}b^2.

    Since \int_0^{b} u(r) \, \mathrm{d} r = 0 , we get:

    c_1 = \frac{1}{\mu(a, b)} \mathbb{I}_q^{\alpha + 1} g(b) + \frac{b} {\mu(a, b)} \mathbb{I}_q^{\alpha-1} g(1) - \frac{b} {\mu(a, b)} \mathbb{I}_q^{\alpha + 1} g(a).

    Thus,

    \begin{align*} c_0 & = - \mathbb{I}_q^{\alpha -1 } g(1)+ \mathbb{I}_q^\alpha g(a) + \frac{1-a } {\mu(a, b)} \mathbb{I}_q^{\alpha + 1 } g(b)\\ & \quad +\frac{b (1-a )}{\mu(a, b)} \mathbb{I}_q^{\alpha - 1} g(1) - \frac{b (1-a )}{\mu(a, b)} \mathbb{I}_q^\alpha g(a) \end{align*}

    and so

    \begin{align*} u(t) & = - \mathbb{I}_q^\alpha g(t) - \mathbb{I}_q^{\alpha -1} g(1) + \mathbb{I}_q^\alpha g(a) + \frac{1- a}{\mu(a, b)} \mathbb{I}_q^{\alpha + 1} g(b) \\ & \quad + \frac{b (1 - a)}{\mu(a, b)} \mathbb{I}_q^{\alpha-1} g(1) - \frac{b ( 1 -a)}{\mu(a, b)} \mathbb{I}_q^\alpha g(a) \\ & \quad + \frac{t}{\mu(a, b)} \mathbb{I}_q^{\alpha + 1} g(b) + \frac{bt}{\mu(a, b)} \mathbb{I}_q^{\alpha-1} g(1) - \frac{b t}{\mu(a, b)} \mathbb{I}_q^\alpha g(a). \end{align*}

    Hence,

    u(t) = - \mathbb{I}_q^\alpha g(t) + A_1(t) \mathbb{I}_q^{\alpha-1} g(1) + A_2(t) \mathbb{I}_q^\alpha g(a) + A_3(t) \mathbb{I}_q^{\alpha + 1} g(b).

    Now, some easy evaluations show us that u(t) = \int_0^1 G_q(t, s) g(s) \, \mathrm{d}_qs .

    Remark 3.2. Note that, the mappings G_q(t, s) and \frac{ \partial G_q(t, s)}{\partial t} are continuous with respect to t . Let w be a map on \bar{J} \times \bar{\mathcal{B}}^2 such that w is singular at some points of \bar{J} . Let us define the function \Theta_u : \bar{\mathcal{B}} \to \bar{\mathcal{B}} by

    \begin{align*} \Theta_u(t) & = - \mathbb{I}_q^\alpha w\left( t, u(t), \mathbb{D}_q^{\beta} u(t), \int_0^t f(\xi) u(\xi) \, \mathrm{d}\xi, \varphi( u(t)) \right) \\ & \quad + A_1 (t) \mathbb{I}_q^{\alpha-1} w\left( 1, u(1), \mathbb{D}_q^{\beta} u(1), \int_0^1 f(\xi) u(\xi) \, \mathrm{d}\xi, \varphi( u(1)) \right)\\ & \quad + A_2(t) \mathbb{I}_q^\alpha w\left( a, u(a), \mathbb{D}_q^{\beta} u(a), \int_0^a f(\xi) u(\xi) \, \mathrm{d}\xi, \varphi( u(a)) \right)\\ & \quad + A_3(t) \mathbb{I}_q^{\alpha + 1} w\left( b, u(b), \mathbb{D}_q^{\beta} u(b), \int_0^b f(\xi) u(\xi) \, \mathrm{d}\xi, \varphi( u(b)) \right), \end{align*}

    for all t\in \bar{J} , where \mathbb{I}_q^\alpha is the fractional Riemann-Liouville q –integral of order \alpha which is defined in (2.9), and \mathbb{D}^\beta_q is the Caputo fractional q –derivative of order \beta which is defined in (2.11). Then, by taking the first order derivative related to t , we have:

    \begin{align*} \Theta'_u(t) & = \int_0^1 \frac{ \partial G_q(t,\xi)}{ \partial t} w \left( s, u(s), \mathbb{D}_q^{\beta} u(s), \int_0^s f(\xi) u(\xi) \, \mathrm{d}\xi, \varphi( u(s)) \right)\, \mathrm{d}_qs \\ & = - \mathbb{I}_q^{\alpha-1} w\left( t, u(t), \mathbb{D}_q^{\beta} u(t), \int_0^t f(\xi) u(\xi) \, \mathrm{d}\xi, \varphi( u(t)) \right) \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha-1} w\left( 1, u(1), \mathbb{D}_q^{\beta} u(1), \int_0^1 f(\xi) u(\xi) \, \mathrm{d}\xi, \varphi( u(1)) \right)\\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^\alpha w\left( a, u(a), \mathbb{D}_q^{\beta} u(a), \int_0^a f(\xi) u(\xi) \, \mathrm{d} \xi, \varphi( u(a)) \right)\\ & \quad + \frac{1}{\mu(a, b)} \mathbb{I}_q^{\alpha + 1} w\left( b, u(b), \mathbb{D}_q^{\beta} u(b), \int_0^b f(\xi) u(\xi) \, \mathrm{d}\xi, \varphi( u(b)) \right). \end{align*}

    Obviously, the singular pointwise defined Eq (1.1) has a solution iff the map \Theta_u has a fixed point.

    Now, we give our main result as follows:

    Theorem 3.3. Assume that \alpha\geq 2 , [\alpha] = n-1 , a, b, q\in J , f \in \bar{\mathcal{L}} with \|f\|_1 = m , \varphi : \bar{\mathcal{B}} \to \mathbb{R} is such that

    |\varphi(u(t)) - \varphi(v(t))| \leq c_1 | u(t) - v(t)| + c_2| u'(t) - v'(t)|,

    for some c_1, c_2 \in [0, \infty) . Let \Omega : \bar{J} \times \bar{\mathcal{B}}^{5} \to \mathbb{R} be a mapping which is singular on some points \bar{J} and

    |w(t, u_1, \dots, u_5) - w(t, v_1, \dots, v_5)| \leq \sum\limits_{i = 1}^{k_0} \mu_i(t) \Omega_i (u_1 - v_1, \dots, u_5 - v_5),

    for all u_1, u_2, v_1, v_2 \in \bar{\mathcal{B}} and almost all t \in \bar{J} , where k_0 is a natural number, \mu_i :\bar{J} \to \mathbb{R}^+ , \hat{\mu}_i \in \bar{\mathcal{L}} ,

    \hat{\mu}_i(s) = (1 - s)_q^{\alpha -2} \mu_i(s),

    \Omega_{i}: \bar{\mathcal{B}}^5 \to \mathbb{R}^+ is a nondecreasing mapping with respect to all components with

    \frac{\Omega_i( \nu, \nu, \nu ,\nu , \nu)}{\nu^{\gamma_i}} \to p_i,

    as \nu \to 0^+ for some \gamma_i > 0 , p_i \in \mathbb{R}^+ with 1 \leq i \leq k_0 . Suppose that

    |w(t, u_1, \dots, u_5) | \leq h(t) T (u_1, \dots, u_5),

    for all (u_1, \dots, u_5) \in \bar{\mathcal{B}}^5 and almost all t \in \bar{J} , where h: \bar{J} \to \mathbb{R}^+ , \hat{h} \in \bar{ \mathcal{L}} , T : \bar{ \mathcal{B}}^5 \to \mathbb{R^+} is a nondecreasing mapping respect all their components such that

    \lim\limits_{\nu \to 0^{+}} \frac{ T(\nu, \nu,\nu , \nu ,\nu)}{\nu} \in [0, \tau),

    where \tau = \left(\ell \| \hat{h}\|_1 M_{ \alpha, a, b} \right)^{-1} ,

    \ell = \max \bigg\{ 1, \frac{1}{\Gamma_q(2- \beta)}, m, c_1 + c_2 \bigg\},

    \mu(a, b) define by Eq (3.4) in Lemma 3.1 and

    \begin{align*} M_{\alpha, a, b} & = \max \left\{ \frac{1}{\Gamma_q(\alpha)} +\frac{b (2- a) - \mu(a,b)}{\mu(a,, b)\Gamma_q(\alpha - 1)} + \frac{\mu(a, b) +ab }{\mu(a, b)\Gamma_q(\alpha)} \right.\\ & \quad \quad \quad + \frac{\mu(a,b)(1-a)+1 }{\mu(a, b) \Gamma_q(\alpha+1)}, \frac{1}{\Gamma_q(\alpha - 1)} + \frac{b}{\mu(a, b) \Gamma_q(\alpha - 1)} \\ & \quad \quad \quad \left. + \frac{b}{\mu(a, b) \Gamma_q(\alpha)} + \frac{1}{\mu(a, b) \Gamma_q (\alpha + 1)} \right\}. \end{align*}

    If

    M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} p_i \ell^{ \gamma_i} \| \hat{\mu}_i \|_{\bar{J}} < 1,

    then the pointwise defined Eq (1.1) under boundary conditions: u^{(j)} (0) = 0 for j\geq 2 , \int_{0}^{b} u({r}) \, {\mathrm d}{r} = 0 and u'(1) = u({a}) has a solution.

