The gut microbiome plays a significant role in regulating gastrointestinal (GI) function and modulating the gut–brain axis, which describes the bidirectional communication between the GI tract and the central nervous system (CNS). Its involvement in digestion, immunity, and neurophysiology is well recognized. This study offers novel insights by focusing on psychobiotics, a class of probiotics with targeted neuroactive properties. These microorganisms influence brain function through defined mechanisms, including modulation of neuroinflammation, neurotransmitter production (GABA, serotonin), regulation of the hypothalamic–pituitary–adrenal (HPA) axis, and vagus nerve signaling. Our work critically examines recent advances in applications of psychobiotics for neurological disorders such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, and autism spectrum disorder. By integrating evidence from microbiome research, neuroimmunology, and clinical studies, we identify promising microbial strains and mechanistic pathways with therapeutic potential. This study contributes original perspectives by highlighting underexplored microbe–host interactions and proposing targeted microbial interventions as adjuncts to conventional neurotherapies. Further research is needed to validate strain-specific effects, long-term efficacy, and safety profiles in clinical settings.
Citation: Srirengaraj Vijayaram, Karthikeyan Mahendran, Hary Razafindralambo, Einar Ringø, Suruli Kannan, Yun-Zhang Sun. Probiotics, gut microbiota, and brain health: Exploring therapeutic pathways[J]. AIMS Microbiology, 2025, 11(3): 501-541. doi: 10.3934/microbiol.2025022
The gut microbiome plays a significant role in regulating gastrointestinal (GI) function and modulating the gut–brain axis, which describes the bidirectional communication between the GI tract and the central nervous system (CNS). Its involvement in digestion, immunity, and neurophysiology is well recognized. This study offers novel insights by focusing on psychobiotics, a class of probiotics with targeted neuroactive properties. These microorganisms influence brain function through defined mechanisms, including modulation of neuroinflammation, neurotransmitter production (GABA, serotonin), regulation of the hypothalamic–pituitary–adrenal (HPA) axis, and vagus nerve signaling. Our work critically examines recent advances in applications of psychobiotics for neurological disorders such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, and autism spectrum disorder. By integrating evidence from microbiome research, neuroimmunology, and clinical studies, we identify promising microbial strains and mechanistic pathways with therapeutic potential. This study contributes original perspectives by highlighting underexplored microbe–host interactions and proposing targeted microbial interventions as adjuncts to conventional neurotherapies. Further research is needed to validate strain-specific effects, long-term efficacy, and safety profiles in clinical settings.
| [1] | Sudo N, Chida Y, Aiba Y, et al. (2004) Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 558: 263-275. https://doi.org/10.1113/jphysiol.2004.063388 |
| [2] | Heijtz RD, Wang S, Anuar F, et al. (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108: 3047-3052. https://doi.org/10.1073/pnas.1010529108 |
| [3] | Carabotti M, Scirocco A, Maselli MA, et al. (2015) The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28: 203. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4367209/ |
| [4] | Sommer F, Anderson JM, Bharti R, et al. (2017) The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol 15: 630-638. https://doi.org/10.1038/nrmicro.2017.58 |
| [5] | Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124: 837-848. https://doi.org/10.1016/j.cell.2006.02.017 |
| [6] | Eckburg PB, Bik EM, Bernstein CN, et al. (2005) Diversity of the human intestinal microbial flora. Science 308: 1635-1638. https://doi.org/10.1126/science.1110591 |
| [7] | Dahiya D, Nigam PS (2022) The gut microbiota influenced by the intake of probiotics and functional foods with prebiotics can sustain wellness and alleviate certain ailments like gut-inflammation and colon-cancer. Microorganisms 10: 665. https://doi.org/10.3390/microorganisms10030665 |
| [8] | Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474: 1823-1836. https://doi.org/10.1042/BCJ20160510 |
| [9] | Kho ZY, Lal SK (2018) The human gut microbiome–a potential controller of wellness and disease. Front Microbiol 9: 1835. https://doi.org/10.3389/fmicb.2018.01835 |
| [10] | Valdes AM, Walter J, Segal E, et al. (2018) Role of the gut microbiota in nutrition and health. BMJ 361: k2179. https://doi.org/10.1136/bmj.k2179 |
| [11] | Oliphant K, Allen-Vercoe E (2019) Macronutrient metabolism by the human gut microbiome: Major fermentation by-products and their impact on host health. Microbiome 7: 1-15. https://doi.org/10.1186/s40168-019-0704-8 |
| [12] | Chassard C, Lacroix C (2013) Carbohydrates and the human gut microbiota. Curr Opin Clin Nutr Metab Care 16: 453-460. https://doi.org/10.1097/MCO.0b013e3283619e63 |
| [13] | Macia L, Tan J, Vieira AT, et al. (2015) Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun 6: 6734. https://doi.org/10.1038/ncomms7734 |
| [14] | Smith PM, Howitt MR, Panikov N, et al. (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341: 569-573. https://doi.org/10.1126/science.1241165 |
| [15] | Singh N, Gurav A, Sivaprakasam S, et al. (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40: 128-139. https://doi.org/10.1016/j.immuni.2013.12.007 |
| [16] | Arpaia N, Campbell C, Fan X, et al. (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504: 451-455. https://doi.org/10.1038/nature12726 |
| [17] | Furusawa Y, Obata Y, Fukuda S, et al. (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504: 446-450. https://doi.org/10.1038/nature12721 |
| [18] | Silva Y, Bernardi A, Frozza R (2020) The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol 11: 25. https://doi.org/10.3389/fendo.2020.00025 |
| [19] | Aghamohammad S, Hafezi A, Rohani M (2023) Probiotics as functional foods: How probiotics can alleviate the symptoms of neurological disabilities. Biomed Pharmacother 163: 114816. https://doi.org/10.1016/j.biopha.2023.114816 |
| [20] | Lee SHF, Ahmad SR, Lim YC, et al. (2022) The use of probiotic therapy in metabolic and neurological diseases. Front Nutr 9: 1-8. https://doi.org/10.3389/fnut.2022.887019 |
| [21] | Chang L, Wei Y, Hashimoto K (2022) Brain–gut–microbiota axis in depression: A historical overview and future directions. Brain Res Bull 182: 44-56. https://doi.org/10.1016/j.brainresbull.2022.02.004 |
| [22] | Dalton A, Mermier C, Zuhl M (2019) Exercise influence on the microbiome–gut–brain axis. Gut Microbes 10: 555-568. https://doi.org/10.1080/19490976.2018.1562268 |
| [23] | Mancuso C, Santangelo R (2018) Alzheimer's disease and gut microbiota modifications: The long way between preclinical studies and clinical evidence. Pharmacol Res 129: 329-336. https://doi.org/10.1016/j.phrs.2017.12.009 |