    Proof. Let u, v \in \bar{\mathcal{B}} . Then, we get:

    \begin{align*} |\Theta_{u} (t) &- \Theta_{v}(t)| \leq \bigg|- \mathbb{I}_q^\alpha w\left(t, u(t), u'(t), \mathbb{D}_q^{\beta} u(t), \int_0^t f(r) u(r) \, \mathrm{d}r, \varphi(u(t)) \right) \\ & + A_1(t) \mathbb{I}_q^{\alpha - 1} w\left(1, u(1), u'(1), \mathbb{D}_q^{\beta} u(1), \int_0^1 f(r) u(r) \mathrm{d}r, \varphi(u(1)) \right) \\ & + A_2(t) \mathbb{I}_q^\alpha w\left(a, u(a), u'(a), \mathbb{D}_q^{\beta} u(a), \int_0^a f(r) u(r) \mathrm{d}r, \varphi(u(a)) \right)\\ & + A_3(t) \mathbb{I}_q^{\alpha+1} w\left(b, u(b), u'(b), \mathbb{D}_q^{\beta} u(b), \int_0^1 f(r) u(r) \, \mathrm{d}r, \varphi(u(b)) \right)\\ & + \mathbb{I}_q^\alpha w\left(t, v(t), v'(t), \mathbb{D}_q^{\beta} v(t), \int_0^t f(r) v(r) \, \mathrm{d}r, \varphi(v(t)) \right) \\ & - A_1(t) \mathbb{I}_q^{\alpha - 1} w\left(1, v(1), v'(1), \mathbb{D}_q^{\beta} v(1), \int_0^1 f(r) v(r) \, \mathrm{d}r, \varphi(v(1)) \right) \\ & - A_2(t) \mathbb{I}_q^\alpha w\left(a, v(a), v'(a), \mathbb{D}_q^{\beta} v(a), \int_0^a f(r) v(r) \, \mathrm{d}r, \varphi(v(a)) \right)\\ & - A_3(t) \mathbb{I}_q^{\alpha+1} w\left(b, v(b), v'(b), \mathbb{D}_q^{\beta} v(b), \int_0^1 f(r) v(r) \, \mathrm{d}r, \varphi(v(b)) \right)\bigg|\\ & \leq \mathbb{I}_q^\alpha \bigg| w\left(t, u(t), u'(t), \mathbb{D}_q^{\beta} u(t), \int_0^t f(r) u(r) \, \mathrm{d}r, \varphi(u(t)) \right) \\ & - w\left(t, v(t), v'(t), \mathbb{D}_q^{\beta} v(t), \int_0^t f(r) v(r) \, \mathrm{d}r, \varphi(v(t)) \right)\bigg|\\ & + A_1(t) \bigg[ \mathbb{I}_q^{\alpha - 1} \bigg| w\left(1, u(1), u'(1), \mathbb{D}_q^{\beta} u(1), \int_0^1 f(r) u(r) \, \mathrm{d}r, \varphi(u(1)) \right) \\ & - w\left(1, v(1), v'(1), \mathbb{D}_q^{\beta} v(1), \int_0^1 f(r) v(r) \, \mathrm{d}r, \varphi(v(1)) \right) \bigg| \bigg]\\ & + A_2(t) \bigg[ \mathbb{I}_q^\alpha \bigg| w\left(a, u(a), u'(a), \mathbb{D}_q^{\beta} u(a), \int_0^a f(r) u(r) \, \mathrm{d}r, \varphi(u(a)) \right) \\ & - w\left(a, v(a), v'(a), \mathbb{D}_q^{\beta} v(a), \int_0^a f(r) v(r) \, \mathrm{d}r, \varphi(v(a)) \right) \bigg| \bigg]\\ & + A_3(t) \bigg[ \mathbb{I}_q^{\alpha+1} \bigg| w\left(b, u(b), u'(b), \mathbb{D}_q^{\beta} u(b), \int_0^1 f(r) u(r) \, \mathrm{d}r, \varphi(u(b)) \right)\\ & - w\left(b, v(b), v'(b), \mathbb{D}_q^{\beta} v(b), \int_0^1 f(r) v(r) \, \mathrm{d}r, \varphi(v(b)) \right) \bigg| \bigg]\\ & \leq \mathbb{I}_q^\alpha \bigg( \sum\limits_{i = 1}^{k_0} \mu_i(t) \bigg[ \Omega_i \bigg( u(t)-v(t), u'(t) - v'(t), \mathbb{D}_q^{\beta} u(t) - \mathbb{D}_q^{\beta} v(t), \\ & \int_0^t f(r) u(r) \, \mathrm{d}r - \int_0^t f(r) v(r) \, \mathrm{d}r, \varphi( u(t)) - \varphi(v(t)) \bigg) \bigg] \bigg)\\ & + A_1(t) \mathbb{I}_q^{\alpha-1} \bigg( \sum\limits_{i = 1}^{k_0} \mu_i(1) \\ & \times \bigg[ \Omega_i \bigg( u(1) - v(1), u'(1) - v'(1), \mathbb{D}_q^{\beta} u(1) - \mathbb{D}_q^{\beta} v(1), \\ & \int_0^1 f(r) u(r) \, \mathrm{d}r - \int_0^1 f(r) v(r) \, \mathrm{d}r, \varphi( u(1)) - \varphi( v(1)) \bigg) \bigg] \bigg)\\ & + A_2(t) \mathbb{I}_q^\alpha \bigg( \sum\limits_{i = 1}^{k_0} \mu_i(a)\\ & \times \bigg[ \Omega_i \bigg(u(a) - v(a), u'(a) - v'(a), \mathbb{D}_q^{\beta} u(a) - \mathbb{D}_q^{\beta} v(a), \\ & \int_0^a f(r) u(r) \, \mathrm{d}r - \int_0^q f(r) v(r) \, \mathrm{d}r, \varphi( u(a)) - \varphi(v(a)) \bigg) \bigg] \bigg)\\ & + A_3(t) \mathbb{I}_q^{\alpha + 1} \bigg( \sum\limits_{i = 1}^{k_0} \mu_i(b)\\ & \times \bigg[ \Omega_i \bigg( u(b) - v(b), u'(b) - v'(b), \mathbb{D}_q^{\beta} u(b) - \mathbb{D}_q^{\beta} v(b),\\ & \int_0^b f(r) u(r) \, \mathrm{d}r - \int_0^b f(r) v(r) \, \mathrm{d}r, \varphi( u(b)) - \varphi(v(b)) \bigg) \bigg]\bigg)\\ & \leq \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^\alpha \bigg( \mu_i(t) \bigg[ \Omega_i \bigg( \left|u(t) - v(t)\right|, \left|u'(t) - v'(t) \right|, \left| \mathbb{D}_q^{\beta} u(t) - \mathbb{D}_q^{\beta} v(t)\right|, \\ & \bigg| \int_0^t f(r) u(r) \, \mathrm{d}r - \int_0^t f(r) v(r) \, \mathrm{d}r \bigg|, \left|\varphi( u(t)) - \varphi(v(t))\right| \bigg) \bigg] \bigg)\\ & + A_1(t) \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^{\alpha-1} \bigg( \mu_i(1) \\ & \times \bigg[ \Omega_i \bigg( |u(1) - v(1)|, |u'(1) - v'(1)|, \left| \mathbb{D}_q^{\beta} u(1) - \mathbb{D}_q^{\beta} v(1)\right|, \\ & \bigg|\int_0^1 f(r) u(r) \, \mathrm{d}r - \int_0^1 f(r) v(r) \, \mathrm{d}r \bigg|, |\varphi( u(1)) - \varphi( v(1))| \bigg) \bigg] \bigg)\\ & + A_2(t) \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^\alpha \bigg( \mu_i(a)\\ & \times \bigg[ \Omega_i \bigg( |u(a) - v(a) |, |u'(a) - v'(a)|, \left| \mathbb{D}_q^{\beta} u(a) - \mathbb{D}_q^{\beta} v(a)\right|, \\ & \bigg|\int_0^a f(r) u(r) \, \mathrm{d}r - \int_0^q f(r) v(r) \, \mathrm{d}r \bigg|, |\varphi( u(a)) - \varphi(v(a))| \bigg) \bigg] \bigg)\\ & + A_3(t) \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^{\alpha + 1} \bigg( \mu_i(b) \\ & \times \bigg[ \Omega_i \bigg( |u(b) - v(b)|, |u'(b) - v'(b)|, \left| \mathbb{D}_q^{\beta} u(b) - \mathbb{D}_q^{\beta} v(b) \right|,\\ & \bigg|\int_0^b f(r) u(r) \, \mathrm{d}r - \int_0^b f(r) v(r) \, \mathrm{d}r\bigg|, |\varphi( u(b)) - \varphi(v(b))| \bigg) \bigg]\bigg). \end{align*}

    Since \mathbb{D}_q^{\beta} u(t) = \mathbb{I}_q^{1- \beta} u'(t) for \beta \in J , we have

    | \mathbb{D}_q^{\beta} u(t)| \leq \mathbb{I}_q^{1- \beta} |u'(t)| \leq \| u'\| \mathbb{I}_q^{1- \beta} (1) = \frac{\| u'\|}{ \Gamma_q(2- \beta)},

    and so

    \left| \mathbb{D}_q^{\beta} u(t) - \mathbb{D}_q^{\beta}v(t) \right| = \left| \mathbb{D}_q^{\beta}( u(t) - v(t) ) \right| \leq \frac{\| u' - v'\|}{ \Gamma_q(2- \beta)}.

    Thus, by considering \xi = \|u - v\|_{*} , we have:

    \begin{align*} |\Theta_{u}(t)- \Theta_{v}(t)| & \leq \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^\alpha \Omega_i \bigg( \|u- v\|, \|u'- v'\|, \frac{\| u' - v'\|}{ \Gamma_q(2- \beta)},\\ & \quad m \|u-v\|, c_1 \|u-v\|+ c_2 \|u'-v'\|\bigg)\\ & \quad + A_1(t) \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^{\alpha-1} \bigg( \mu_i(1) \bigg[ \Omega_i \bigg(\|u-v\|, \|u'-v'\|, \\ & \quad \frac{\| u' - v'\|}{ \Gamma_q(2- \beta)}, m \|u-v\|, c_1 \|u-v\|+ c_2 \|u'-v'\| \bigg) \bigg] \bigg)\\ & \quad + A_2(t) \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^\alpha \bigg( \mu_i(a)\bigg[\Omega_i\bigg( \|u-v\|, \|u'-v'\|, \\ & \quad \frac{\| u' - v'\|}{ \Gamma_q(2- \beta)}, m \|u-v\|, c_1 \|u-v\| + c_2 \|u'-v'\| \bigg) \bigg] \bigg)\\ & \quad + A_3(t) \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^{\alpha+1} \bigg( \mu_i(b) \bigg[ \Omega_i \bigg( \| u-v\|, \|u'-v'\|, \\ & \quad \frac{\| u' - v'\| }{ \Gamma_q(2- \beta) }, m \|u-v\|, c_1 \|u-v\|+ c_2 \|u'-v'\| \bigg) \bigg] \bigg)\\ &\leq \sum\limits_{i = 1}^{k_0} \Omega_i \bigg(\xi, \xi, \frac{\xi}{ \Gamma_q( 2- \beta)}, m \xi, c_1 \xi + c_2 \xi\bigg) \mathbb{I}_q^\alpha \mu_i(t)\\ & \quad + A_1(t) \sum\limits_{i = 1}^{k_0} \Omega_i \bigg(\xi, \xi, \frac{\xi}{ \Gamma_q( 2- \beta)}, m \xi, c_1\xi + c_2 \xi \bigg) \mathbb{I}_q^{\alpha -1} \mu_i(1)\\ & \quad + A_2(t) \sum\limits_{i = 1}^{k_0} \Omega_i \bigg(\xi, \xi, \frac{\xi}{ \Gamma_q( 2- \beta)}, m \xi, c_1 \xi + c_2 \xi \bigg) \mathbb{I}_q^{\alpha} \mu_i(a)\\ & \quad + A_3(t) \sum\limits_{i = 1}^{k_0} \Omega_i \bigg(\xi, \xi, \frac{\xi}{ \Gamma_q( 2- \beta)}, m \xi, c_1 \xi + c_2 \xi\bigg) \mathbb{I}_q^{\alpha+1} \mu_i(b)\\ & \leq \sum\limits_{i = 1}^{k_0} \Omega_i(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi ) \mathbb{I}_q^\alpha \mu_i(1) \\ & \quad + A_1(t) \sum\limits_{i = 1}^{k_0} \Omega_i( \ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi) \mathbb{I}_q^{\alpha -1} \mu_i(1) \\ & \quad + A_2(t) \sum\limits_{i = 1}^{k_0} \Omega_i(\ell\xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi) \mathbb{I}_q^{\alpha} \mu_i(1) \\ & \quad + A_3(t) \sum\limits_{i = 1}^{k_0} \Omega_i(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi) \mathbb{I}_q^{\alpha +1} \mu_i(1) \\ & = A_0 \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \left(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \right) \\ &\quad + A_1 (t) \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \left(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \right) \\ &\quad + A_2(t) \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \left(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \right) \\ &\quad + A_3(t) \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \left(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \right) \\ & = \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \left(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \right)\\ & \quad \times \big[ A_0 + A_1(t) + A_2 (t) + A_3(t) \big]. \end{align*}

    This implies that

    \|\Theta_u - \Theta_v\| \leq \big[ A_0 + A_1(t) + A_2 (t) + A_3(t) \big] \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \left(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \right).

    Assume that u, v \in \bar{\mathcal{B}} . Then, we get:

    \begin{align*} |\Theta'_u &- \Theta'_v | \leq \bigg|- \mathbb{I}_q^{\alpha-1} w\bigg(t, u(t), u'(t), \mathbb{D}_q^{\beta} u(t), \int_0^t f(r) u(r) \, \mathrm{d}r, \varphi(u(t)) \bigg) \\ & + \frac{b}{\mu (a, b)} \mathbb{I}_q^{\alpha-1} w\bigg(1, u(1), u'(1), \mathbb{D}_q^{\beta} u(1), \int_0^1 f(r) u(r) \, \mathrm{d}r, \varphi(u(1)) \bigg)\\ & + \frac{b}{\mu(a,b)} \mathbb{I}_q^{\alpha} w\bigg(a, u(a), u'(a), \mathbb{D}_q^{\beta} u(a), \int_0^a f(r) u(r) \, \mathrm{d}r, \varphi(u(a)) \bigg)\\ & + \frac{1}{\mu(a, b)} \mathbb{I}_q^{\alpha+1} w\bigg(b, u(b), u'(b), \mathbb{D}_q^{\beta} u(b), \int_0^b f(r) u(r) \, \mathrm{d}r, \varphi(u(b)) \bigg)\\ & + \mathbb{I}_q^{\alpha-1} w\bigg(t, v(t), v'(t), \mathbb{D}_q^{\beta} v(t), \int_0^t f(r) v(r) \, \mathrm{d}r, \varphi(v(t)) \bigg) \\ & - \frac{b}{\mu (a, b)} \mathbb{I}_q^{\alpha-1} w\bigg(1, v(1), v'(1), \mathbb{D}_q^{\beta} v(1), \int_0^1 f(r) v(r) \, \mathrm{d}r, \varphi(v(1)) \bigg)\\ & - \frac{b}{\mu(a,b)} \mathbb{I}_q^{\alpha} w\bigg(a, v(a), v'(a), \mathbb{D}_q^{\beta} v(a), \int_0^a f(r) v(r) \, \mathrm{d}r, \varphi(v(a)) \bigg)\\ & - \frac{1}{\mu(a, b)} \mathbb{I}_q^{\alpha+1} w\bigg(b, v(b), v'(b), \mathbb{D}_q^{\beta} v(b), \int_0^b f(r) v(r) \, \mathrm{d}r, \varphi(u(b)) \bigg)\bigg|\\ & \leq \mathbb{I}_q^{\alpha-1} \bigg|w\bigg(t, u(t), u'(t), \mathbb{D}_q^{\beta} u(t), \int_0^t f(r) u(r) \, \mathrm{d}r, \varphi(u(t)) \bigg) \\ & - w\bigg(t, v(t), v'(t), \mathbb{D}_q^{\beta} v(t), \int_0^t f(r) v(r) \, \mathrm{d}r, \varphi(v(t)) \bigg)\bigg| \\ & + \frac{b}{\mu (a, b)} \mathbb{I}_q^{\alpha-1} \bigg| w\bigg(1, u(1), u'(1), \mathbb{D}_q^{\beta} u(1), \int_0^1 f(r) u(r) \, \mathrm{d}r, \varphi(u(1)) \bigg)\\ & - \mathbb{I}_q^{\alpha-1} w\bigg(1, v(1), v'(1), \mathbb{D}_q^{\beta} v(1), \int_0^1 f(r) v(r) \, \mathrm{d}r, \varphi(v(1)) \bigg)\bigg|\\ & + \frac{b}{\mu(a,b)} \mathbb{I}_q^{\alpha} \bigg| w\bigg(a, u(a), u'(a), \mathbb{D}_q^{\beta} u(a), \int_0^a f(r) u(r) \, \mathrm{d}r, \varphi(u(a)) \bigg)\\ & - \mathbb{I}_q^{\alpha} w\bigg(a, v(a), v'(a), \mathbb{D}_q^{\beta} v(a), \int_0^a f(r) v(r) \, \mathrm{d}r, \varphi(v(a)) \bigg)\bigg|\\ & + \frac{1}{\mu(a, b)} \mathbb{I}_q3^{\alpha+1} \bigg| w\bigg(b, u(b), u'(b), \mathbb{D}_q^{\beta} u(b), \int_0^b f(r) u(r) \, \mathrm{d}r, \varphi(u(b)) \bigg)\\ & - w\bigg(b, v(b), v'(b), \mathbb{D}_q^{\beta} v(b), \int_0^b f(r) v(r) \, \mathrm{d}r, \varphi(u(b)) \bigg)\bigg|\\ & \leq \mathbb{I}_q^{\alpha-1} \sum\limits_{i = 1}^{k_0} \mu_i(t) \bigg[ \Omega_i \bigg( u(t) - v(t), u'(t) - v'(t), \mathbb{D}_q^{\beta} u(t) - \mathbb{D}_q^{\beta} v(t),\\ & \int_0^t f(r) u(r) \, \mathrm{d}r - \int_0^t f(r) v(r) \, \mathrm{d}r, \varphi(u(t)) - \varphi( v(t)) \bigg)\bigg]\\ & + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha-1} \sum\limits_{i = 1}^{k_0} \mu_i(1) \\ & \times \bigg[ \Omega_i \bigg( u(1) - v(1), u'(1) - v'(1), \mathbb{D}_q^{\beta} u(1) - \mathbb{D}_q^{\beta} v(1),\\ & \int_0^1 f(r) u(r) \, \mathrm{d}r - \int_0^1 f(r) v(r) \, \mathrm{d}r, \varphi(u(1)) - \varphi( v(1)) \bigg)\bigg]\\ & + \frac{b}{\mu(a,b)} \mathbb{I}_q^{\alpha} \sum\limits_{i = 1}^{k_0} \mu_i(a) \\ & \times \bigg[ \Omega_i \bigg( u(a) - v(a), u'(a) - v'(a), \mathbb{D}_q^{\beta} u(a) - \mathbb{D}_q^{\beta} v(a),\\ & \int_0^a f(r) u(r) \, \mathrm{d}r - \int_0^a f(r) v(r) \, \mathrm{d}r, \varphi(u(a)) - \varphi( v(a)) \bigg)\bigg]\\ & \end{align*}
    \begin{array}{l} &+ \frac{1}{\mu(a, b)} \mathbb{I}_q^{\alpha+1} \sum\limits_{i = 1}^{k_0} \mu_i(b)\\ & \times \bigg[ \Omega_i \bigg( u(b) - v(b), u'(b) - v'(b), \mathbb{D}_q^{\beta} u(b) - \mathbb{D}_q^{\beta} v(b),\\ & \int_0^b f(r) u(r) \, \mathrm{d}r - \int_0^b f(r) v(r) \, \mathrm{d}r, \varphi(u(b)) - \varphi( v(b)) \bigg)\bigg]\\ & \leq \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^{\alpha -1} \mu_i(t) \bigg[ \Omega_i \bigg( | u(t) - v(t)|, |u'(t)- v'(t)|, | \mathbb{D}_q^{\beta} (u(t) - v(t))|,\\ & \bigg|\int_0^t f(r) (u(r) - v(r) ) \, \mathrm{d}r \bigg|, |\varphi( u(t)) - \varphi(v(t)) | \bigg)\bigg] \\ & + \frac{b}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^{\alpha -1} \mu_i(1) \\ & \times \bigg[ \Omega_i \bigg( | u(1) - v(1)|, |u'(1)- v'(1)|, | \mathbb{D}_q^{\beta} (u(1) - v(1))|,\\ & \bigg|\int_0^1 f(r) (u(r) - v(r) ) \, \mathrm{d}r \bigg|, |\varphi( u(1)) - \varphi(v(1)) | \bigg)\bigg] \\ & + \frac{b}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^\alpha \mu_i(1) \\ & \times \bigg[ \Omega_i \bigg( | u(1) - v(1)|, |u'(1)- v'(1)|, | \mathbb{D}_q^{\beta} (u(1) - v(1))|,\\ & \bigg|\int_0^1 f(r) (u(r) - v(r) ) \, \mathrm{d}r \bigg|, |\varphi( u(1)) - \varphi(v(1)) | \bigg)\bigg] \\ & + \frac{1}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^{\alpha+1} \mu_i(1)\\ & \times \bigg[ \Omega_i \bigg( | u(1) - v(1)|, |u'(1)- v'(1)|, | \mathbb{D}_q^{\beta} (u(1) - v(1))|,\\ & \bigg|\int_0^1 f(r) (u(r) - v(r) ) \, \mathrm{d}r \bigg|, |\varphi( u(1)) - \varphi(v(1)) | \bigg)\bigg] \\ & \leq \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^{\alpha-1} \bigg[ \Omega_i \bigg( \| u(t) - v(t)\|, \|u'(t) - v'(t)\|, \frac{\| u'(t) - v'(t)\|}{\Gamma_q( 2- \beta)}, \\ & m \|u(t)-v(t)\|, c_1 \|u(t) - v(t)\|+ c_2 \|u'(t)-v'(t)\| \bigg) \bigg]\\ & + \frac{b}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^{\alpha-1} \bigg[ \Omega_i \bigg( \| u(1) - v(1)\|, \|u'(1) - v'(1)\|, \frac{\| u'(1) - v'(1)\|}{\Gamma_q( 2- \beta)}, \\ & m \|u(1) - v(1)\|, c_1 \| u (1)- v(1)\|+ c_2 \|u'(1) - v'(1)\| \bigg) \bigg]\\ & + \frac{b}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^{\alpha} \bigg[ \Omega_i \bigg( \| u(a) - v(a)\|, \|u'(a) - v'(a)\|, \frac{\| u'(a) - v'(a)\|}{\Gamma_q( 2- \beta)}, \\ & m \|u(a) - v(a)\|, c_1 \|u(a) - v(a)\|+ c_2 \|u'(a) - v'(a)\| \bigg) \bigg]\\ & + \frac{1}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^{\alpha+1} \bigg[ \Omega_i \bigg( \| u(b) - v(b)\|, \|u'(b) - v'(b)\|, \frac{\| u'(b) - v'(b)\|}{\Gamma_q( 2- \beta)}, \\ & m \|u(b) - v(b)\|, c_1 \|u(b) - v(b)\|+ c_2 \|u'(b) - v'(b)\| \bigg) \bigg]\\ & \leq \sum\limits_{i = 1}^{k_0} \Omega_i \bigg( \xi, \xi, \frac{\xi}{ \Gamma_q(2- \beta)}, m \xi, c_1 \xi + c_2 \xi \bigg) \mathbb{I}_q^{\alpha - 1} \mu_i(t)\\ & + \frac{b}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \Omega_i \bigg( \xi, \xi, \frac{\xi}{ \Gamma_q(2- \beta)}, m \xi, c_1 \xi + c_2 \xi\bigg) \mathbb{I}_q^{\alpha - 1} \mu_i(1)\\ & + \frac{b}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \Omega_i \bigg( \xi, \xi, \frac{\xi}{ \Gamma_q(2- \beta)}, m \xi, c_1 \xi+ c_2 \xi \bigg) \mathbb{I}_q^{\alpha } \mu_i(a) \\ & + \frac{1}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \Omega_i \bigg(\xi, \xi, \frac{\xi}{ \Gamma_q(2- \beta)}, m \xi, c_1 \xi+ c_2 \xi \bigg) \mathbb{I}_q^{\alpha+1} \mu_i(b)\\ & \leq \sum\limits_{i = 1}^{k_0} \Omega_i \bigg( \ell \xi \ell \xi, \ell \xi, \ell \xi, \ell \xi \bigg) \mathbb{I}_q^{\alpha - 1} \mu_i(1)\\ & + \frac{b}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \Omega_i \bigg( \ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \bigg) \mathbb{I}_q^{\alpha - 1} \mu_i(1)\\ & + \frac{b}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \Omega_i \bigg( \ell \xi , \ell \xi , \ell \xi , \ell \xi,\ell \xi \bigg) \mathbb{I}_q^{\alpha } \mu_i(1)\\ & + \frac{1}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \Omega_i \bigg(\ell \xi, \ell \xi, \ell\xi, \ell \xi, \ell \xi \bigg) \mathbb{I}_q^{\alpha+1} \mu_i(1)\\ & = \frac{1}{\Gamma_q(\alpha-1)} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \big(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi\big) \\ & + \frac{b}{\mu(a, b) \Gamma_q(\alpha-1 )} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \big(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \big) \\ & + \frac{b}{\mu(a, b)\Gamma_q(\alpha)} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \big(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \big) \\ & + \frac{1}{\mu(a, b)\Gamma_q(\alpha+1)} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \big(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \big) \\ & = \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \big(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \big) \bigg[\frac{1}{\Gamma_q(\alpha-1)} \\ & + \frac{b} {\mu(a,b) \Gamma_q(\alpha-1 )} + \frac{b}{\mu(a,b) \Gamma_q(\alpha )} +\frac{1}{\mu(a,b) \Gamma_q(\alpha+1 )} \bigg].\end{array}