| [24] | Cryan JF, O'Riordan KJ, Sandhu K, et al. (2020) The gut microbiome in neurological disorders. Lancet Neurol 19: 179-194. https://doi.org/10.1016/S1474-4422(19)30356-4 |
| [25] | Kumar A, Sivamaruthi BS, Dey S, Kumar Y, et al. (2024) Probiotics as modulators of gut-brain axis for cognitive development. Front Pharmacol 15: 1348297. https://doi.org/10.3389/fphar.2024.1348297 |
| [26] | Burokas A, Arboleya S, Moloney RD, et al. (2017) Targeting the microbiota-gut-brain axis: Prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry 82: 472-487. https://doi.org/10.1016/j.biopsych.2016.12.031 |
| [27] | Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693: 128-133. https://doi.org/10.1016/j.brainres.2018.03.015 |
| [28] | Fjell AM, McEvoy L, Holland D, et al. (2014) What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Prog Neurobiol 117: 20-40. https://doi.org/10.1016/j.pneurobio.2014.02.004 |
| [29] | Barros-Santos T, Oliveira Silva KS, Libarino-Santos M, et al. (2020) Effects of chronic treatment with new strains of Lactobacillus plantarum on cognitive, anxiety- and depressive-like behaviours in male mice. PLoS One 15: e0234037. https://doi.org/10.1371/journal.pone.0234037 |
| [30] | Chen H, Shen J, Li H, et al. (2020) Ginsenoside Rb1 exerts neuroprotective effects through regulation of Lactobacillus helveticus abundance and GABA(A) receptor expression. J Ginseng Res 44: 86-95. https://doi.org/10.1016/j.jgr.2018.09.002 |
| [31] | Yunes RA, Poluektova EU, Dyachkova MS, et al. (2016) GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 42: 197-204. https://doi.org/10.1016/j.anaerobe.2016.10.011 |
| [32] | Strandwitz P, Kim KH, Terekhova D, et al. (2019) GABA-modulating bacteria of the human gut microbiota. Nat Microbiol 4: 396-403. https://doi.org/10.1038/s41564-018-0307-3 |
| [33] | Roshchina VV (2010) Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. Microbial Endocrinology . New York: Springer 17-52. https://doi.org/10.1007/978-1-4419-5576-0_2 |
| [34] | Ranuh R, Athiyyah AF, Darma A, et al. (2019) Effect of the probiotic Lactobacillus plantarum IS-10506 on BDNF and 5HT stimulation: Role of intestinal microbiota on the gut-brain axis. Iran J Microbiol 11: 145-150. https://doi.org/10.18502/ijm.v11i2.1077 |
| [35] | Amaral FA, Sachs D, Costa VV, et al. (2008) Commensal microbiota is fundamental for the development of inflammatory pain. Proc Natl Acad Sci USA 105: 2193-2197. https://doi.org/10.1073/pnas.0711891105 |
| [36] | Ahlman H, Nilsson O (2001) The gut as the largest endocrine organ in the body. Ann Oncol 12: S63-S68. https://doi.org/10.1093/annonc/12.suppl_2.S63 |
| [37] | Cameron J, Doucet E (2007) Getting to the bottom of feeding behaviour: Who's on top?. Appl Physiol Nutr Metab 32: 177-189. https://doi.org/10.1139/h06-072 |
| [38] | Kirchgessner AL (2002) Orexins in the brain-gut axis. Endocr Rev 23: 1-15. https://doi.org/10.1210/edrv.23.1.0454 |
| [39] | Wren AM, Bloom SR (2007) Gut hormones and appetite control. Gastroenterol 132: 2116-2130. https://doi.org/10.1053/j.gastro.2007.03.048 |
| [40] | Rustay NR, Wrenn CC, Kinney JW, et al. (2005) Galanin impairs performance on learning and memory tasks: Findings from galanin transgenic and GAL-R1 knockout mice. Neuropept 39: 239-243. https://doi.org/10.1016/j.npep.2004.12.026 |
| [41] | Wrenn CC, Turchi JN, Schlosser S, et al. (2006) Performance of galanin transgenic mice in the 5-choice serial reaction time attentional task. Pharmacol Biochem Behav 83: 428-440. https://doi.org/10.1016/j.pbb.2006.03.003 |
| [42] | Clarke TB, Davis KM, Lysenko ES, et al. (2010) Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 16: 228-231. https://doi.org/10.1038/nm.2087 |
| [43] | Erny D, de Angelis ALH, Jaitin D, et al. (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18: 965-977. https://doi.org/10.1038/nn.4030 |
| [44] | Cryan J, O'Riordan K, Cowan C, et al. (2019) The microbiota-gut-brain axis. Physiol Rev 99: 1877-2013. https://doi.org/10.1152/physrev.00018.2018 |
| [45] | Li M, Wang M, Donovan SM (2014) Early development of the gut microbiome and immune-mediated childhood disorders. Semin Reprod Med 32: 74-86. https://doi.org/10.1055/s-0033-1361825 |
| [46] | Bengmark S (2013) Gut microbiota, immune development and function. Pharmacol Res 69: 87-113. https://doi.org/10.1016/j.phrs.2012.09.002 |
| [47] | Powell N, Walker MM, Talley NJ (2017) The mucosal immune system: Master regulator of bidirectional gut-brain communications. Nat Rev Gastroenterol Hepatol 14: 143-159. https://doi.org/10.1038/nrgastro.2016.191 |
| [48] | Lee YD, Hong YF, Jeon B, et al. (2016) Differential cytokine regulatory effect of three Lactobacillus strains isolated from fermented foods. J Microbiol Biotechnol 26: 1517-1526. https://doi.org/10.4014/jmb.1601.01044 |
| [49] | Azad MAK, Sarker M, Wan D (2018) Immunomodulatory effects of probiotics on cytokine profiles. Biomed Res Int 2018: 8063647. https://doi.org/10.1155/2018/8063647 |
| [50] | Sathyabama S, Khan N, Agrewala JN (2014) Friendly pathogens: prevent or provoke autoimmunity. Crit Rev Microbiol 40: 273-280. https://doi.org/10.3109/1040841X.2013.787043 |
| [51] | Commins SP (2015) Mechanisms of oral tolerance. Pediatr Clin North Am 62: 1523-1529. https://doi.org/10.1016/j.pcl.2015.07.013 |
| [52] | Lathrop SK, Bloom SM, Rao SM, et al. (2011) Peripheral education of the immune system by colonic commensal microbiota. Nature 478: 250-254. https://doi.org/10.1038/nature10434 |
| [53] | Fetissov SO, Harro J, Jaanisk M, et al. (2005) Autoantibodies against neuropeptides are associated with psychological traits in eating disorders. Proc Natl Acad Sci USA 102: 14865-14870. https://doi.org/10.1073/pnas.0507204102 |
| [54] | Fetissov SO, Hamze Sinno M, Coëffier M, et al. (2008) Autoantibodies against appetite-regulating peptide hormones and neuropeptides: Putative modulation by gut microflora. Nutrition 24: 348-359. https://doi.org/10.1016/j.nut.2007.12.006 |
| [55] | Fetissov SO, Hamze Sinno M, Coquerel Q, et al. (2008) Emerging role of autoantibodies against appetite-regulating neuropeptides in eating disorders. Nutrition 24: 854-865. https://doi.org/10.1016/j.nut.2008.06.021 |
| [56] | Lei YMK, Nair L, Alegre ML (2014) The interplay between the intestinal microbiota and the immune system. Clin Res Hepatol Gastroenterol 39: 9-19. https://doi.org/10.1016/j.clinre.2014.10.008 |
| [57] | Chervonsky AV (2013) Microbiota and autoimmunity. Cold Spring Harb Perspect Biol 5: a007294. https://doi.org/10.1101/cshperspect.a007294 |
| [58] | Lee YK, Menezes JS, Umesaki Y, et al. (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 108: 4615-4622. https://doi.org/10.1073/pnas.1000082107 |
| [59] | Berer K, Mues M, Koutrolos, et al. (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479: 538-541. https://doi.org/10.1038/nature10554 |