    Hence,

    \begin{align*} \|\Theta'_u - \Theta'_v\| & \leq \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \big(\ell \xi, \ell\xi, \ell \xi, \ell \xi, \ell \xi \big) \bigg[\frac{1}{\Gamma_q(\alpha-1)} \\ & \quad+ \frac{b} {\mu(a,b) \Gamma_q(\alpha-1 )} + \frac{b}{\mu(a,b) \Gamma_q(\alpha )} +\frac{1}{\mu(a,b) \Gamma_q(\alpha+1 )} \bigg] \end{align*}

    and so

    \begin{align*} \| \Theta_{u} - \Theta_{v} \|_{*} & \leq \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \big(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \big) \max \bigg\{ \frac{1}{\Gamma_q(\alpha)} \\ & \quad + \frac{b (2- a) - \mu(a,b)}{\mu(a , b)\Gamma_q(\alpha - 1)} + \frac{\mu(a, b) +ab }{\mu(a, b)\Gamma_q(\alpha)} + \frac{\mu(a,b)(1-a)+1 }{\mu(a, b) \Gamma_q(\alpha+1)}, \\ & \quad \frac{1}{\Gamma_q(\alpha - 1)} + \frac{b}{\mu(a, b) \Gamma_q(\alpha - 1)} + \frac{b}{\mu(a, b) \Gamma_q(\alpha)} \\ & \quad + \frac{1}{\mu(a, b) \Gamma_q (\alpha + 1)} \bigg\}. \end{align*}

    If

    \begin{align*} M_{\alpha, a, b}& = \max \bigg\{ \frac{1}{\Gamma_q(\alpha)} + \frac{b (2- a) - \mu(a,b)}{\mu(a, b)\Gamma_q(\alpha - 1)} + \frac{\mu(a, b) +ab }{\mu(a, b)\Gamma_q(\alpha)} \\ & \quad + \frac{\mu(a,b)(1-a)+1 }{\mu(a, b) \Gamma_q(\alpha+1)}, \frac{1}{\Gamma_q(\alpha - 1)} + \frac{b}{\mu(a, b) \Gamma_q(\alpha - 1)} \\ & \quad+ \frac{b}{\mu(a, b) \Gamma_q(\alpha)} + \frac{1}{\mu(a, b) \Gamma_q (\alpha + 1)} \bigg\}, \end{align*}

    then

    \begin{align} \| \Theta_{u} - \Theta_{v} \|_{*} & \leq M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \big(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \big). \end{align} (3.5)

    Let 0 < \varepsilon \leq 1 be given. Since

    \lim\limits_{\nu \to 0^{+}} \frac{\Omega_i(\nu,\nu,\nu,\nu,\nu)}{\nu^{\gamma_i}} = p_i,

    for 1 \leq i \leq k_0 , \exists \; \delta_i = \delta_i(\varepsilon) such that \nu \in (0, \delta_i] implies

    \left| \frac{\Omega_i(\nu,\nu , \nu, \nu, \nu)}{\nu^{\gamma_i}} - p_i \right| < \varepsilon,

    and so \Omega_i(\nu, \nu, \nu, \nu, \nu)/ \nu^{\gamma_i} < \varepsilon + p_i . This consequents

    0 \leq \Omega_i(\nu,\nu ,\nu, \nu, \nu) < ( \varepsilon + p_i) \nu^{\gamma_i}.

    We take \delta = \min \{ \delta_1, \dots, \delta_{k_0}, \varepsilon \} . In this case, \nu \in (0, \delta] implies

    \begin{align} 0 & \leq \Omega_i(\nu, \nu, \nu, \nu, \nu) < ( \varepsilon + p_i) \nu^{\gamma_i} \end{align} (3.6)

    for all 1\leq i \leq k_0 . By using (3.6), we obtain:

    \begin{align} \Omega_i(\ell \xi, \dots, \ell \xi) & \leq ( \varepsilon + p_i ) (\ell \xi)^{\gamma_i} \leq ( \varepsilon + p_i ) \ell^{\gamma_i} \varepsilon^{\gamma_i}. \end{align} (3.7)

    At present, by applying (3.5) and (3.7), we obtain:

    \| \Theta_{u} - \Theta_{v} \|_{*} \leq M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 ( \varepsilon + p_i ) \ell^{\gamma_i} \varepsilon^{\gamma_i}.

    Now, we consider: \gamma = \min \{\gamma_1, \cdots, \gamma_{k_0} \} . Hence,

    \left\| \Theta_{u} - \Theta_{v} \right\|_{*} \leq \varepsilon^\gamma M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i \|_1 (\varepsilon + p_i ) \ell^{\gamma_i}.

    Therefore, this implies that \Theta is continuous. Since

    M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 p_i \ell^{\gamma_i} < 1,

    there is \varepsilon_1 > 0 such that

    M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 (p_i + \varepsilon_1) \ell^{\gamma_i} < 1.

    Let

    \lambda = \lim\limits_{\nu \to 0^{+}} \frac{T(\nu, \nu, \nu, \nu, \nu)}{\nu } \, \in [0, \tau).

    Then, we have:

    \lambda = \lim\limits_{\nu \to 0^{+}} T(\ell \nu, \dots, \ell \nu)/ (\ell \nu),

    and so for each \varepsilon > 0 there exists \delta(\epsilon) > 0 such that \nu \in (0, \delta(\varepsilon)] implies

    0 \leq \frac{ T(\ell \nu, \dots, \ell \nu)}{\ell \nu} - \lambda < \varepsilon.

    Hence, 0 \leq T(\ell \nu, \dots, \ell \nu) < (\lambda + \varepsilon) \ell \nu and

    0 \leq T(\ell \delta(\varepsilon), \dots, \ell \delta( \varepsilon)) < ( \lambda + \varepsilon) \ell \delta(\varepsilon).

    Since \lambda \in [0, \tau) , choose \varepsilon_0 > 0 such that \lambda + \varepsilon_0 < \tau . Assume that

    \eta_0 = \min \Big\{ \delta(\varepsilon_0), \delta(\varepsilon_1) \Big\}.

    Then, \eta \leq \eta_0 implies 0 \leq T(\ell \eta, \dots, \ell \eta) < (\lambda + \varepsilon_0) \ell \eta . Since

    \lim\limits_{\nu \to 0^{+}} \frac{ \Omega_i(\nu, \nu, \nu, \nu, \nu)}{\nu^{\gamma_i}} = p_i,

    there exists \eta_1 > 0 such that \nu \in (0, \eta_1] implies

    \begin{align} \Omega_i(\ell \nu, \dots, \ell \nu) & < (p_i + \varepsilon_0) (\ell \nu)^{\gamma_i} \end{align} (3.8)

    for i = 1, \dots, k_0 . Let \eta = \min \{\eta_0, \frac{\eta_1}{ 2}, \frac{1}{2} \} and

    E = \Big\{ u \in \bar{\mathcal{B}} : \|u\|_{*}\leq \eta \Big\}.

    Define \alpha: \bar{\mathcal{B}}^2 \to \mathbb{R} by

    \alpha (u,v) = \begin{cases} 1 &u = v,\\ 0 &u \neq v. \end{cases}

    Assume that u, v \in \bar{\mathcal{B}} be given. If \alpha(u, v) \geq 1 , then for every t \in \bar{J} , we have:

    \begin{align*} |\Theta_{u} (t) | & \leq \int^t_0 |G_q(t, s)| w\bigg(s, u(s), u'(s), \mathbb{D}_q^{\beta} u(s), \int_{0}^s f(r) u(r) \, \mathrm{d}r, \varphi(u(s)) \bigg) \, \mathrm{d}_qs \\ & \leq \mathbb{I}_q^\alpha \bigg|w\bigg(t, u(t), u'(t), \mathbb{D}_q^{\beta} u(t), \int_{0}^t f(r) u(r) \, \mathrm{d}r, \varphi(u(t)) \bigg)\bigg|\\ & \quad + A_1(t) \mathbb{I}_q^{\alpha-1} \bigg|w\bigg(1, u(1), u'(1), \mathbb{D}_q^{\beta} u(1), \int_{0}^1 f(r) u(r) \, \mathrm{d}r, \varphi(u(1)) \bigg)\bigg|\\ & \quad + A_2(t) \mathbb{I}_q^{\alpha} \bigg|w\bigg(a, u(a), u'(a), \mathbb{D}_q^{\beta} u(a), \int_{0}^a f(r) u(r) \, \mathrm{d}r, \varphi(u(a)) \bigg)\bigg|\\ & \quad + A_3(t) \mathbb{I}_q^{\alpha+1} \bigg| w\bigg(b, u(b), u'(b), \mathbb{D}_q^{\beta} u(b), \int_{0}^b f(r) u(r) \, \mathrm{d}r, \varphi(u(b)) \bigg)\bigg|\\ & \leq \mathbb{I}_q^\alpha \bigg( h(t) T\bigg(u(t), u'(t), \mathbb{D}_q^{\beta} u(t), \int_{0}^t f(r) u(r) \, \mathrm{d}r, \varphi(u(t)) \bigg) \bigg)\\ & \quad + A_1(t) \mathbb{I}_q^{\alpha-1} \bigg( h(1) T\bigg(u(1), u'(1), \mathbb{D}_q^{\beta} u(1), \int_{0}^1 f(r) u(r) \, \mathrm{d}r, \varphi(u(1)) \bigg)\bigg)\\ & \quad + A_2(t) \mathbb{I}_q^{\alpha} \bigg(h(a) T\bigg(u(a), u'(a), \mathbb{D}_q^{\beta} u(a), \int_{0}^a f(r) u(r) \, \mathrm{d}r, \varphi(u(a)) \bigg)\bigg)\\ & \quad + A_3(t) \mathbb{I}_q^{\alpha+1} \bigg(h(b) T\bigg(u(b), u'(b), \mathbb{D}_q^{\beta} u(b), \int_{0}^b f(r) u(r) \, \mathrm{d}r, \varphi(u(b)) \bigg)\bigg)\\ & \leq \mathbb{I}_q^\alpha \bigg( h(t) T\bigg(|u(t)|, |u'(t)|, | \mathbb{D}_q^{\beta} u(t)|, \int_{0}^t |f(r)|| u(r)| \, \mathrm{d}r, |\varphi(u(t))| \bigg) \bigg)\\ & \quad + A_1(t) \mathbb{I}_q^{\alpha-1} \bigg( h(1) T\bigg(|u(1)|, |u'(1)|, | \mathbb{D}_q^{\beta} u(1)|,\\ & \quad \int_{0}^1 |f(r)| |u(r)| \, \mathrm{d}r, |\varphi(u(1))| \bigg)\bigg)\\ & \quad + A_2(t) \mathbb{I}_q^{\alpha} \bigg(h(a) T\bigg(|u(a)|, |u'(a)|, | \mathbb{D}_q^{\beta} u(a)|,\\ & \quad \int_{0}^a |f(r)| |u(r)| \, \mathrm{d}r, |\varphi(u(a))| \bigg)\bigg)\\ & \quad + A_3(t) \mathbb{I}_q^{\alpha+1} \bigg(h(b) T\bigg(|u(b)|, |u'(b)|, | \mathbb{D}_q^{\beta} u(b)|,\\ & \quad \int_{0}^b |f(r)| |u(r)| \, \mathrm{d}r, |\varphi(u(b))| \bigg)\bigg)\\ & \leq \mathbb{I}_q^\alpha \bigg( h(t) T\bigg(\|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2 - \beta) } , \\ & \quad m \|u(t)\| , c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \bigg)\\ & \quad + A_1(t) \mathbb{I}_q^{\alpha-1} \bigg( h(1) T\bigg(\|u(t)\|, \|u'(t)\|,\\ & \quad \frac{\|u'(t)\|}{\Gamma_q(2 - \beta) } , m \|u(t)\| , c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \bigg)\\ & \quad + A_2(t) \mathbb{I}_q^{\alpha} \bigg(h(a) T\bigg(\|u(t)\|, \|u'(t)\|,\\ & \quad \frac{\|u'(t)\|}{\Gamma_q(2 - \beta) } , m \|u(t)\| , c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg)\bigg)\\ & \quad + A_3(t) \mathbb{I}_q^{\alpha+1} \bigg(h(b) T\bigg(\|u(t)\|, \|u'(t)\|,\\ & \quad \frac{\|u'(t)\|}{\Gamma_q(2 - \beta) } , m \|u(t)\| , c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg)\bigg)\\ & \leq T\bigg(\|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2 - \beta) } , \\ & \quad m \|u(t)\| , c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \mathbb{I}_q^\alpha h(t) \\ & \quad + A_1(t) T\bigg(\|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2 - \beta) }, \\ & \quad m \|u(t)\| , c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \mathbb{I}_q^{\alpha-1} h(1) \\ & \quad + A_2(t) T\bigg(\|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2 - \beta) } , \\ & \quad m \|u(t)\| , c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \mathbb{I}_q^{\alpha} h(a)\\ & \quad + A_3(t) T\bigg(\|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2 - \beta) } , \\ & \quad m \|u(t)\| , c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \mathbb{I}_q^{\alpha+1} h(b) \\ & \leq T\big( \ell \|u(t)\|_*, \ell \|u(t)\|_*, \ell \|u(t)\|_*, \ell \|u(t)\|_*, \ell \|u(t)\|_* \big) \|\hat{h}\|_1 \\ & \quad \times \big[ A_0 + A_1(t) + A_2(t) + A_3(t) \big] \\ & \leq T( \ell r, \ell r,\ell r, \ell r, \ell r) \|\hat{h}\|_1 \big[ A_0 + A_1(t) + A_2 (t) + A_3(t) \big]\\ & \leq \ell r (\lambda + \varepsilon ) \|\hat{h}\|_1 \big[ A_0 + A_1(t) + A_2 (t) + A_3(t) \big]\\ & = \eta \bigg( \ell (\lambda + \varepsilon) \|\hat{h}\|_{1} \big[ A_0 + A_1(t) + A_2 (t) + A_3(t) \big]\bigg). \end{align*}

    Therefore,

    \begin{align*} \|\Theta_u\| & \leq \eta \bigg( \ell (\lambda + \varepsilon) \|\hat{h}\|_{1} \big[ A_0 + A_1(t) + A_2 (t) + A_3(t) \big]\bigg)\leq \eta. \end{align*}