| [60] | Ma X, Mao YK, Wang B, et al. (2009) Lactobacillus reuteri ingestion prevents hyperexcitability of colonic DRG neurons induced by noxious stimuli. Am J Physiol Gastrointest Liver Physiol 296: G868-G875. https://doi.org/10.1152/ajpgi.90511.2008 |
| [61] | Duncker SC, Kamiya T, Wang L, et al. (2011) Probiotic Lactobacillus reuteri alleviates the response to gastric distension in rats. J Nutr 141: 1813-1818. https://doi.org/10.3945/jn.110.136689 |
| [62] | Barry TJ, Murray L, Fearon P, et al. (2017) Amygdala volume and hypothalamic-pituitary-adrenal axis reactivity to social stress. Psycho Neuroendocrinol 85: 96-99. https://doi.org/10.1016/j.psyneuen.2017.07.487 |
| [63] | Bourassa MW, Alim I, Bultman SJ, et al. (2016) Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health?. Neurosci Lett 625: 56-63. https://doi.org/10.1016/j.neulet.2016.02.009 |
| [64] | Kavvadia M, De Santis G, Abbas Alwardat NGG, et al. (2017) Psychobiotics as integrative therapy for neuropsychiatric disorders with special emphasis on the microbiota-gut-brain axis. Biomed Preve 2: 15-17. https://doi.org/10.19252/00000006F |
| [65] | Sharon G, Garg N, Debelius J, et al. (2014) Specialized metabolites from the microbiome in health and disease. Cell Metab 20: 719-730. https://doi.org/10.1016/j.cmet.2014.10.016 |
| [66] | Cui Y, Qi S, Zhang W, et al. (2019) Lactobacillus reuteri ZJ617 culture supernatant attenuates acute liver injury induced in mice by lipopolysaccharide. J Nutr 149: 2046-2055. https://doi.org/10.1093/jn/nxz088 |
| [67] | Kumar A, Pramanik J, Batta K, et al. (2024) Impact of metallic nanoparticles on gut microbiota modulation in colorectal cancer: A review. Cancer Innov 3: e150. https://doi.org/10.1002/cai2.150 |
| [68] | Giles EM, Stagg AJ (2017) Type 1 interferon in the human intestine—A coordinator of the immune response to the microbiota. Inflamm Bowel Dis 23: 524-533. https://doi.org/10.1097/MIB.0000000000001078 |
| [69] | Xu RH, Zhou J, Sun Y, et al. (2015) Sequential activation of two pathogen-sensing pathways required for type I interferon expression and resistance to an acute DNA virus infection. Immunity 43: 1148-1159. https://doi.org/10.1016/j.immuni.2015.11.015 |
| [70] | Hayden MS, Ghosh S (2011) NF-kappaB in immunobiology. Cell Res 21: 223-244. https://doi.org/10.1038/cr.2011.13 |
| [71] | Wikoff WR, Anfora AT, Liu J, et al. (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106: 3698-3703. https://doi.org/10.1073/pnas.0812874106 |
| [72] | Antunes LC, Han J, Ferreira RB, et al. (2011) Effect of antibiotic treatment on the intestinal metabolome. Antimicrob Agents Chemother 55: 1494-1503. https://doi.org/10.1128/AAC.01664-10 |
| [73] | Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489: 242-249. https://doi.org/10.1038/nature11552 |
| [74] | Nicholson JK, Holmes E, Kinross J, et al. (2012) Host-gut microbiota metabolic interactions. Science 336: 1262-1267. https://doi.org/10.1126/science.1223813 |
| [75] | Marcobal A, Kashyap PC, Nelson TA, et al. (2013) A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J 7: 1933-1943. https://doi.org/10.1038/ismej.2013.89 |
| [76] | den Besten G, van Eunen K, Groen AK, et al. (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54: 2325-2340. https://doi.org/10.1194/jlr.R036012 |
| [77] | Ríos-Covián D, Ruas-Madiedo P, Margolles A, et al. (2016) Intestinal short-chain fatty acids and their link with diet and human health. Front Microbiol 7: 185. https://doi.org/10.3389/fmicb.2016.00185 |
| [78] | Forsythe P, Kunze WA (2013) Voices from within: Gut microbes and the CNS. Cell Mol Life Sci 70: 55-69. https://doi.org/10.1007/s00018-012-1028-z |
| [79] | Bercik P, Collins SM, Verdu EF (2012) Microbes and the gut-brain axis. Neurogastroenterol Motil 24: 405-413. https://doi.org/10.1111/j.1365-2982.2012.01906.x |
| [80] | Burokas A, Moloney RD, Dinan TG, et al. (2015) Microbiota regulation of the mammalian gut-brain axis. Adv Appl Microbiol 91: 1-62. https://doi.org/10.1016/bs.aambs.2015.02.001 |
| [81] | Hyland NP, Cryan JF (2016) Microbe-host interactions: Influence of the gut microbiota on the enteric nervous system. Dev Biol 417: 182-187. https://doi.org/10.1016/j.ydbio.2016.06.027 |
| [82] | Chen GY, Brown NK, Wu W, et al. (2014) Broad and direct interaction between TLR and Siglec families of pattern recognition receptors and its regulation by Neu1. eLife 3: e04066. https://doi.org/10.7554/eLife.04066.012 |
| [83] | Dabrowska K, Skowronska K, Popek M, et al. (2018) Roles of glutamate and glutamine transport in ammonia neurotoxicity: State of the art and question marks. Endocr Metab Immune Disord Drug Targets 18: 306-315. https://doi.org/10.2174/1871520618666171219124427 |
| [84] | Cabrera-Pastor A, Llansola M, Montoliu C, et al. (2019) Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: Underlying mechanisms and therapeutic implications. Acta Physiol 226: e13270. https://doi.org/10.1111/apha.13270 |
| [85] | Cui J, Chen Y, Wang HY, et al. (2014) Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum Vaccin Immunother 10: 3270-3285. https://doi.org/10.4161/21645515.2014.979640 |
| [86] | Quigley EMM (2017) Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep 17: 94. https://doi.org/10.1007/s11910-017-0802-6 |
| [87] | Golubeva AV, Joyce SA, Moloney G, et al. (2017) Microbiota-related changes in bile acid and tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine 24: 166-178. https://doi.org/10.1016/j.ebiom.2017.09.020 |
| [88] | Borre YE, O'Keeffe GW, Clarke G, et al. (2014) Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol Med 20: 509-518. https://doi.org/10.1016/j.molmed.2014.05.002 |
| [89] | Sasselli V, Pachnis V, Burns AJ (2012) The enteric nervous system. Dev Biol 366: 64-73. https://doi.org/10.1016/j.ydbio.2012.01.012 |
| [90] | Grenham S, Clarke G, Cryan JF, et al. (2011) Brain-gut-microbe communication in health and disease. Front Physiol 2: 94. https://doi.org/10.3389/fphys.2011.00094 |
| [91] | Montiel-Castro AJ, González-Cervantes RM, Bravo-Ruiseco G, et al. (2013) The microbiota-gut-brain axis: Neurobehavioral correlates, health and sociality. Front Integr Neurosci 7: 70. https://doi.org/10.3389/fnint.2013.00070 |
| [92] | Cryan JF, Dinan TG (2012) Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13: 701-712. https://doi.org/10.1038/nrn3346 |
| [93] | Wall R, Cryan JF, Ross RP, et al. (2014) Bacterial neuroactive compounds produced by psychobiotics. Microbial Endocrinology: The Microbiota-Gut-Brain Axis In Health and Disease . New York: Springer 221-239. https://doi.org/10.1007/978-1-4939-0897-4_10 |
| [94] | Filpa V, Moro E, Protasoni M, et al. (2016) Role of glutamatergic neurotransmission in the enteric nervous system and brain-gut axis in health and disease. Neuropharmacol 111: 14-33. https://doi.org/10.1016/j.neuropharm.2016.08.024 |
| [95] | Kaszaki J, Érces D, Varga G, et al. (2012) Kynurenines and intestinal neurotransmission: The role of N-methyl-D-aspartate receptors. J Neural Transm 119: 211-223. https://doi.org/10.1007/s00702-011-0658-x |