    Also,

    \begin{align*} |\Theta'_{u}(t)| & \leq \bigg|- \mathbb{I}_q^{\alpha-1} w \bigg( t, u(t), u'(t), \mathbb{D}_q^{\beta} u(t), \int_0^t f(r) u(r) \, \mathrm{d}r, \varphi(u(t)) \bigg) \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha-1} w \bigg( 1, u(1), u'(1), \mathbb{D}_q^{\beta} u(1), \int_0^1 f(r) u(r) \, \mathrm{d}r, \varphi(u(1)) \bigg) \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha} w \bigg( a, u(a), u'(a), \mathbb{D}_q^{\beta} u(a), \int_0^a f(r) u(r) \, \mathrm{d}r, \varphi(u(a)) \bigg) \\ & \quad + \frac{1}{\mu(a, b)} \mathbb{I}_q^{\alpha+1} w \bigg( b, u(b), u'(b), \mathbb{D}_q^{\beta} u(b), \int_0^b f(r) u(r) \, \mathrm{d}r, \varphi(u(b)) \bigg)\bigg|\\ & \leq \mathbb{I}_q^{\alpha-1} \bigg|w \bigg( t, u(t), u'(t), \mathbb{D}_q^{\beta} u(t), \int_0^t f(r) u(r) \, \mathrm{d}r, \varphi(u(t)) \bigg)\bigg| \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha-1} \bigg|w \bigg( 1, u(1), u'(1), \mathbb{D}_q^{\beta} u(1), \int_0^1 f(r) u(r) \, \mathrm{d}r, \varphi(u(1)) \bigg)\bigg| \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha} \bigg|w \bigg( a, u(a), u'(a), \mathbb{D}_q^{\beta} u(a), \int_0^a f(r) u(r) \, \mathrm{d}r, \varphi(u(a)) \bigg)\bigg| \\ & \quad + \frac{1}{\mu(a, b)} \mathbb{I}_q^{\alpha+1} \bigg|w \bigg( b, u(b), u'(b), \mathbb{D}_q^{\beta} u(b), \int_0^b f(r) u(r) \, \mathrm{d}r, \varphi(u(b)) \bigg)\bigg|\\ & \leq \mathbb{I}_q^{\alpha-1} \bigg( h(t) T \bigg( u(t), u'(t), \mathbb{D}_q^{\beta} u(t), \int_0^t f(r) u(r) \, \mathrm{d}r, \varphi(u(t)) \bigg)\bigg) \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha-1} \bigg( h(1) T \bigg( u(1), u'(1), \mathbb{D}_q^{\beta} u(1), \int_0^1 f(r) u(r) \, \mathrm{d}r, \varphi(u(1)) \bigg)\bigg) \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha} \bigg( h(a) T \bigg( u(a), u'(a), \mathbb{D}_q^{\beta} u(a), \int_0^a f(r) u(r) \, \mathrm{d}r, \varphi(u(a)) \bigg)\bigg) \\ & \quad + \frac{1}{\mu(a, b)} \mathbb{I}_q^{\alpha+1} \bigg( h(b) T \bigg( u(b), u'(b), \mathbb{D}_q^{\beta} u(b), \int_0^b f(r) u(r) \, \mathrm{d}r, \varphi(u(b)) \bigg)\bigg)\\ & \leq \mathbb{I}_q^{\alpha-1} \bigg( h(t) T \bigg( u(t), u'(t), \mathbb{D}_q^{\beta} u(t), \int_0^t f(r) u(r) \, \mathrm{d}r, \varphi(u(t)) \bigg)\bigg) \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha-1} \bigg( h(1) T \bigg( u(1), u'(1), \mathbb{D}_q^{\beta} u(1), \int_0^1 f(r) u(r) \, \mathrm{d}r, \varphi(u(1)) \bigg)\bigg) \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha} \bigg( h(a) T \bigg( u(a), u'(a), \mathbb{D}_q^{\beta} u(a), \int_0^a f(r) u(r) \, \mathrm{d}r, \varphi(u(a)) \bigg)\bigg) \\ & \quad + \frac{1}{\mu(a, b)} \mathbb{I}_q^{\alpha+1} \bigg( h(b) T \bigg( u(b), u'(b), \mathbb{D}_q^{\beta} u(b), \int_0^b f(r) u(r) \, \mathrm{d}r, \varphi(u(b)) \bigg)\bigg)\\ & \leq \mathbb{I}_q^{\alpha-1} \bigg( h(t) T \bigg( \|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2-\beta)} , \\ & \quad m \|u(t)\|, c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg)\bigg) \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha-1} \bigg( h(1) T \bigg( \|u(t)\|, \|u'(t)\|, \frac{ \|u'(t)\|}{\Gamma_q(2-\beta)} , \\ & \quad m \|u(t)\|, c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg)\bigg) \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha} \bigg( h(a) T \bigg( \|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2-\beta)} , \\ & \quad m \|u(t)\|, c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg)\bigg) \\ & \quad + \frac{1}{\mu(a, b)} \mathbb{I}_q^{\alpha+1} \bigg( h(b) T \bigg( \|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2-\beta)} , \\ & \quad m \|u(t)\|, c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg)\bigg)\\ & \leq T \bigg( \|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2-\beta)} , m \|u(t)\|, c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \mathbb{I}_q^{\alpha-1} ( h(t)) \\ & \quad + \frac{b}{\mu(a, b)} T \bigg( \|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2-\beta)} , m \|u(t)\|, c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \mathbb{I}_q^{\alpha-1} ( h(1) ) \\ & \quad + \frac{b}{\mu(a, b)} T \bigg( \|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2-\beta)} , m \|u(t)\|, c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \mathbb{I}_q^{\alpha} ( h(a) ) \\ & \quad + \frac{1}{\mu(a, b)} T \bigg( \|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2-\beta)} , m \|u(t)\|, c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \mathbb{I}_q^{\alpha+1} ( h(b) )\\ & \leq T(\ell \|u\|_{*}, \cdots, \ell \|u\|_{*}) \|\hat{h} \|_1 \\ & \quad \times \bigg[ \frac{1}{\Gamma_q(\alpha-1)} + \frac{b}{\mu(a, b) \Gamma_q(\alpha-1)} + \frac{b}{\mu(a, b)\Gamma_q(\alpha)} + \frac{1}{\mu(a, b)\Gamma_q(\alpha + 1)} \bigg]\\ & \leq T(\ell r, \cdots, \ell r) \|\hat{h}\|_1 \\ & \quad \times \bigg[\frac{1}{\Gamma_q(\alpha-1)} + \frac{b}{\mu(a, b) \Gamma_q(\alpha-1)} + \frac{b}{\mu(a, b)\Gamma_q(\alpha)} + \frac{1}{\mu(a, b)\Gamma_q(\alpha + 1)} \bigg]\\ & \leq (\ell r) (\lambda + \varepsilon_0) \|\hat{h}\|_1\\ & \quad \times \bigg[ \frac{1}{\Gamma_q(\alpha-1)} + \frac{b}{\mu(a, b) \Gamma_q(\alpha-1)} + \frac{b}{\mu(a, b)\Gamma_q(\alpha)} + \frac{1}{\mu(a, b)\Gamma_q(\alpha + 1)} \bigg]. \end{align*}

    Indeed,

    \begin{align*} | \Theta'_{u}(t)| & \leq (\ell r) (\lambda + \varepsilon_0) \|\hat{h}\|_1 \\ & \quad \times \bigg[ \frac{1}{\Gamma_q(\alpha-1)} + \frac{b}{\mu(a, b) \Gamma_q(\alpha-1)} + \frac{b}{\mu(a, b)\Gamma_q(\alpha)} \\ & \quad + \frac{1}{\mu(a, b)\Gamma_q(\alpha + 1)} \bigg]\\ & \leq r. \end{align*}

    Hence, \|\Theta_u\|_{*} \leq \eta and so \Theta_u \in E . Using a similar proof, we can show that \Theta_v \in E . This implies \alpha(\Theta_u, \Theta_v) \geq 1 and so \Theta_u is \alpha -admissible. It is obvious that, E \neq \emptyset . Choose u_0 \in E . Hence, \Theta_{u_0} \in E , and so \alpha(u_0, \Theta_{u_0}) \geq 1 . Let u, v \in E . Then,

    \xi \leq \|u\|_{*} + \| v\|_{*} \leq 2 \eta \leq \eta_1,

    where \xi = \|u-v\|_{*} . Also using (3.5), we have

    \| \Theta_{u} - \Theta_{v} \|_{*} \leq M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 M_i(\ell \xi, \dots, \ell \xi).

    Now, by using (3.8), we conclude that

    \begin{align*} \| \Theta_{u} - \Theta_{v} \|_{*} & \leq M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 (p_i + \varepsilon_1) (\ell \xi)^{\gamma_i}\\ & \leq M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 (p_i + \varepsilon_1) \ell^{\gamma_i} \xi^{ \gamma_i} \\ & \leq M_{\alpha, a, b} \bigg[ \sum\limits_{i = 1}^{k_0} \| \hat{\mu}_i\|_1 (p_i + \varepsilon_1) \ell^{\gamma_i}\bigg] \xi^{\gamma}, \end{align*}

    where \gamma = \min \{\gamma_1, \dots, \gamma_{k_0} \} . We take:

    \eta = M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 p_i \ell^{ \gamma_i}.

    Note that, \eta \in [0, 1) . Define the map \mathtt{ψ} : [0, \infty) \to \mathbb{R}^{+} by

    \mathtt{ψ}(t) = \begin{cases} \eta t^{\gamma} & t \in [0, 1),\\ \eta t & t \in [1, \infty). \end{cases}

    Then, \mathtt{ψ} is nondecreasing and

    \sum\limits_{i = 1}^{\infty} \mathtt{ψ}^{i}(t) = \eta t^{\gamma}+ \eta^{2} t^{2 \gamma}+ \dots \leq \sum\limits_{i = 1}^{\infty} \eta^i t^{\gamma} = \frac{\tau}{ 1- \eta} t^{\gamma} < \infty,

    for 0\leq t < 1 . Also, we obtain

    \sum\limits_{i = 1}^{\infty} \mathtt{ψ}^{i}(t) = \frac{\eta}{1- \eta} t < \infty,

    for t \in [1, \infty) . Thus, \sum_{i = 1}^{\infty} \mathtt{ψ}^{i}(t) is a convergent series for all t \geq 0 and so \mathtt{ψ} \in \Psi . Also, we have

    \alpha ( u, v) \| \Theta_u - \Theta_v\|_{*} \leq \phi (\xi).

    If u \notin E or v \notin E , then the last inequality holds obviously. This shows that

    \alpha( u, v) d( \Theta_u, \Theta_v) \leq \phi (d( u, v)),

    for all u, v \in \bar{\mathcal{B}} . Now, Lemma 2.6 implies that \Theta has a fixed point that is the solution for problem (1.1).

    The following illustrative example is given to support the validity of our main results. A computational method is provided here to test the proposed problem (1.1). Linear motion is commonly basic among all other motions. From the 1st law of Newton's motion, objects that are not experiencing any net force will continue to move in a straight line with a constant velocity until they are subjected to a net force.

    Example 4.1. We consider a constrained motion of a particle along a straight line restrained by two linear springs with equal spring constant (stiffness coefficient) under external force and fractional damping along the t -axis (Figure 1).

    Figure 1.  A particle along a straight line restrained by two linear springs with equal spring constant.

    We consider the pointwise defined equation:

    \begin{align} 100 \theta(t) {}^c \mathbb{D}_q^{2.5} u(t) & + p(t) u(t) = - p(t) \bigg( |u'(t)| + \bigg| \mathbb{D}_q^{\frac{1}{2}} u(t)\bigg| \\ & \quad + \bigg|\int_0^t \frac{u(r) }{ \sqrt{r} } \, \mathrm{d}r\bigg| + |\sin( u(t) ) |\bigg), \end{align} (4.1)

    where

    p(t) = \frac{1}{8} \left( 2-2 L - \eta^2 L - \eta^2 L \cos t \right),

    \eta is constant and L is the unstretched length of the spring. We change Eq (4.1) into a form of the problem (1.1) as follows:

    \begin{align} \mathbb{D}_q^{\frac{5}{2} } u(t) & = \frac{1}{100\, \theta(t)} \bigg( |u(t)| + |u'(t)| + \bigg| \mathbb{D}_q^{\frac{1}{2}} u(t)\bigg| \\ & \quad + \bigg|\int_0^t \frac{u(r) }{ \sqrt{r} } \, \mathrm{d}r\bigg| + |\sin( u(t) ) | \bigg) \end{align} (4.2)

    with boundary conditions:

    \int_0^{\frac{1}{3}} u({r}) \, \mathrm{d}r = 0,\; \; \; \; u'(1) = u(\frac{1}{4}),\; \; \; \; u''(0) = 0.

    Also

    \theta(t) = \begin{cases} 0 & t\in \bar{J} \cap \mathbb{Q},\\ 1-t & t\in \bar{J} \cap \mathbb{Q}^c. \end{cases}

    Take \alpha = \frac{5}{2}\geq 2 , \beta = \frac{1}{2}\in J , a = \frac{1}{4}\in J , b = \frac{1}{3} \in J , k_0 = 1 , \gamma_1 = 1 , \mu_1 (t) = h(t) = \frac{1}{\theta (t) } , c_1 = \frac{1}{3} , c_2 = \frac{2}{3} , f(\xi) = \frac{u(\xi)}{\sqrt{\xi} } , \varphi(x) = \sin(x) and

    T ( u_1, \dots , u_5) = \Omega_1( u_1, \dots, u_5) = \frac{1}{ 500} \Big( | u_1| + \dots + |u_5| \Big).

    Then, we get:

    |\varphi(u) - \varphi(v)| = | \sin(u) - \sin(v)| \leq |u- v| = c_1 |u - v| + c_2 |u' - v'|,
    |w( t, u_1 , \dots, u_5) - w(t, v_1, \dots, v_5)| \leq \mu_1(t) \Big[ | u_1 - v_1| + \dots + |u_5 - v_5|\Big],
    p_1 = \lim\limits_{\nu \to 0^{+}} \frac{ \Omega_1(\nu, \nu, \nu, \nu, \nu)}{\nu^{\gamma_1}} = \lim\limits_{\nu \to 0^{+}} \frac{5 |\nu|}{500 \nu} = 0.01,

    \mu_1, h \in L^1 , m = \|h\|_1 = 2 ,

    \| \hat{h}\|_{\bar{J}} = \| \hat{\mu}_1\|_{ \bar{J}} = \int_0^1 \frac{1}{ \theta (s) }( 1 - s)^{\alpha -2} \, \mathrm{d}s = \int_0^1 \frac{( 1 -s)^{\frac{1}{2} } }{ 1-s} \, \mathrm{d}s = 2,
    |w(t, u_1, \dots, u_5)| \leq h(t) T(u_1, \dots, u_5),

    T, \Omega_1 are non-negative and non-decreasing with respect to u_1, \dots, u_5 ,

    {\mu(a, b) } = b (1-a ) + \frac{b^{2}}{2} = \frac{11}{36},
    \ell = \max \bigg\{ 1, \frac{1}{\Gamma_q(2- \beta)}, m, c_1 +c_2 \bigg\} = \max \bigg\{ 1, \frac{1}{\Gamma_q(\frac{3}{2})}, 2, 1 \bigg\} = 2,
    \begin{align*} M_{\alpha, a, b}& = \max \bigg\{ \frac{1}{\Gamma_q(\alpha)} + \frac{b (2-a) - \mu(a, b)}{\mu(a, b) \Gamma_q(\alpha - 1)} + \frac{\mu(a, b) + ab}{\mu(a, b) \Gamma_q(\alpha ) } \\ & \quad + \frac{ \mu(a, b) (1- a ) + 1 }{\mu(a, b) \Gamma_q(\alpha + 1 )}, \frac{1}{\Gamma_q(\alpha - 1)} +\frac{b} {\mu(a, b) \Gamma_q(\alpha - 1)} \\ & \quad + \frac{b}{\mu(a, b) \Gamma_q(\alpha)} + \frac{1}{\mu(a, b)\Gamma_q(\alpha + 1)} \bigg\} \\ & = \max \bigg\{ \frac{25}{11\Gamma_q( \frac{5}{2}) } + \frac{10}{11 \Gamma_q(\frac{3}{2}) } + \frac{177} {44\Gamma_q(\frac{7}{2})},\\ & \quad \frac{23}{11\Gamma_q (\frac{3}{2})} + \frac{12}{11 \Gamma_q( \frac{5}{2} )} + \frac{36}{11 \Gamma_q(\frac{7}{2} )} \bigg\}. \end{align*}

    We put:

    \begin{equation} \begin{split} \Lambda_1 & = \frac{25}{11\Gamma_q( \frac{5}{2}) } + \frac{10}{11 \Gamma_q(\frac{3}{2}) } + \frac{177} {44\Gamma_q(\frac{7}{2} )},\\ \Lambda_2 & = \frac{23}{11\Gamma_q (\frac{3}{2})} + \frac{12}{11 \Gamma_q( \frac{5}{2} )} + \frac{36}{11 \Gamma_q(\frac{7}{2} )}. \end{split} \end{equation} (4.3)

    Table 1 shows the values of \Lambda_1 and \Lambda_2 for q = \left\{\frac{1}{8}, \frac{1}{2}, \frac{4}{5}, \frac{8}{9} \right\} . We can see that

    M_{\alpha, a, b} = 33.170478, 21.551855, 16.363257, 15.234356,
    Table 1.  The results of \Lambda_1, \Lambda_2 in Eq (4.3) in Example 4.1 for q \in \left\{ \frac{1}{8}, \frac{1}{2}, \frac{4}{5}, \frac{8}{9} \right\} .
    q =\frac{1}{8} q =\frac{1}{2} q =\frac{4}{5} q =\frac{8}{9}
    n \Lambda_1 \Lambda_2 \Lambda_1 \Lambda_2 \Lambda_1 \Lambda_2 \Lambda_1 \Lambda_2
    1 6.4269 33.0986 4.1726 17.6569 1.6844 4.9657 0.9465 2.2669
    2 6.4386 33.1615 4.5536 19.5549 2.1098 6.6125 1.1971 3.0219
    3 6.4401 33.1694 4.7492 20.5409 2.4808 8.1416 1.4377 3.8100
    4 6.4403 33.1703 4.8483 21.0433 2.7983 9.5087 1.6670 4.6128
    5 6.4403 33.1705 4.8982 21.2968 3.0660 10.6983 1.8838 5.4129
    \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots
    16 6.4403 33.1705 4.9482 21.5517 4.1529 15.8174 3.4095 11.8900
    17 6.4403 33.1705 4.9482 21.5518 4.1750 15.9256 3.4840 12.2356
    18 6.4403 33.1705 4.9483 21.5518 4.1928 16.0126 3.5509 12.5482
    19 6.4403 33.1705 4.9483 21.5518 4.2070 16.0823 3.6110 12.8303
    20 6.4403 33.1705 4.9483 21.5519 4.2184 16.1383 3.6649 13.0844
    21 6.4403 33.1705 4.9483 21.5519 4.2275 16.1831 3.7132 13.3130
    \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots
    50 6.4403 33.1705 4.9483 21.5519 4.2640 16.3630 4.0987 15.1686
    51 6.4403 33.1705 4.9483 21.5519 4.2640 16.3630 4.1002 15.1759
    52 6.4403 33.1705 4.9483 21.5519 4.2640 16.3631 4.1015 15.1824
    53 6.4403 33.1705 4.9483 21.5519 4.2640 16.3631 4.1027 15.1882
    54 6.4403 33.1705 4.9483 21.5519 4.2641 16.3631 4.1037 15.1933
    55 6.4403 33.1705 4.9483 21.5519 4.2641 16.3632 4.1047 15.1979
    \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots
    91 6.4403 33.1705 4.9483 21.5519 4.2641 16.3633 4.1120 15.2339
    92 6.4403 33.1705 4.9483 21.5519 4.2641 16.3633 4.1121 15.2339
    93 6.4403 33.1705 4.9483 21.5519 4.2641 16.3633 4.1121 15.2340
    94 6.4403 33.1705 4.9483 21.5519 4.2641 16.3633 4.1121 15.2340
    95 6.4403 33.1705 4.9483 21.5519 4.2641 16.3633 4.1121 15.2341
    96 6.4403 33.1705 4.9483 21.5519 4.2641 16.3633 4.1121 15.2341
    97 6.4403 33.1705 4.9483 21.5519 4.2641 16.3633 4.1121 15.2341
    98 6.4403 33.1705 4.9483 21.5519 4.2641 16.3633 4.1121 15.2341
    99 6.4403 33.1705 4.9483 21.5519 4.2641 16.3633 4.1121 15.2342
    100 6.4403 33.1705 4.9483 21.5519 4.2641 16.3633 4.1121 15.2342
    101 6.4403 33.1705 4.9483 21.5519 4.2641 16.3633 4.1121 15.2342
    102 6.4403 33.1705 4.9483 21.5519 4.2641 16.3633 4.1121 15.2342
    103 6.4403 33.1705 4.9483 21.5519 4.2641 16.3633 4.1121 15.2343
    104 6.4403 33.1705 4.9483 21.5519 4.2641 16.3633 4.1121 15.2343

     | Show Table
    DownLoad: CSV

    for q = \frac{1}{8} , \frac{1}{2} , \frac{4}{5} and \frac{8}{9} , respectively. Thus, by using the numerical results, we obtain:

    \tau = \left( \ell \|\hat{h}\|_1 M_{\alpha, a, b} \right)^{-1} \geq \frac{1}{4 \times 33.1704} = 0.0075,

    whenever q = \frac{1}{8} ,

    \tau = \left( \ell \|\hat{h}\|_1 M_{\alpha, a, b} \right)^{-1} \geq \frac{1}{4 \times 21.5518} = 0.0116,

    whenever q = \frac{1}{2} ,

    \tau = \left( \ell \|\hat{h}\|_1 M_{\alpha, a, b} \right)^{-1} \geq \frac{1}{4 \times 16.3632} = 0.0153,

    whenever q = \frac{4}{5} and

    \tau = \left( \ell \|\hat{h}\|_1 M_{\alpha, a, b} \right)^{-1} \geq \frac{1}{4 \times 15.2343} = 0.0164,

    whenever q = \frac{8}{9} . Also, we can check that

    \lim\limits_{\nu \to 0^{+}} \frac{ T(\nu, \nu, \nu, \nu, \nu)}{\nu} = 0.01 \in [0, \tau),

    and for all q \in J

    M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \| \hat{\mu}_i\|_{ \bar{J}} p_i \ell^{\gamma_i} = M_{\alpha, a, b} \times 2 \times 0.01 \times 2^1 = 0.04 M_{\alpha, a, b} < 1.