| [96] | Szentirmai É, Millican NS, Massie AR, et al. (2019) Butyrate, a metabolite of intestinal bacteria, enhances sleep. Sci Rep 9: 7035. https://doi.org/10.1038/s41598-019-43502-1 |
| [97] | Pituch A, Walkowiak J, Banaszkiewicz A (2013) Butyric acid in functional constipation. Prz Gastroenterol 8: 295-298. https://doi.org/10.5114/pg.2013.38731 |
| [98] | Chambers ES, Preston T, Frost G, et al. (2018) Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep 7: 198-206. https://doi.org/10.1007/s13668-018-0248-8 |
| [99] | Stone TW (2001) Kynurenines in the CNS: From endogenous obscurity to therapeutic importance. Prog Neurobiol 64: 185-218. https://doi.org/10.1016/S0301-0082(00)00032-0 |
| [100] | Cervenka I, Agudelo LZ, Ruas JL (2017) Kynurenines: Tryptophan's metabolites in exercise, inflammation, and mental health. Science 357. https://doi.org/10.1126/science.aaf9794 |
| [101] | Irum N, Afzal T, Faraz MH, et al. (2023) The role of gut microbiota in depression: An analysis of the gut-brain axis. Front Behav Neurosci 17: 1-6. https://doi.org/10.3389/fnbeh.2023.1185522 |
| [102] | Suganya K, Koo BS (2020) Gut-brain axis: Role of gut microbiota on neurological disorders and how probiotics/prebiotics beneficially modulate microbial and immune pathways to improve brain functions. Int J Mol Sci 21: 7551. https://doi.org/10.3390/ijms21207551 |
| [103] | Erkkinen MG, Kim MO, Geschwind MD (2018) Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol 10. https://doi.org/10.1101/cshperspect.a033118 |
| [104] | GBD 2015 Neurological Disorders Collaborator Group.Global, regional, and national burden of neurological disorders during 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol (2017) 16: 877-897. https://doi.org/10.1016/s1474-4422(17)30299-5 |
| [105] | Gammon K (2014) Neurodegenerative disease: Brain windfall. Nature 515: 299-300. https://doi.org/10.1038/nj7526-299a |
| [106] | Carlsson T, Molander F, Taylor MJ, et al. (2021) Early environmental risk factors for neurodevelopmental disorders—A systematic review of twin and sibling studies. Dev Psychopathol 33: 1448-1495. https://doi.org/10.1017/S0954579420000620 |
| [107] | Geda YE, Roberts RO, Knopman DS, et al. (2010) Physical exercise, aging, and mild cognitive impairment: A population-based study. Arch Neurol 67: 80-86. https://doi.org/10.1001/archneurol.2009.297 |
| [108] | Rogers GB, Keating DJ, Young RL, et al. (2016) From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways. Mol Psychiatry 21: 738-748. https://doi.org/10.1038/mp.2016.50 |
| [109] | Endres K, Schafer KH (2018) Influence of commensal microbiota on the enteric nervous system and its role in neurodegenerative diseases. J Innate Immun 10: 171-180. https://doi.org/10.1159/000488629 |
| [110] | Hsiao EY, McBride SW, Hsien S, et al. (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155: 1451-1463. https://doi.org/10.1016/j.cell.2013.11.024 |
| [111] | Valles-Colomer M, Falony G, Darzi Y, et al. (2019) The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 4: 623-632. https://doi.org/10.1038/s41564-018-0337-x |
| [112] | Zheng P, Zeng B, Liu M, et al. (2019) The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv 5: eaav9361. https://doi.org/10.1126/sciadv.aau8317 |
| [113] | Blacher E, Bashiardes S, Shapiro H, et al. (2019) Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572: 474-480. https://doi.org/10.1038/s41586-019-1443-5 |
| [114] | Sampson TR, Debelius JW, Thron T, et al. (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell 167: 1469-1480.e12. https://doi.org/10.1016/j.cell.2016.11.018 |
| [115] | Hughes HK, Rose D, Ashwood P (2018) The gut microbiota and dysbiosis in autism spectrum disorders. Curr Neurol Neurosci Rep 18: 81. https://doi.org/10.1007/s11910-018-0887-6 |
| [116] | Iannone LF, Preda A, Blottière HM, et al. (2019) Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Rev Neurother 19: 1037-1050. https://doi.org/10.1080/14737175.2019.1638763 |
| [117] | Mayer EA (2011) Gut feelings: The emerging biology of gut-brain communication. Nat Rev Neurosci 12: 453-466. https://doi.org/10.1038/nrn3071 |
| [118] | Pellegrini C, Antonioli L, Colucci R, et al. (2018) Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: A common path to neurodegenerative diseases?. Acta Neuropathol 136: 345-361. https://doi.org/10.1007/s00401-018-1856-5 |
| [119] | Larauche M, Mulak A, Tache Y (2012) Stress and visceral pain: From animal models to clinical therapies. Exp Neurol 233: 49-67. https://doi.org/10.1016/j.expneurol.2011.04.020 |
| [120] | Moloney RD, O'Mahony SM, Dinan TG, et al. (2015) Stress-induced visceral pain: toward animal models of irritable bowel syndrome and associated comorbidities. Front Psychiatry 6: 15. https://doi.org/10.3389/fpsyt.2015.00015 |
| [121] | Nagel R, Traub RJ, Allcock RJ, et al. (2016) Comparison of faecal microbiota in Blastocystis-positive and Blastocystis-negative irritable bowel syndrome patients. Microbiome 4: 47. https://doi.org/10.1186/s40168-016-0191-0 |
| [122] | Rajilic-Stojanovic M, Biagi E, Heilig HG, et al. (2011) Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterol 141: 1792-1801. https://doi.org/10.1053/j.gastro.2011.07.043 |
| [123] | Ionescu-Tucker A, Cotman CW (2021) Emerging roles of oxidative stress in brain aging and Alzheimer's disease. Neurobiol Aging 107: 86-95. https://doi.org/10.1016/j.neurobiolaging.2021.07.014 |
| [124] | Abdivalievna AN (2022) Features of cognitive disorders. Innovat Soc Probl Anal Dev Prospects : 101-105. |
| [125] | Moloney RD, Desbonnet L, Clarke G, et al. (2014) The microbiome: Stress, health and disease. Mamm Genome 25: 49-74. https://doi.org/10.1007/s00335-013-9488-5 |
| [126] | Moloney RD, O'Leary OF, Felice D, et al. (2012) Early-life stress induces visceral hypersensitivity in mice. Neurosci Lett 512: 99-102. https://doi.org/10.1016/j.neulet.2012.01.066 |
| [127] | Burokas A, Martin-Garcia E, Gutierrez-Cuesta J, et al. (2014) Relationships between serotonergic and cannabinoid system in depressive-like behavior: A PET study with [11C]-DASB. J Neurochem 130: 126-135. https://doi.org/10.1111/jnc.12716 |
| [128] | Kumar A, Pramanik J, Goyal N, et al. (2023) Gut microbiota in anxiety and depression: Unveiling the relationships and management options. Pharmaceut 16: 565. https://doi.org/10.3390/ph16040565 |
| [129] | Kendler KS, Thornton LM, Gardner CO (2000) Stressful life events and previous episodes in the etiology of major depression in women: An evaluation of the “kindling” hypothesis. Am J Psychiatry 157: 1243-1251. https://doi.org/10.1176/appi.ajp.157.8.1243 |
| [130] | Mayer EA, Padua D, Tillisch K (2014) Altered brain-gut axis in autism: Comorbidity or causative mechanisms?. BioEssays 36: 933-939. https://doi.org/10.1002/bies.201400075 |
| [131] | (2013) American Psychiatric AssociationDiagnostic and Statistical Manual of Mental Health Disorders (DSM-5). Arlington: American Psychiatric Publishing. Available from: https://www.psychiatryonline.org/doi/book/10.1176/appi.books.9780890425787 |
| [132] | Gaugler T, Klei L, Sanders SJ, et al. (2014) Most genetic risk for autism resides with common variation. Nat Genet 46: 881-885. https://doi.org/10.1038/ng.3039 |
| [133] | Kałużna-Czaplińska J, Joźwik-Pruska J (2016) Nutritional strategies and personalized diet in autism-choice or necessity?. Trends Food Sci Technol 49: 45-50. https://doi.org/10.1016/j.tifs.2016.01.005 |
| [134] | Nelson MN, Wexler HM (2000) Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol 15: 429-435. https://doi.org/10.1177/088307380001500701 |
| [135] | Kang DW, Adams JB, Gregory AC, et al. (2017) Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome 5: 10. https://doi.org/10.1186/s40168-016-0225-7 |
| [136] | Ho LKH, Tong VJW, Syn N, et al. (2020) Gut microbiota changes in children with autism spectrum disorder: A systematic review. Gut Pathog 12: 1-18. https://doi.org/10.1186/s13099-020-0346-1 |
| [137] | Sharon G, Cruz NJ, Kang DW, et al. (2019) Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177: 1600-1618. https://doi.org/10.1016/j.cell.2019.05.004 |
| [138] | Finegold SM, Molitoris D, Song Y, et al. (2002) Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 35: S6-S16. https://doi.org/10.1086/341914 |
| [139] | Adams JB, Johansen LJ, Powell LD, et al. (2011) Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol 11: 22-35. https://doi.org/10.1186/1471-230X-11-22 |
| [140] | de Theije CG, Wopereis H, Ramadan M, et al. (2014b) Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun 37: 197-206. https://doi.org/10.1016/j.bbi.2013.12.005 |
| [141] | Critchfield JW, van Hemert S, Ash M, et al. (2011) The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol Res Pract 2011: 1-8. https://doi.org/10.1155/2011/161358 |
| [142] | McFarland HF, Martin R (2007) Multiple sclerosis: A complicated picture of autoimmunity. Nat Immunol 8: 913-919. https://doi.org/10.1038/ni1507 |
| [143] | Hemmer B, Archelos JJ, Hartung HP (2002) New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci 3: 291-301. https://doi.org/10.1038/nrn784 |
| [144] | Ramagopalan SV, Dobson R, Meier UC, et al. (2010) Multiple sclerosis: Risk factors, prodromes, and potential causal pathways. Lancet Neurol 9: 727-739. https://doi.org/10.1016/S1474-4422(10)70094-6 |
| [145] | Compston A, Coles A (2008) Multiple sclerosis. Lancet 372: 1502-1517. https://doi.org/10.1016/S0140-6736(08)61620-7 |
| [146] | Gelfand JM (2014) Multiple sclerosis: Diagnosis, differential diagnosis, and clinical presentation. Handb Clin Neurol 122: 269-290. https://doi.org/10.1016/B978-0-444-52001-2.00011-X |
| [147] | Hohlfeld R (2009) Multiple sclerosis: Human model for EAE?. Eur J Immunol 39: 2036-2039. https://doi.org/10.1002/eji.200939545 |
| [148] | Ronchi F, Basso C, Preite S, et al. (2016) Experimental priming of encephalitogenic Th1/Th17 cells requires pertussis toxin-driven IL-1β production by myeloid cells. Nature Comm 7: 1-11. https://doi.org/10.1038/ncomms11541 |
| [149] | Lünemann JD, Münz C (2007) Epstein-Barr virus and multiple sclerosis. Curr Neurol Neurosci Rep 7: 253-258. https://doi.org/10.1007/s11910-007-0038-y |
| [150] | Jangi S, Gandhi R, Cox LM, et al. (2016) Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 7: 12015. https://doi.org/10.1038/ncomms12015 |
| [151] | Soscia SJ, Kirby JE, Washicosky KJ, et al. (2010) The Alzheimer's disease-associated amyloid β-protein is an antimicrobial peptide. PLoS One 5: e9505. https://doi.org/10.1371/journal.pone.0009505 |
| [152] | Morris G, Berk M, Maes M, et al. (2019) Could Alzheimer's disease originate in the periphery and if so how so?. Mol Neurobiol 56: 406-434. https://doi.org/10.1007/s12035-018-1092-y |
| [153] | Khan S, Barve KH, Kumar MS (2020) Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer's disease. Curr Neuropharmacol 18: 1106-1125. https://doi.org/10.2174/1570159X18666200528142429 |
| [154] | Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer's disease: Causes and treatment. Molecules 25: 5789. https://doi.org/10.3390/molecules25245789 |
| [155] | Siddiqui A, Akhtar S, Shah Z, et al. (2021) Inflammation drives Alzheimer's disease: Emphasis on 5-lipoxygenase pathways. Curr Neuropharmacol 19: 885-895. https://doi.org/10.2174/1570159X18666200924122732 |
| [156] | Shen XN, Niu LD, Wang YJ, et al. (2019) Inflammatory markers in Alzheimer's disease and mild cognitive impairment: A meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry 90: 590-598. https://doi.org/10.1136/jnnp-2018-319148 |
| [157] | Chen X, Hu Y, Cao Z, et al. (2018) Cerebrospinal fluid inflammatory cytokine aberrations in Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis: A systematic review and meta-analysis. Front Immunol 9: 2122. https://doi.org/10.3389/fimmu.2018.02122 |
| [158] | Bostanciklioglu M (2018) Intestinal bacterial flora and Alzheimer's disease. Neurophysiol 50: 140-148. https://doi.org/10.1007/s11062-018-9728-0 |
| [159] | Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease—A brief review of the basic science and clinical literature. Cold Spring Harbor Perspect Med 2: a006346. https://doi.org/10.1101/cshperspect.a006346 |
| [160] | Cappellano G, Carecchio M, Fleetwood T, et al. (2013) Immunity and inflammation in neurodegenerative diseases. Am J Neurodegener Dis 2: 89-107. |
| [161] | Itzhaki RF, Lathe R, Balin BJ, et al. (2016) Microbes and Alzheimer's disease. J Alzheimers Dis 51: 979. https://doi.org/10.3233/JAD-160152 |
| [162] | Stojković D, Kostić M, Smiljković M, et al. (2020) Linking antimicrobial potential of natural products derived from aquatic organisms and microbes involved in Alzheimer's disease—A review. Curr Med Chem 27: 4372-4391. https://doi.org/10.2174/0929867325666180309103645 |
| [163] | Wei S, Peng W, Mai Y, et al. (2020) Outer membrane vesicles enhance tau phosphorylation and contribute to cognitive impairment. J Cell Physiol 235: 4843-4855. https://doi.org/10.1002/jcp.29362 |
| [164] | Cai Z, Hussain MD, Yan LJ (2014) Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. Int J Neurosci 124: 307-321. https://doi.org/10.3109/00207454.2013.833510 |
| [165] | Vogt NM, Kerby RL, Dill-McFarland KA, et al. (2017) Gut microbiome alterations in Alzheimer's disease. Sci Rep 7: 13537. https://doi.org/10.1038/s41598-017-13601-y |
| [166] | Sun J, Xu J, Yang B, et al. (2020) Effect of Clostridium butyricum against microglia-mediated neuroinflammation in Alzheimer's disease via regulating gut microbiota and metabolites butyrate. Mol Nutr Food Res 64: 1900636. https://doi.org/10.1002/mnfr.201900636 |
| [167] | Pistollato F, Cano SS, Elio I, et al. (2016) Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 74: 624-634. https://doi.org/10.1093/nutrit/nuw023 |
| [168] | Griffin WS, Stanley LC, Ling Chen, et al. (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci 86: 7611-7615. https://doi.org/10.1073/pnas.86.19.7611 |
| [169] | Simard AR, Soulet D, Gowing G, et al. (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49: 489-502. https://doi.org/10.1016/j.neuron.2006.01.022 |
| [170] | Ojala J, Alafuzoff I, Herukka SK, et al. (2009) Expression of interleukin-18 is increased in the brains of Alzheimer's disease patients. Neurobiol Aging 30: 198-209. https://doi.org/10.1016/j.neurobiolaging.2007.06.006 |
| [171] | Malaguarnera L, Motta M, Di Rosa M, et al. (2006) Interleukin-18 and transforming growth factor-beta 1 plasma levels in Alzheimer's disease and vascular dementia. Neuropathol 26: 307-312. https://doi.org/10.1111/j.1440-1789.2006.00701.x |
| [172] | Öztürk C, Özge A, Yalın ÖÖ, et al. (2007) The diagnostic role of serum inflammatory and soluble proteins on dementia subtypes: Correlation with cognitive and functional decline. Behav Neurol 18: 207-215. https://doi.org/10.1155/2007/432190 |
| [173] | Pajares M, Rojo AI, Manda G, et al. (2020) Inflammation in Parkinson's disease: Mechanisms and therapeutic implications. Cells 9: 1687. https://doi.org/10.3390/cells9071687 |
| [174] | Comi C, Magistrelli L, Oggioni GD, et al. (2014) Peripheral nervous system involvement in Parkinson's disease: Evidence and controversies. Parkinsonism Relat Disord 20: 1329-1334. https://doi.org/10.1016/j.parkreldis.2014.10.010 |
| [175] | Han D, Zheng W, Wang X, et al. (2020) Proteostasis of α-Synuclein and its role in the pathogenesis of Parkinson's disease. Front Cell Neurosci 14: 45. https://doi.org/10.3389/fncel.2020.00045 |
| [176] | Jankovic J, Tan EK (2020) Parkinson's disease: Etiopathogenesis and treatment. J Neurol Neurosurg Psych 91: 795-808. https://doi.org/10.1136/jnnp-2019-322338 |
| [177] | Simon DK, Tanner CM, Brundin P (2020) Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med 36: 1-12. https://doi.org/10.1016/j.cger.2019.08.002 |
| [178] | Hasegawa S, Goto S, Tsuji H, et al. (2015) Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson's disease. PLoS One 10: e0142164. https://doi.org/10.1371/journal.pone.0142164 |
| [179] | Keshavarzian A, Green SJ, Engen PA, et al. (2015) Colonic bacterial composition in Parkinson's disease. Mov Disord 30: 1351-1360. https://doi.org/10.1002/mds.26307 |
| [180] | Scheperjans F, Aho V, Pereira PA, et al. (2015) Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov Disord 30: 350-358. https://doi.org/10.1002/mds.26069 |
| [181] | Getz SJ, Levin B (2017) Cognitive and neuropsychiatric features of early Parkinson's disease. Arch Clin Neuropsychol 32: 769-785. https://doi.org/10.1093/arclin/acx091 |
| [182] | Mouton-Liger F, Rosazza T, Sepulveda-Diaz J, et al. (2018) Parkin deficiency modulates NLRP3 inflammasome activation by attenuating an A20-dependent negative feedback loop. Glia 66: 1736-1751. https://doi.org/10.1002/glia.23337 |
| [183] | Lebouvier T, Chaumette T, Paillusson S, et al. (2009) The second brain and Parkinson's disease. Eur J Neurosci 30: 735-741. https://doi.org/10.1111/j.1460-9568.2009.06873.x |
| [184] | Natale G, Pasquali L, Paparelli A, et al. (2011) Parallel manifestations of neuropathologies in the enteric and central nervous systems. Neurogastroenterol Motility 23: 1056-1065. https://doi.org/10.1111/j.1365-2982.2011.01794.x |
| [185] | Fellner L, Irschick R, Schanda K, et al. (2013) Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia 61: 349-360. https://doi.org/10.1002/glia.22437 |
| [186] | Tan AH, Hor JW, Chong CW, et al. (2021) Probiotics for Parkinson's disease: Current evidence and future directions. JGH Open 5: 414-419. https://doi.org/10.1002/jgh3.12450 |
| [187] | Sanders ME (2009) How do we know when something called “probiotic” is really a probiotic? A guideline for consumers and health care professionals. Funct Food Rev 1: 3-12. |
| [188] | Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J Nutr 125: 1401-1412. https://doi.org/10.1093/jn/125.6.1401 |
| [189] | Liu RT, Walsh RF, Sheehan AE (2019) Prebiotics and probiotics for depression and anxiety: A Systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev 102: 13-23. https://doi.org/10.1016/j.neubiorev.2019.03.023 |
| [190] | Bailey MA, Holscher HD (2018) Microbiome-mediated effects of the mediterranean diet on inflammation. Adv Nutr 9: 193-206. https://doi.org/10.1093/advances/nmy013 |
| [191] | Guu TW, Mischoulon D, Sarris J, et al. (2019) International society for nutritional psychiatry research practice guidelines for omega-3 fatty acids in the treatment of major depressive disorder. Psychother psychos 88: 263-273. https://doi.org/10.1159/000502652 |
| [192] | Firth J, Teasdale SB, Allott K, et al. (2019) The efficacy and safety of nutrient supplements in the treatment of mental disorders: A meta-review of meta-analyses of randomized controlled trials. World Psych 18: 308-324. https://doi.org/10.1002/wps.20672 |
| [193] | Binda S, Hill C, Johansen E, et al. (2020) Criteria to qualify microorganisms as “Probiotic” in foods and dietary supplements. Front Microbiol 11: 1662. https://doi.org/10.3389/fmicb.2020.01662 |
| [194] | Dinan TG, Cryan JF (2017) Gut instincts: Microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 595: 489-503. https://doi.org/10.1113/JP273106 |
| [195] | Dinan TG, Cryan JF (2017b) The Microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am 46: 77-89. https://doi.org/10.1016/j.gtc.2016.09.007 |
| [196] | Sarkar A, Lehto SM, Harty S, et al. (2016) Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends Neurosci 39: 763-781. https://doi.org/10.1016/j.tins.2016.09.002 |
| [197] | Bravo JA, Forsythe P, Chew MV, et al. (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108: 16050-16055. https://doi.org/10.1073/pnas.1102999108 |
| [198] | Ait-Belgnaoui A, Colom A, Braniste V, et al. (2014) Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol Motil 26: 510-520. https://doi.org/10.1111/nmo.12295 |
| [199] | Bercik P, Park AJ, Sinclair D, et al. (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut–brain communication. Neurogastroenterol Motility 23: 1132-1139. https://doi.org/10.1111/j.1365-2982.2011.01796.x |
| [200] | Ton AMM, Campagnaro BP, Alves GA, et al. (2020) Oxidative stress and dementia in Alzheimer's patients: Effects of synbiotic supplementation. Oxidative Med Cellular Longev 2020: 2638703. https://doi.org/10.1155/2020/2638703 |
| [201] | Kawano M, Miyoshi M, Miyazaki T (2019) Lactobacillus Helveticus SBT2171 induces A20 expression via toll-like receptor 2 signaling and inhibits the lipopolysaccharide-induced activation of nuclear factor-kappa B and mitogen-activated protein kinases in peritoneal macrophages. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.00845 |
| [202] | Nishida K, Sawada D, Kuwano Y, et al. (2019) Health benefits of Lactobacillus Gasseri CP2305 tablets in young adults exposed to chronic stress: A randomized, double-blind, placebo-controlled study. Nutrients 11: 1859. https://doi.org/10.3390/nu11081859 |
| [203] | Pelsser LM, Frankena K, Toorman J, et al. (2017) Diet and ADHD, reviewing the evidence: A systematic review of meta-analyses of double-blind placebo-controlled trials evaluating the efficacy of diet interventions on the behaviour of children with ADHD. PloS One 12: e0169277. https://doi.org/10.1371/journal.pone.0169277 |
| [204] | Klaenhammer TR, Kleerebezem M, Kopp MV, et al. (2012) The impact of probiotics and prebiotics on the immune system. Nat Rev Immunol 12: 728-734. https://doi.org/10.1038/nri3312 |
| [205] | Sanders ME, Merenstein DJ, Reid G, et al. (2019) Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nature Rev Gastroenterol Hepatol 16: 605-616. https://doi.org/10.1038/s41575-019-0173-3 |
| [206] | Breit S, Kupferberg A, Rogler G, Hasler G (2018) Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front Psych 9: 44. https://doi.org/10.3389/fpsyt.2018.00044 |
| [207] | Dhami M, Raj K, Singh S (2023) Relevance of gut microbiota to Alzheimer's disease (AD): potential effects of probiotic in management of AD. Aging Health Res 3: 100128. https://doi.org/10.1016/j.ahr.2023.100128 |
| [208] | Srivastav S, Neupane S, Bhurtel S, et al. (2019) Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. J Nutri Biochem 69: 73-86. https://doi.org/10.1016/j.jnutbio.2019.03.021 |
| [209] | Castelli V, d'Angelo M, Lombardi F, et al. (2020) Effects of the probiotic formulation SLAB51 in in vitro and in vivo Parkinson's disease models. Aging 12: 4641-4659. https://doi.org/10.18632/aging.102927 |
| [210] | Lee JE, Walton D, O'Connor CP, et al. (2022) Drugs, guts, brains, but not rock and roll: The need to consider the role of gut microbiota in contemporary mental health and wellness of emerging adults. Int J Mol Sci 23: 6643. https://doi.org/10.3390/ijms23126643 |
| [211] | Smith AP, Sutherland D, Hewlett P (2015) An investigation of the acute effects of oligofructose-enriched inulin on subjective wellbeing, mood and cognitive performance. Nutrients 7: 8887-8896. https://doi.org/10.3390/nu7115441 |
| [212] | Messaoudi M, Violle N, Bisson JF, et al. (2011) Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2: 256-261. https://doi.org/10.4161/gmic.2.4.16108 |
| [213] | Liang S, Wang T, Hu X, et al. (2015) Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310: 561-577. https://doi.org/10.1016/j.neuroscience.2015.09.033 |
| [214] | van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: A review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20: 519-534. https://doi.org/10.1016/j.euroneuro.2010.03.008 |
| [215] | McVey Neufeld KA, Kay S, Bienenstock J (2018) Mouse strain affects behavioural and neuroendocrine stress responses following administration of probiotic Lactobacillus rhamnosus JB-1 or traditional antidepressant fluoxetine. Front Neurosci 12: 294. https://doi.org/10.3389/fnins.2018.00294 |
| [216] | Tamtaji OR, Taghizadeh M, Kakhaki RD, et al. (2019) Clinical and metabolic response to probiotic administration in people with Parkinson's disease: A randomized, double-blind, placebo-controlled trial. Clinical Nutri 38: 1031-1035. https://doi.org/10.1016/j.clnu.2018.05.018 |
| [217] | Tillisch K, Labus J, Kilpatrick L, et al. (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterol 144: 1394-1401. https://doi.org/10.1053/j.gastro.2013.02.043 |
| [218] | Kouchaki E, Tamtaji OR, Salami M, et al. (2017) Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: A randomized, double-blind, placebo-controlled trial. Clinical Nutri 36: 1245-1249. https://doi.org/10.1016/j.clnu.2016.08.015 |
| [219] | Tankou SK, Regev K, Healy BC, et al. (2018) Investigation of probiotics in multiple sclerosis. Multiple Sclerosis 24: 58-63. https://doi.org/10.1177/1352458517737390 |
| [220] | Akkasheh G, Kashani-Poor Z, Tajabadi-Ebrahimi M, et al. (2016) Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition 32: 315-320. https://doi.org/10.1016/j.nut.2015.09.003 |
| [221] | Cassani E, Privitera G, Pezzoli G, et al. (2011) Use of probiotics for the treatment of constipation in Parkinson's disease patients. Minerva Gastroenterol Dietol 57: 117-121. |
| [222] | van Kessel SP, El Aidy S (2019) Contributions of gut bacteria and diet to drug pharmacokinetics in the treatment of Parkinson's disease. Front Neurol 10: 1087. https://doi.org/10.3389/fneur.2019.01087 |
| [223] | Shaaban SY, El Gendy YG, Mehanna NS, et al. (2018) The role of probiotics in children with autism spectrum disorder: A prospective, open-label study. Nutri Neurosci 21: 676-681. https://doi.org/10.1080/1028415x.2017.1347746 |
| [224] | Umbrello G, Esposito S (2016) Microbiota and neurologic diseases: Potential effects of probiotics. J Transl Med 14: 1-11. https://doi.org/10.1186/s12967-016-1058-7 |
| [225] | Castelli V, D'Angelo M, Quintiliani M, et al. (2021) The emerging role of probiotics in neurodegenerative diseases: New hope for Parkinson's disease?. Neural Regener Res 16: 628-634. https://doi.org/10.4103/1673-5374.295270 |
| [226] | Ghezzi L, Cantoni C, Rotondo E, et al. (2022) The gut microbiome–brain crosstalk in neurodegenerative diseases. Biomed 10: 1-17. https://doi.org/10.3390/biomedicines10071486 |
| [227] | Tamtaji OR, Milajerdi A, Reiner Ž, et al. (2020) A systematic review and meta-analysis: The effects of probiotic supplementation on metabolic profile in patients with neurological disorders. Compl Ther Med 53: 1-22. https://doi.org/10.1016/j.ctim.2020.102507 |
| [228] | Deidda G, Biazzo M (2021) Gut and brain: Investigating physiological and pathological interactions between microbiota and brain to gain new therapeutic avenues for brain diseases. Front Neurosci 15: 1-22. https://doi.org/10.3389/fnins.2021.753915 |
| [229] | Sharma V, Kaur S (2020) The effect of probiotic intervention in ameliorating the altered central nervous system functions in neurological disorders: A review. Open Microbiol J 14: 18-29. https://doi.org/10.2174/1874285802014010018 |
| [230] | Jungersen M, Wind A, Johansen E, et al. (2014) The science behind the probiotic strain bifidobacterium animalis subsp. Lactis BB-12®. Microorganisms 2: 92-110. https://doi.org/10.3390/microorganisms2020092 |
| [231] | Ojha S, Patil N, Jain M, et al. (2023) Probiotics for neurodegenerative diseases: A systemic review. Microorganisms 11: 1-22. https://doi.org/10.3390/microorganisms11041083 |
| [232] | Peterson CT (2020) Dysfunction of the microbiota-gut-brain axis in neurodegenerative disease: The promise of therapeutic modulation with prebiotics, medicinal herbs, probiotics, and synbiotics. J Evid-Based Integr Med 25: 1-19. https://doi.org/10.1177/2515690X20957225 |
| [233] | Thangaleela S, Sivamaruthi BS, Kesika P, et al. (2022) Role of probiotics and diet in the management of neurological diseases and mood states: A review. Microorganisms 10: 1-28. https://doi.org/10.3390/microorganisms10112268 |
| [234] | Ferrari S, Galla R, Mulè S, et al. (2023) The role of Bifidobacterium bifidum novaBBF7, Bifidobacterium longum novaBLG2 and Lactobacillus paracasei TJB8 to improve mechanisms linked to neuronal cells protection against oxidative condition in a gut-brain axis model. Int J Mol Sci 24: 12281. https://doi.org/10.3390/ijms241512281 |
| [235] | Petrella C, Strimpakos G, Torcinaro A, et al. (2021) Proneurogenic and neuroprotective effect of a multi-strain probiotic mixture in a mouse model of acute inflammation: Involvement of the gut-brain axis. Pharmacol Res 172: 105795. https://doi.org/10.1016/j.phrs.2021.105795 |
| [236] | Yang X, Yu D, Xue L, et al. (2020) Probiotics modulate the microbiota–gut–brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm Sin B 10: 475-487. https://doi.org/10.1016/j.apsb.2019.07.001 |
| [237] | Liu M, Song S, Hu C, et al. (2020) Dietary administration of probiotic Lactobacillus rhamnosus modulates the neurological toxicities of perfluorobutane sulfonate in zebrafish. Environ Pollut 265: 114832. https://doi.org/10.1016/j.envpol.2020.114832 |
| [238] | Mohammadi G, Dargahi L, Naserpour T, et al. (2019) Probiotic mixture of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 attenuates hippocampal apoptosis induced by lipopolysaccharide in rats. Int Microbiol 22: 317-323. https://doi.org/10.1007/s10123-018-00051-3 |
| [239] | Buford TW, Sun Y, Roberts LM, et al. (2020) Angiotensin (1–7) delivered orally via probiotic, but not subcutaneously, benefits the gut-brain axis in older rats. Gerosci 42: 1307-1321. https://doi.org/10.1007/s11357-020-00196-y |
| [240] | Yeon SW, You YS, Kwon HS, et al. (2010) Fermented milk of Lactobacillus helveticus IDCC3801 reduces beta-amyloid and attenuates memory deficit. J Fun Foods 2: 143-152. https://doi.org/10.1016/j.jff.2010.04.002 |
| [241] | Nimgampalle M, Kuna Y (2017) Anti-Alzheimer properties of probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer's disease induced albino rats. J Clinical Diag Res 11: KC01-KC05. https://doi.org/10.7860/JCDR/2017/26106.10428 |
| [242] | Bonfili L, Cecarini V, Cuccioloni M, et al. (2018) SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Mol Neurobiol 55: 7987-8000. https://doi.org/10.1007/s12035-018-0973-4 |
| [243] | Agahi A, Hamidi GA, Daneshvar R, et al. (2018) Does severity of Alzheimer's disease contribute to its responsiveness to modifying gut microbiota? A double blind clinical trial. Front Neurol 9: 662. https://doi.org/10.3389/fneur.2018.00662 |
| [244] | Pinto-Sanchez MI, Hall GB, Ghajar K, et al. (2017) Probiotic Bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: A pilot study in patients with irritable bowel syndrome. Gastroenterol 153: 448-459. https://doi.org/10.1053/j.gastro.2017.05.003 |
| [245] | Xu N, Fan W, Zhou X, et al. (2018) Probiotics decrease depressive behaviors induced by constipation via activating the AKT signaling pathway. Metabolic Brain Dis 33: 1625-1633. https://doi.org/10.1007/s11011-018-0269-4 |
| [246] | Mohammadi A A, Jazayeri S, Khosravi-Darani K, et al. The effects of probiotics on mental health and hypothalamic-pituitary-adrenal axis: A randomized, double-blind, placebo-controlled trial in petrochemical workers (2024)19: 387-395. https://doi.org/10.1179/1476830515y.0000000023 |
| [247] | Lee Y, Nguyen TL, Roh H, et al. (2023) Mechanisms underlying probiotic effects on neurotransmission and stress resilience in fish via transcriptomic profiling. Fish Shellfish Immunol 141: 109063. https://doi.org/10.1016/j.fsi.2023.109063 |
| [248] | Margret AA, Sukanya M, Johnson C, et al. (2021) Facilitating the gut brain axis by probiotic bacteria to modulate neuroimmune response on lead exposed zebra fish models. Acta Scientiarum. Health Sci 43: e52932. https://doi.org/10.4025/actascihealthsci.v43i1.52932 |
| [249] | Borrelli L, Aceto S, Agnisola C, et al. (2016) Probiotic modulation of the microbiota-gut-brain axis and behaviour in zebrafish. Sci Rep 6: 30046. https://doi.org/10.1038/srep30046 |
| [250] | Tian D, Shi W, Yu Y, et al. (2023) Enrofloxacin exposure induces anxiety-like behavioral responses in zebrafish by affecting the microbiota-gut-brain axis. Sci Total Env 858: 160094. https://doi.org/10.1016/j.scitotenv.2022.160094 |
| [251] | Giommi C, Lombó M, Habibi HR, et al. (2024) The probiotic SLAB51 as agent to counteract BPA toxicity on zebrafish gut microbiota-liver-brain axis. Sci Total Env 912: 169303. https://doi.org/10.1016/j.scitotenv.2023.169303 |
| [252] | Sun X, Tian S, Yan S, et al. (2024) Bifidobacterium mediate gut microbiota-remedied intestinal barrier damage caused by cyproconazole in zebrafish (Danio rerio). Sci Total Env 912: 169556. https://doi.org/10.1016/j.scitotenv.2023.169556 |
| [253] | Valcarce DG, Martínez-Vázquez JM, Riesco MF, et al. (2020) Probiotics reduce anxiety-related behavior in zebrafish. Heliyon 6: e03973. https://doi.org/10.1016/j.heliyon.2020.e03973 |
| [254] | Frank CE, Sadeghi J, Heath DD, et al. (2024) Behavioral transcriptomic effects of triploidy and probiotic therapy (Bifidobacterium, Lactobacillus, and Lactococcus mixture) on juvenile Chinook salmon (Oncorhynchus tshawytscha). Genes Brain Behav 23: e12898. https://doi.org/10.1111/gbb.12898 |
| [255] | Eeuwijk J, Ferreira G, Yarzabal JP, et al. (2024) A systematic literature review on risk factors for and timing of Clostridioides difficile infection in the United States. Infect Dis Ther 13: 273-298. https://doi.org/10.1007/s40121-024-00919-0 |
| [256] | Zhang Q, Cheng L, Wang J, et al. (2021) Antibiotic-induced gut microbiota dysbiosis damages the intestinal barrier, increasing food allergy in adult mice. Nutrients 13: 3315. https://doi.org/10.3390/nu13103315 |
| [257] | Shukla V, Singh S, Verma S, et al. (2024) Targeting the microbiome to improve human health with the approach of personalized medicine: Latest aspects and current updates. Clin Nutr ESPEN 63: 813-820. https://doi.org/10.1016/j.clnesp.2024.08.005 |
| [258] | Wan X, Eguchi A, Sakamoto A, et al. (2023) Impact of broad-spectrum antibiotics on the gut–microbiota–spleen–brain axis. Brain Behav Immun Health 27: 100573. https://doi.org/10.1016/j.bbih.2022.100573 |
| [259] | Dahiya D, Nigam PS (2023) Antibiotic-therapy-induced gut dysbiosis affecting gut microbiota—Brain axis and cognition: Restoration by intake of probiotics and synbiotics. Int J Mol Sci 24: 3074. https://doi.org/10.3390/ijms24043074 |
| [260] | Fishbein SR, Mahmud B, Dantas G (2023) Antibiotic perturbations to the gut microbiome. Nat Rev Microbiol 21: 772-788. https://doi.org/10.1038/s41579-023-00933-y |
| [261] | Bibi A, Zhang F, Shen J, et al. (2025) Behavioral alterations in antibiotic-treated mice associated with gut microbiota dysbiosis: insights from 16S rRNA and metabolomics. Front Neurosci 19: 1478304. https://doi.org/10.3389/fnins.2025.1478304 |
| [262] | Ritz NL, Brocka M, Butler MI, et al. (2024) Social anxiety disorder-associated gut microbiota increases social fear. Proc Natl Acad Sci USA 121: e2308706120. https://doi.org/10.1073/pnas.2308706120 |
| [263] | Marascio N, Scarlata GGM, Romeo F, et al. (2023) The role of gut microbiota in the clinical outcome of septic patients: State of the art and future perspectives. Int J Mol Sci 24: 9307. https://doi.org/10.3390/ijms24119307 |
| [264] | Carmody RN, Bisanz JE (2023) Roles of the gut microbiome in weight management. Nat Rev Microbiol 21: 535-550. https://doi.org/10.1038/s41579-023-00888-0 |