    Table 2 shows numerical results for different values of q\in J . Figure 2 shows the curve of these results. Now, according to the obtained results, Theorem 3.3 implies that problem (4.2) has a solution.

    Table 2.  The results of M_{\alpha, a, b} and (*) = M_{\alpha, a, b} \sum_{i = 1}^{k_0} \| \hat{\mu}_i\|_{ \bar{J}} p_i \ell^{\gamma_i} in Example 4.1 for q \in \left\{ \frac{1}{8}, \frac{1}{2}, \frac{4}{5}, \frac{8}{9} \right\} .
    q =\frac{1}{8} q =\frac{1}{2} q =\frac{4}{5} q =\frac{8}{9}
    n M_{\alpha, a, b} (*) M_{\alpha, a, b} (*) M_{\alpha, a, b} (*) M_{\alpha, a, b} (*)
    1 33.0986 1.3239 17.6569 0.7063 4.9657 0.1986 2.2669 0.0907
    2 33.1615 1.3265 19.5549 0.7822 6.6125 0.2645 3.0219 0.1209
    3 33.1694 1.3268 20.5409 0.8216 8.1416 0.3257 3.8100 0.1524
    4 33.1703 1.3268 21.0433 0.8417 9.5087 0.3803 4.6128 0.1845
    \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots
    12 33.1705 1.3268 21.5499 0.8620 15.0506 0.6020 10.1272 0.4051
    13 33.1705 1.3268 21.5509 0.8620 15.3077 0.6123 10.6296 0.4252
    14 33.1705 1.3268 21.5514 0.8621 15.5153 0.6206 11.0894 0.4436
    15 33.1705 1.3268 21.5516 0.8621 15.6827 0.6273 11.5088 0.4604
    \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots
    73 33.1705 1.3268 21.5519 0.8621 16.3633 0.6545 15.2300 0.6092
    74 33.1705 1.3268 21.5519 0.8621 16.3633 0.6545 15.2305 0.6092
    75 33.1705 1.3268 21.5519 0.8621 16.3633 0.6545 15.2309 0.6092
    76 33.1705 1.3268 21.5519 0.8621 16.3633 0.6545 15.2313 0.6093
    77 33.1705 1.3268 21.5519 0.8621 16.3633 0.6545 15.2316 0.6093
    78 33.1705 1.3268 21.5519 0.8621 16.3633 0.6545 15.2319 0.6093
    79 33.1705 1.3268 21.5519 0.8621 16.3633 0.6545 15.2322 0.6093
    80 33.1705 1.3268 21.5519 0.8621 16.3633 0.6545 15.2325 0.6093

     | Show Table
    DownLoad: CSV
    Figure 2.  Numerical results of M_{\alpha, a, b} \sum_{i = 1}^{k_0} \| \hat{\mu}_i\|_{ \bar{J}} p_i \ell^{\gamma_i} where q = \frac{1}{8} , \frac{1}{2} , \frac{4}{5} and \frac{8}{9} in Example 4.1.

    The multi-singular pointwise defined fractional q –integro-differential equation has been successfully investigated in this work. The investigation of this particular equation provides us with a powerful tool in modeling most scientific phenomena without the need to remove most parameters which have an essential role in the physical interpretation of the studied phenomena. Multi-singular pointwise defined fractional q –integro-differential equation (1.1) has been studied on a time scale under some boundary conditions. An application that describes the motion of a particle in the plane has been provided in this work to support our results' validity and applicability in the fields of physics and engineering.

    The first author was supported by Bu-Ali Sina University.

    The authors declare that they have no competing interests.



    [1] Caffarelli LA, Alt HW (1981) Existence and regularity for a minimum problem with free boundary. J Reine Angew Math 325: 105-144.
    [2] Caffarelli LA (1987) A Harnack inequality approach to the regularity of free boundaries. Part I. Lipschitz free boundaries are C1,α. Rev Mat Iberoamericana 3: 139-162.
    [3] Caffarelli LA (1988) A Harnack inequality approach to the regularity of free boundaries. Part III. Existence theory, compactness, and dependence on x. Ann Scuola Norm Sci 15: 583-602.
    [4] Caffarelli LA (1989) A Harnack inequality approach to the regularity of free boundaries. Part II. Flat free boundaries are Lipschitz. Commun Pure Appl Math 42: 55-78.
    [5] Caffarelli LA, Roquejoffre JM, Sire Y (2010) Variational problems for free boundaries for the fractional Laplacian. J Eur Math Soc 12: 1151-1179.
    [6] Caffarelli LA, Shahgholian H, Yeressian K (2018) A minimization problem with free boundary related to a cooperative system. Duke Math J 167: 1825-1882. doi: 10.1215/00127094-2018-0007
    [7] De Philippis G, Spolaor L, Velichkov B (2019) Regularity of the free boundary for the two-phase Bernoulli problem. arXiv:1911.02165.
    [8] De Silva D (2011) Free boundary regularity for a problem with right hand side. Interface Free Bound 13: 223-238.
    [9] De Silva D, Ferrari F, Salsa S (2014) On two phase free boundary problems governed by elliptic equations with distributed sources. Discrete Contin Dyn Syst Ser S 7: 673-693.
    [10] De Silva D, Roquejoffre JM (2012) Regularity in a one-phase free boundary problem for the fractional Laplacian. Ann I H Poincare An 29: 335-367. doi: 10.1016/j.anihpc.2011.11.003
    [11] De Silva D, Savin O, Sire Y (2014) A one-phase problem for the fractional Laplacian: Regularity of flat free boundaries. Bull Inst Math Acad Sin 9: 111-145.
    [12] Kriventsov D, Lin FH (2018) Regularity for shape optimizers: The nondegenerate case. Commun Pure Appl Math 71: 1535-1596. doi: 10.1002/cpa.21743
    [13] Kriventsov D, Lin FH (2019) Regularity for shape optimizers: The degenerate case. Commun Pure Appl Math 72: 1678-1721. doi: 10.1002/cpa.21810
    [14] Mazzoleni D, Terracini S, Velichkov B (2017) Regularity of the optimal sets for some spectral functionals. Geom Funct Anal 27: 373-426. doi: 10.1007/s00039-017-0402-2
    [15] Mazzoleni D, Terracini S, Velichkov B (2020) Regularity of the free boundary for the vectorial Bernoulli problem. Anal PDE 13: 741-763. doi: 10.2140/apde.2020.13.741
  • This article has been cited by:

    1. Baojian Hong, Jinghan Wang, Exact Solutions for the Generalized Atangana-Baleanu-Riemann Fractional (3 + 1)-Dimensional Kadomtsev–Petviashvili Equation, 2022, 15, 2073-8994, 3, 10.3390/sym15010003
    2. Xiao-Guang Yue, Mohammad Esmael Samei, Azam Fathipour, Mohammed K. A. Kaabar, Artion Kashuri, Using Krasnoselskii's theorem to investigate the Cauchy and neutral fractionalq-integro-differential equationvianumerical technique, 2022, 11, 2192-8029, 186, 10.1515/nleng-2022-0023
    3. Baojian Hong, Assorted exact explicit solutions for the generalized Atangana’s fractional BBM–Burgers equation with the dissipative term, 2022, 10, 2296-424X, 10.3389/fphy.2022.1071200
    4. Dipankar Kumar, Ahmet Yildirim, Mohammed K. A. Kaabar, Hadi Rezazadeh, Mohammad Esmael Samei, Exploration of some novel solutions to a coupled Schrödinger–KdV equations in the interactions of capillary-gravity waves, 2022, 2008-1359, 10.1007/s40096-022-00501-0
    5. Xiao-Guang Yue, Zeying Zhang, Arzu Akbulut, Mohammed K.A. Kaabar, Melike Kaplan, A new computational approach to the fractional-order Liouville equation arising from mechanics of water waves and meteorological forecasts, 2022, 24680133, 10.1016/j.joes.2022.04.001
    6. Mahammad Khuddush, K. Rajendra Prasad, Existence, uniqueness and stability analysis of a tempered fractional order thermistor boundary value problems, 2023, 31, 0971-3611, 85, 10.1007/s41478-022-00438-6
    7. Jufang Wang, Si Wang, Changlong Yu, Unique iterative solution for high-order nonlinear fractional q-difference equation based on \psi -(h,r)-concave operators, 2023, 2023, 1687-2770, 10.1186/s13661-023-01718-1
    8. Baojian Hong, Jiaxin Zhou, Xingchen Zhu, Yiting Wang, Yusuf Gurefe, Some Novel Optical Solutions for the Generalized M -Fractional Coupled NLS System, 2023, 2023, 2314-8888, 1, 10.1155/2023/8283092
    9. Khalid K. Ali, K. R. Raslan, Amira Abd-Elall Ibrahim, Mohamed S. Mohamed, On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type, 2023, 8, 2473-6988, 18206, 10.3934/math.2023925
    10. Jufang Wang, Jinye Zhang, Changlong Yu, Hyers–Ulam stability and existence of solutions for high-order fractional q-difference equations on infinite intervals, 2023, 69, 1598-5865, 4665, 10.1007/s12190-023-01947-8
    11. Khansa Hina Khalid, Akbar Zada, Ioan-Lucian Popa, Mohammad Esmael Samei, Existence and stability of a q-Caputo fractional jerk differential equation having anti-periodic boundary conditions, 2024, 2024, 1687-2770, 10.1186/s13661-024-01834-6
    12. Baojian Hong, Jinghan Wang, Chen Li, Analytical solutions to a class of fractional coupled nonlinear Schrödinger equations via Laplace-HPM technique, 2023, 8, 2473-6988, 15670, 10.3934/math.2023800
    13. Manisha Krishna Naik, Chandrali Baishya, Mohammed K.A. Kaabar, Exploring the relationship dynamics between farmers and mediators through the lens of the Caputo fractional derivatives, 2023, 12, 26667207, 100286, 10.1016/j.rico.2023.100286
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3854) PDF downloads(270) Cited by(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog