Loading [Contrib]/a11y/accessibility-menu.js
Review Topical Sections

Outbreaks of listeriosis associated with deli meats and cheese: an overview

  • Microbial pollution of foods by undesirable microorganisms is a global food safety issue. One of such undesirable microorganism is the psychrotrophic, pathogenic specie of Listeria—Listeria monocytogenes that survives at low temperature. The source of contamination of this microbe into foods can be many including the food processing facilities due to improper sanitation procedures. The review of the literature on this important topic shows there are increasing concerns as regards contamination from Listeria in foods leading to many cases of listeriosis disease and food recalls. Ready-to-eat products, such as delicatessen (deli) meats and soft cheeses have repeatedly been identified by foodborne disease control programs as sources of outbreaks and products that put humans at risk for listeriosis. Although, most listeriosis cases tend to be sporadic in occurrence, outbreaks do occur frequently. Due to the global phenomenon of outbreaks associated with Listeria in deli meats and cheese, it requires an urgent attention from national and international authorities through rigorous procedures for its identification, surveillance procedures that can bring more awareness to the general public. There is also a need for more reports on the cases of Listeria particularly in developing countries, the standardization of identification procedures, and an improvement on national control programs by adequate surveillance.

    Citation: Dele Raheem. Outbreaks of listeriosis associated with deli meats and cheese: an overview[J]. AIMS Microbiology, 2016, 2(3): 230-250. doi: 10.3934/microbiol.2016.3.230

    Related Papers:

    [1] Donatella Danielli, Rohit Jain . Regularity results for a penalized boundary obstacle problem. Mathematics in Engineering, 2021, 3(1): 1-23. doi: 10.3934/mine.2021007
    [2] Bin Deng, Xinan Ma . Gradient estimates for the solutions of higher order curvature equations with prescribed contact angle. Mathematics in Engineering, 2023, 5(6): 1-13. doi: 10.3934/mine.2023093
    [3] Morteza Fotouhi, Andreas Minne, Henrik Shahgholian, Georg S. Weiss . Remarks on the decay/growth rate of solutions to elliptic free boundary problems of obstacle type. Mathematics in Engineering, 2020, 2(4): 698-708. doi: 10.3934/mine.2020032
    [4] Luis A. Caffarelli, Jean-Michel Roquejoffre . The shape of a free boundary driven by a line of fast diffusion. Mathematics in Engineering, 2021, 3(1): 1-25. doi: 10.3934/mine.2021010
    [5] Catharine W. K. Lo, José Francisco Rodrigues . On the obstacle problem in fractional generalised Orlicz spaces. Mathematics in Engineering, 2024, 6(5): 676-704. doi: 10.3934/mine.2024026
    [6] Daniela De Silva, Giorgio Tortone . Improvement of flatness for vector valued free boundary problems. Mathematics in Engineering, 2020, 2(4): 598-613. doi: 10.3934/mine.2020027
    [7] Sergio Conti, Patrick Dondl, Julia Orlik . Variational modeling of paperboard delamination under bending. Mathematics in Engineering, 2023, 5(2): 1-28. doi: 10.3934/mine.2023039
    [8] Aleksandr Dzhugan, Fausto Ferrari . Domain variation solutions for degenerate two phase free boundary problems. Mathematics in Engineering, 2021, 3(6): 1-29. doi: 10.3934/mine.2021043
    [9] Thomas J. Radley, Paul Houston, Matthew E. Hubbard . Quadrature-free polytopic discontinuous Galerkin methods for transport problems. Mathematics in Engineering, 2024, 6(1): 192-220. doi: 10.3934/mine.2024009
    [10] Luca Spolaor, Bozhidar Velichkov . On the logarithmic epiperimetric inequality for the obstacle problem. Mathematics in Engineering, 2021, 3(1): 1-42. doi: 10.3934/mine.2021004
  • Microbial pollution of foods by undesirable microorganisms is a global food safety issue. One of such undesirable microorganism is the psychrotrophic, pathogenic specie of Listeria—Listeria monocytogenes that survives at low temperature. The source of contamination of this microbe into foods can be many including the food processing facilities due to improper sanitation procedures. The review of the literature on this important topic shows there are increasing concerns as regards contamination from Listeria in foods leading to many cases of listeriosis disease and food recalls. Ready-to-eat products, such as delicatessen (deli) meats and soft cheeses have repeatedly been identified by foodborne disease control programs as sources of outbreaks and products that put humans at risk for listeriosis. Although, most listeriosis cases tend to be sporadic in occurrence, outbreaks do occur frequently. Due to the global phenomenon of outbreaks associated with Listeria in deli meats and cheese, it requires an urgent attention from national and international authorities through rigorous procedures for its identification, surveillance procedures that can bring more awareness to the general public. There is also a need for more reports on the cases of Listeria particularly in developing countries, the standardization of identification procedures, and an improvement on national control programs by adequate surveillance.


    Cancer comes from the Greek term karkinos, and was first used in 460–370 B.C. by the physician Hippocrates to define abnormally large tumor cells, but Hippocrates was not the first cancer-related expert [1],[2]. Early human bone records discovered in the ancient Egyptian civilizations and old manuscripts from 1600 B.C. contained some cases of breast cancer, and no treatment for this kind of disease was mentioned. In general, all types of cancer cells break the controls of the cell cycle during cell growth [3],[4], and there are more than 200 different types of cells in the body. Some types of cells grow continuously and divide according to the body demands to replace damaged cells and cell debris in the tissues and organs of all living organisms [5],[6]. Therefore, different kinds of body cells become a source to different kinds of cancer cells in the body.

    Humans are made up of billions of cells, and each cell has an opportunity for mutation and cancer, which implies that cancer, can occur everywhere in the body of humans. However, tissues and organs in which the cells, such as cardiac muscle cells, do not proliferate may not have much opportunity for cell cycle disruption, while skin and other cells have a substantial opportunity for mutation and cancer [7]. In addition, numerous factors affect cells, particularly cell genetics, and lead to abnormal mutations in the DNA sequence, such as smoking, radiation, environmental factors and viruses. However, all cells have many mechanisms to protect and repair themselves during the cell cycle, such as P53 and tumor suppressor genes. Unfortunately, some of these mutations may be passed on to the offspring and become a hereditary disorder. Cancer cells have many differences from normal cells [8],[9]. The effects of many cancers can be prevented by being aware of and discontinuing the associated risk factors, such as trying to quit tobacco and altering lifestyle, as well as by diagnosing cancer at an earlier stage. These changes may provide a better chance of cure and longer survival and prevent the invasion of other tissues and metastasis. Benign tumors are treated and removed by surgery, while malignant tumors have the tendency to recur after surgery [10],[11]. The era of immunotherapy, particularly CAR T-cell immunotherapy, has brought great clinical successes in the field of cancer treatment in hematological cancers, which encourages the development of CAR T-cells for solid tumors and the production of universal CAR T-cells [12],[13].

    Hippocrates was one of the famous physicians who thought that the human body contains four distinct types of humor (body fluid), blood, phlegm, black bile and yellow bile, each of which is responsible for a particular body function. Any anomaly that occurs may contribute to disease; for example, extra black bile in any area was thought to be cancer [14].

    This conceptual model of cancer cell development is based on fluid called lymph; blood and lymph circulate continually throughout the tissue and thus can access all components of the body. The hypothesis of lymph originated in the 17th century.

    In 1838, Muller demonstrated this theory, in which cancers result from cells and not lymph and cancer is derived from healthy cells.

    From the end of the 1800s until the 1920s, many researchers believed that the formation of cancer cells was due to trauma.

    Another significant concept of cancer cells was the parasite theory, in which cancer was thought to be caused by parasites, and this idea remained until the 18th century[14],[15].

    In 1911, Peyton Pou discovered that Rous sarcoma virus causes disease in pigs. After 150 years, humans have revealed much information about the biochemical composition and elements of many viruses and carcinogens. Smoking (nicotine) has been characterized as carcinogenic, and more than one carcinogen was recognized; as such, researchers teased out the precise mechanisms of how smoking causes disease [16],[17]. From that day forward, environmental factors were considered one of the critical variables affecting living organisms. Many cancer illnesses resulting from environmental pollution contribute to alterations in DNA, but all factors affecting bodies lead to cancer; only certain forms lead to malignancy, while other factors might cause alterations such as hyperplasia, dysplasia and other benign changes [18]. Hyperplasia occurs when cells within the body develop quicker than usual, and dysplasia is a more complex disease than hyperplasia. Cells start to appear abnormal in complexion and shape with dysplasia, and these changes can be tracked during treatment of certain kinds of dysplasia, as illustrated in Figure 1 [19]. Cancer cells differ in several ways from normal cells, and cancer cells have associations with different types of mutations and diseases; for example, thalassemia due to iron overload can cause the liver tissue to grow out of control and become a tumor [20][22]. One major distinction is that there are fewer specialized tumor cells than ordinary cells. This means that while normal cells mature into very distinct cell types with specific functions, cancer cells cannot mature like this. This is one reason why cancer cells develop without inhibition and without response to ordinary stimuli, which normally prevent cells from growing too much [21],[23]. Certain genes tend to have a number of mutations in all kinds of cancer cells, each patient with cancer has a unique set of genes affected [24]. In addition to the detrimental effects of the environment, numerous scientific studies indicate and support the positive effects of the environment and organic molecules on the treatment of tumors [25]. Specifically, some organic products and foods are angioinhibitors. Through several avenues of research, we have come to understand what proteins and RNA molecules communicate during malignant transformation, and the identification of these molecules can assist investigators in determining which drug is most efficient in attacking a patient's specific tumor cells [24],[26].

    Figure 1.  Different phenotypes of cells from normal to cancer, hyperplasia as an initial step to cancer lead to augmentation of tissues by an increase in the replication rate of normal cells, dysplasia is the second stage in progress to a tumor, which contains abnormal cells and it signifies the preceding to developed cancer. .

    One of the most popular procedures for particularly large cancers is surgery [27],[28], but many physicians and researchers in the past realized that some types of tumors were more likely to respond to treatment and surgery, while others were more likely to relapse and take on a more severe form after surgery [29]. However, they did not understand how the tumor returned soon after the operation [30]. Many surgeons believe that cancer cells in many organs have the ability to cause relapse and migrate through the circulatory system and lymphatic to another organ in the body. Anesthesia was introduced in 1846. Later, at the beginning of the 1970s, the creation of ultrasound tools such as computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) had an important effect on many individuals suffering from cancer, and endoscopy helped all surgeons perform high-precision surgery and resect many components of the digestive system shortly after diagnosis. Single-photon emission computed tomography (SPECT) and some biochemical biomarkers can be used to diagnosis of many cancer cells such as proteins and microRNA [31][34].

    In the 20th century, many researchers and surgeons found a unique strategy to battle tumor cells: the combination of chemotherapy with radiation after surgery; usually, chemotherapy destroys all the rapidly proliferating cancer cells and the ordinary cells with naturally elevated proliferation rates; e.g., skin and some other cells in the body, can be affected. Over the years, many chemotherapy and drug treatments have been successfully used for many forms of cancer [35]. in addition to progress in reducing the complications of chemotherapy, improved drugs that specifically target tumor cells, such as monoclonal and multiclonal antibodies to specific antigens in cancer, have also been developed [36]. Many studies have also shown that hormones have a dramatic impact on cancer cells, especially in breast and prostate cancer treatment, which significantly reduces the chances of these two organs being exposed to cancer [37]. Radiation therapy of tumor cells is another method to destroy cancer cells, as revealed in Figure 2, but immediately after this technique was introduced for cancer treatment, many scientists and studies found that radiation led to damage to ordinary cells in addition to killing cancer cells [38],[39]. However radiotherapy was reached to atomic level monitoring as used in Boron neutron capture therapy (BNCT), it can precisely target harmful cancer cells and combine with many anticancer approaches [40].

    Figure 2.  Targeting of cancer cells with radiotherapy, mechanism of radiation therapy works by one of two kinds of energy, photon or charged particle, which either direct damaging the DNA of cancer cells or indirect ionization of the atoms in the DNA chains. .

    In the middle of the 20th century, tumor suppressor genes, oncogenes, and proto-oncogenes were revealed after many experiments. Subsequently, researchers started to question what factor was responsible for cancer in an attempt to fix the aberration. Watson and Crick discovered in 1953 that the basic component of cells is DNA, which was found to have a characteristic double-stranded helical structure [41]; with these findings, DNA became a vital molecule in molecular biology for understanding the blueprint of life. In 1962, Watson and Crick received the Nobel Prize for their research. Soon after, many experiments and researchers tried to learn how DNA and genes can carry information and pass it from parent to offspring and how mutations linked to cancer contribute to cancerous processes as well as to determine the causative agents of cancer (carcinogens), such as radiation, chemical factors and some viruses [42],[43].

    Proto-oncogenes are ordinary genes commonly found in all cells, and the primary role of these genes is connected with differentiation and cell growth regulation [44]. When a mutation occurs in a proto-oncogene, it becomes an oncogene that stimulates cells to develop out of control and, as a result, produces cancer cells (Figure 3). Tumor suppressor mutations are another important mutation that has an effect on cell formation, tissue maintenance, and cell regulation in the body [45]. Some researchers have shown a substantial effect on defects in both proto-oncogenes and tumor suppressor genes in cancer-related tissue development, such as alterations in BRCA1 and BRCA2, and approximately 5% of all breast cancers are connected with alterations to chromosome 17 [46],[47]. Another important protein member in the apoptosis protein family is survivin, it has great roles in cell cycle and cell regulation by inhibiting apoptosis, high expression of survivin is observed in many human cancer cells as compared to normal cells [48].

    Figure 3.  Mutated proto-oncogenes by mutagen and become oncogenes, occur by point mutation, gene translocation, and gene amplification. .

    DNA controls the development and division of cells throughout the body; any modifications or mutations in DNA that lead to cancer cells appear to influence three significant types of proto-oncogenes, tumor suppressor genes, and DNA repair genes. These mutations are sometimes called “drivers” of cancer. Proto-oncogenes are involved in healthy cell growth and division. Although these genes are involved in some normal processes or are more effective than the ordinary gene in the body, they can become cancer-causing genes (or oncogenes); such altered genes enable cells to develop and thrive when they should not [23]. Tumor suppressor genes also control and regulate cell growth and the cell cycle. Cells with particular mutations in tumor suppressor genes can proliferate in an uncontrolled fashion. DNA repair genes are involved in repairing damaged DNA. Cells with mutations in tumor suppressor genes tend to produce additional mutations in other genes. For example, APC gene mutations can cause hereditary cancer syndromes [49],[50].

    Cell therapy has developed a powerful tool in the remedy of many diseases such as liver, lung, cardiovascular, and cancer diseases. Various kinds of cells can be used for treatment [51]. The immune response as a fundamental defender of the body has many elements to kill cancer cells, e.g., white blood cells, T-cells, B-cells, and natural killer cells. In addition, many researchers and scientists modify natural anticancer agents and use them as Therapies, e.g., cytokines, interleukins, and interferon. Some recent FDA approved in Table 1 [52][56]. With advances in the understanding of the composition and biochemical elements of tumor cells and healthy cells, another treatment strategy for cancer cells is related to growth factors and gene therapy. Evidence has shown that growth factors have major effects on cell growth and cell division, and many researchers and scientists have recognized that developing an agent to inhibit such factors could prevent cancer cells from growing abnormally or targeting cancer gene directly without any risk to normal tissue such as mesenchyme stem cells (MSCs), nowadays have extreme attention as a gene delivery system [57][60]. Programmed cell death (apoptosis) is normally triggered in cells that undergo DNA damage in the form of specific abnormalities and is an important method that occurs as cells age or develops any aberrations over their lifetime. As such, the induction of apoptosis could be activated in cancerous cells by drugs to discourage tumor cell growth [61].

    Table 1.  Some of the new immunotherapies have approved by the FDA [56]. .
    Generic name Target Disease Approved by FDA
    Blinatumomab CD19, CD3 B-cell precursor ALL 2014.1
    Tisagenlecleucel CD19 B-cell precursor ALL 2017.8
    Axicabtagene Ciloleucel CD19 Adults with relapsed or refractory large B-cell lymphoma 2017.1
    Nivolumab & Ipilimumab PD-1, CTLA-4 Intermediate and poor-risk advanced renal cell carcinoma 2018.4
    Pembrolizumab & Axitinib PD-1, VEGFR Advanced RCC 2019.4

     | Show Table
    DownLoad: CSV

    Angiogenesis is the standard process by which current blood vessels create fresh blood vessels, and its well-known marker of cancer cells, tumors use this signaling to acquire a blood supply, as show in Figure 4, which provides nutrients for the growth of tumor cells [62],[63]. Angiogenesis is a physiological mechanism that is involved in every injury in the tissue and normally serves to aid in healing and recovery after damage; however, the angiogenesis system is completely distinct in cancer, in which the fresh blood vessels sustain tumor cells and allow the cancer cells to develop out of control [64]. Thus, targeting angiogenesis in tumor cells can have a significant impact on cancer cells. This concept was initially suggested by Judah Folkman of Harvard Medical School. After many years of clinical trials, angioinhibitors were approved for use in 2004, and now more than 25 endogenous angioinhibitors have received clinical approval as cancer therapies because many angiogenesis signals have been found in cancer cells. In the field of angioinhibitor research, the combination of chemotherapy with antiangiogenic agents is an alternative strategy to counter the nutritional support provided by the vasculature to cancerous cells. A greater understanding of the features and properties of cancer cells of distinct types and further developments in molecular biology can create many effective strategies to treat cancer [65],[66]. There have been revolutionary advances in biotechnology worldwide, and the current understanding of the scientific community allows cancer therapy to become more influential with a high degree of precision in treating cancer cells with few side effects to healthy tissues or organs [67].

    Figure 4.  Angiogenesis and blood supply in a tumor, first stage cancer cell release angiogenic substances, second stage angiogenic factors induce blood vessels to create new capillary blood vessels, third stage blood, and nutrients directly support tumor. .

    Different types of vaccines apply to cancer cells: A vaccine is one more significant method that can be used to win the fight against cancer. There are many distinct categories of antibiotics, but the most significant types are the ones connected with cancer vaccines [10],[68]. Fundamental roles of cancer vaccines are to induce the immune system to recognize and combat cancerous cells that evade the immune system, via mechanisms such as T-cell activation by CAR T-cells, in order to combat abnormal cells more effectively [69]. In addition to the strategies that have already passed many developmental barriers, each new cancer therapy is exposed to new challenges. Another active area of study in the world is immunotherapy, which makes use of immune cells such as natural killer cells, B-lymphocytes and T-lymphocytes, mainly cytotoxic T-cells, and this technique has been a powerful weapon in the treatment of certain types of cancer. International researchers and collaborators are attempting to conduct a global review and study of the many aspects of cancer-related micro environmental conditions by recording data and creating immune scores as a new approach to evaluating cancer [70],[71].

    Lung cancer therapy in Cuba: Lung cancer vaccines were first administered in Cuba. Since then, there has been enormous support from the government of Cuba to create a molecular center for cancer vaccines, which has become a fundamental piece for the development of lung cancer therapies in Cuba. CIMAvax EGF is an anticancer vaccine used in adults with stage IIIB/IV non-small-cell lung cancer (NSCLC) in Cuba [72],[73].

    Checkpoint blockade for cancer cells is one therapeutic approach to antitumor immunity induction. Checkpoints of the cell cycle and the immune system are involved in a multitude of inhibitory and other immune mechanisms that are important for maintaining self-tolerance and physiological environmental reactions in a unique manner [22].

    CAR T-cell therapy is an advanced form of immunotherapy that allows for more targeting accuracy than other immunotherapy methods but is administered in the traditional way. Steven Rosenberg at the National Cancer Institute (NCI) collected T-cells that migrated and invaded tumors, cultivated them in the laboratory, and reinserted them into patients with tumors in an experiment over several years (Figure 5). This strategy only functions when tumor cells can be accessed by T-cells [74]. Rosenberg subsequently released the outcomes of this CAR therapy in 2010, which became a customized treatment that involves modifying and enabling a patient's own T-cells to target tumor cells [75]. Although this strategy has recently been used in a range of clinical trials, it can be used for tumor relapse. Scientists believe that CAR T-cells can attack all tumor proteins in the body and can be administered with antibiotics [76]. Engineered CAR T-cells are still under laboratory consideration, but the systemic reactions and effects caused by such strategies are quickly becoming the norm of therapies against tumor cells, while it has some limitation probability due to immunosuppressive mechanisms of tumor niche [22],[77]. CAR T-cell treatment of certain types of hematological malignancies was applied in some countries around the world (Table 2) [56],[78].

    Table 2.  Clinical targets of CAR-T cell therapy for hematological malignancies. .
    Target Disease No. of patients Country References
    CD19 B-ALL 3 China [79]
    CD19 B-ALL 30 United States [80]
    CD20 DLBCL 7 China [81]
    CD22 B-ALL 21 United States [82]
    CD30 HL 9 United States [83]

     | Show Table
    DownLoad: CSV
    Figure 5.  A brief and general chart flow mechanism of engineered CAR T-cell therapy. Sufficient amounts of peripheral blood mononuclear cells (PBMCs) are obtained from the blood of patients to engineering T cells. Modify and purify T cell by vector transfection to express particular CAR-T cells, following the evaluation quality and replication of product, then inject to patients to boost the immune system and enhance anticancer ability. .

    The best part of immunotherapy with CAR T-cells is the strong response in patients with cancer, and CAR T-cell treatment is currently being researched in many kinds of solid tumors and has been included in several clinical trials (Table 3) [56],[84],[85]. CAR T-cells are designed and modified to express receptors that redirect and recognize polyclonal T-cells and monoclonal tumor cells [78],[86]. CAR T-cells consist of a fusion protein, which includes an intracellular binding domain, a transmembrane domain, and an extracellular binding domain. The extracellular domain is usually copied from antibodies as a single-chain variable fragment (scFv), as shown in Figure 6, while CD3z is linked with stimulatory molecules, for instance, CD134, CD28 or CD137, as an intracellular signaling domain [87][90].

    Table 3.  Clinical targets of CAR-T cell therapy for solid tumors. .
    Target Disease No. of patients Country References
    EGFR NSCLC 11 China [91]
    EGFRvIII Glioblastoma 10 United States [92]
    CAIX RCC 12 Netherlands [93]
    CEA Adenocarcinoma 14 United Kingdom [94]

     | Show Table
    DownLoad: CSV
    Figure 6.  Extracellular and intracellular components of CAR T-cells have consisted of three linked segment, one is a single-chain variable fragment (scFv), it's an extracellular domain and recognize specific surface antigens in cancer cells, second segment transmembrane part and the third segment is intracellular signaling domains to activation CAR-T cells. .

    The heavy and light chains of the antibody are used as variable regions in CAR T-cell receptors to aid in targeting particular tumor antigens in the context of the major histocompatibility complex (MHC). The extracellular domain of CAR T-cells consists of a monoclonal antibody (mAb) and is able to efficiently target tumor antigens in the body. The generation of CAR T-cells depends on the intracellular binding domains, which have increased co-stimulatory abilities in second- and third-generation CAR T-cells, as presented in Figure 7. In the studies of first-generation CAR T-cells, researchers observed that the T-cells in vivo had no activity in addition to the specific CAR T-cell mechanisms; these mechanisms were still active, but there was no cytokine response or recognition of tumor antigens. Therefore, additional stimulatory binding domains were added to CAR T-cells, giving rise to second- and third-generation CAR T-cells with CD28 as a co-stimulatory domain [95][98].

    Figure 7.  Generation anatomical features of CAR T-cells with an intracellular signaling pathway, VH variable heavy chain; VL variable light chain is produced CAR antigen receptor domain. Antigen receptor domains are the same in first, second, and third generations, while in intracellular domains differ inactivation and signaling to stimuli T cells. The second CAR generation added one costimulatory molecule and in the third generation added two costimulatory molecules. .

    Obstacles of CAR T-cell therapy are associated with two well-known problems, first cytokine release syndrome (CRS) and second neurotoxicity. CRS has a common presentation in patients treated with CAR T-cell therapy, and it can be life-threatening when it became severe. Standard treatment for CRS is tocilizumab, it acts as anti-interleukin-6, because of in vivo activation and proliferation of CAR T-cell lead to secretion of interleukin-6. The complications of neurotoxicity caused by CAR T-cell therapy is related with dose and schedule of CAR T-cell or bulk of disease [99][101].

    Logistical obstacles are another limitation of widespread an application of CAR T-cell immunotherapy. Because of the process to prepare CAR T-cells requires weeks to be ready to use. Genetic modification and expansion and other stages before reinjection into patient, while some patients may suffer from relapses that is not allow to be postpone. In clinical trial most of the treated patients are children and young adults, therefore the ability of older patients to tolerate toxicities of CAR T-cells therapy such as neurotoxicity and CRS is not clear [102],[103].

    In summary, there have been huge improvements in the fields of cancer therapy and diagnosis from the past until now. For instance, surgery, chemotherapy, and radiation therapy of tumors as common and classic treatments have been incorporated into modern therapy in combination with immunotherapy to target particular cancer cells with fewer side effects to normal cells, unlike historical treatments, which were associated with many health complications. The encouraging results of CAR T-cells as a therapy against hematological malignancies bring a new era of cancer treatment. Despite the development of many other crucial cancer therapies, such as cancer vaccines, blockade of cell cycle checkpoints, and inhibition of cancer angiogenesis, CAR T-cell therapy has become the latest version of cancer therapy and was approved by the U.S. FDA in 2017. Although there have been clear and positive outcomes of CAR T-cells, more research and modifications are needed, especially in the field of tumor therapy and in terms of combinations with other therapies.

    [1] Bortolussi R (2008) Listeriosis: A Primer. Can Med Assoc J 179: 795–7. doi: 10.1503/cmaj.081377
    [2] Vázquez-Boland JA, Kuhn M, Berche P, et al. (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14: 584–640. doi: 10.1128/CMR.14.3.584-640.2001
    [3] Weller D, Andrus A, Wiedmann M, et al. (2015) Listeriabooriae sp. nov. and Listeria newyorkensis sp. nov., from food processing environments in the USA. Int J Syst Evol Micr 65: 286–292.
    [4] Hernandez-Milian A, Payeras-Cifre A (2014) What is new in listeriosis? Biomed Res Int 2014: 358051.
    [5] WHO Working Group (1988) Foodborne listeriosis. Bulletin of the World Health Organization, 66: 421–428.
    [6] De Valk H, Jacquet C, Goulet V, et al. (2005) Surveillance of Listeria infections in Europe. Euro Surveill 10: 572.
    [7] Travier L, Lecuit M (2014) Listeria monocytogenes ActA: a new function for a ‘classic’ virulence factor. Curr Opin Microbiol 17: 53–60. doi: 10.1016/j.mib.2013.11.007
    [8] Lianou A, Sofos JN (2007) A review of the incidence and transmission of Listeria monocytogenes in ready-to-eat products in retail and food service environments. J Food Prot 70: 2172–2198.
    [9] Gottlieb SL, Newbern EC, Griffin PM, et al. (2006) Multistate outbreak of listeriosis linked to turkey deli meat and subsequent changes in US regulatory policy. Clin Infect Dis 42: 29–36. doi: 10.1086/498113
    [10] WHO/FAO (2004) Risk assessment of Listeria monocytogenes in ready-to-eat foods: technical report. Available from: ftp: //ftp.fao.org/docrep/fao/010/y5394e/y5394e.pdf.
    [11] De Noordhout CM, Devleesschauwer B, Angulo FJ, et al. (2014) The global burden of listeriosis: a systematic review and meta-analysis. The Lancet Infectious Diseases 14: 1073–1082. doi: 10.1016/S1473-3099(14)70870-9
    [12] Goulet V, Jacquet C, Vaillant V, et al. (1995) Listeriosis from consumption of raw-milk cheeses. Lancet 345: 1581–1582.
    [13] Siegman-Igra Y, Levin R, Weinberger M, et al. (2002) Listeria monocytogenes infection in Israel and review of cases worldwide. Emerg Infect Dis 8: 305–310. doi: 10.3201/eid0803.010195
    [14] Aureli P, Giovanni C, Caroli D, et al. (1997) An outbreak of febrile gastro-enteritis associated with corn contaminated by Listeria monocytogenes. N Engl J Med 243: 1236–41.
    [15] Ericsson H, Eklow A, Danielsson-Tham ML, et al. (1997) An outbreak of listeriosis suspected to have been caused by rainbow trout. J Clin Microbiol 35: 2904–2907.
    [16] Lyytikäinen O, Autio T, Maijala R, et al. (2000) An outbreak of Listeria monocytogenes serotype 3a infections from butter in Finland. J Infect Dis 181: 1838–1841. doi: 10.1086/315453
    [17] Kathariou S, Graves L, Buchrieser C, et al. (2006) Involvement of closely related strains of a new clonal group of Listeria monocytogenes in the 1998-99 and 2002 multistate outbreaks of foodborne listeriosis in the United States. Foodbourne Pathog Dis 3: 292–302. doi: 10.1089/fpd.2006.3.292
    [18] Dauphin G, Ragimbeau C, Malle P (2001) Use of PFGE typing for tracing contamination with Listeria monocytogenes in three cold-smoked salmon processing plants. Intl J Food Microbiol 64: 51–61. doi: 10.1016/S0168-1605(00)00442-6
    [19] Makino SI, Kawamoto K, Takeshi K, et al. (2005) An outbreak of food-borne listeriosis due to cheese in Japan, during 2001. Intl J Food Microbiol 104: 189–196. doi: 10.1016/j.ijfoodmicro.2005.02.009
    [20] deValk H, Jacquet C, Goulet V, et al. (2005) Surveillance of Listeria infections in Europe. Euro Surveill. 10: 572.
    [21] McIntyre L, Wilcott L, Monika N (2015) Listeriosis Outbreaks in British Columbia, Canada, Caused by Soft Ripened Cheese Contaminated from Environmental Sources, Biomed Res Int 2015: 131623.
    [22] Mead PS, Dunne, EF, Graves L, et al. (2006) Nationwide outbreak of listeriosis due to contaminated meat. Epidemiol Infect 134: 744–751. doi: 10.1017/S0950268805005376
    [23] Bille J, Blanc DS, Schmid H, et al. (2005) Outbreak of human listeriosis associated with tomme cheese in northwest Switzerland 2005. Euro surveillance: bulletin Europeensur les maladies transmissibles. European communicable disease bulletin 11: 91–93.
    [24] Pichler J, Much P, Kasper S, et al. (2009) An outbreak of febrile gastroenteritis associated with jellied pork contaminated with Listeria monocytogenes. Wiener Klinishe Woschenschcrift 121: 149. doi: 10.1007/s00508-009-1137-3
    [25] Koch J, Dworak R, Prager R, et al. (2010) Large listeriosis outbreak linked to cheese made from pasteurized milk, Germany, 2006-2007. Foodborne Pathog Dis 7: 1581–1584. doi: 10.1089/fpd.2010.0631
    [26] Currie A, Farber JM, Nadon C, et al. (2015) Multi-province listeriosis outbreak linked to contaminated deli meat consumed primarily in institutional settings, Canada, 2008. Foodborne Pathog Dis 12: 645–652. doi: 10.1089/fpd.2015.1939
    [27] Friesema IH, Kuiling S, van der Ende A, et al. (2015) Risk factors for sporadic listeriosis in the Netherlands, 2008 to 2013. EuroSurveill 20: 21199. doi: 10.2807/1560-7917.ES2015.20.31.21199
    [28] Pichler J, Appl G, Pietzka A, et al. (2011) Lessons to be learned from an outbreak of foodborne Listeriosis, Austria 2009–2010. Food Protection Trends 31: 268–273.
    [29] Popovic I, Heron B, Covacin C (2014) Listeria: an Australian perspective (2001–2010). Foodborne Pathog Dis 11: 425–432. doi: 10.1089/fpd.2013.1697
    [30] Gaul LK, Farag NH, Shim T, et al. (2013) Hospital-acquired listeriosis outbreak caused by contaminated diced celery—Texas, 2010. Clin Infect Dis 56: 20–26.
    [31] Yde M, Naranjo M, Mattheus W, et al. (2012) Usefulness of the European Epidemic Intelligence Information System in the management of an outbreak of listeriosis, Belgium, 2011. Euro Surveill 17: 20279.
    [32] McCollum JT, Cronquist AB, Silk BJ, et al. (2013) Multistate outbreak of listeriosis associated with cantaloupe. New England Journal of Medicine 369: 944–953. doi: 10.1056/NEJMoa1215837
    [33] Nyenje ME, Tanih NF, Green E, et al. (2012) Current status of antibiograms of Listeria ivanovii and Enterobacter cloacae isolated from ready-to-eat foods in Alice, South Africa. Int J Env Res Pub Heal 9: 3101–3114. doi: 10.3390/ijerph9093101
    [34] Park MS, Wang J, Park JH, et al. (2014) Analysis of microbiological contamination in mixed pressed ham and cooked sausage in Korea. J Food Protect 77: 412–418. doi: 10.4315/0362-028X.JFP-13-322
    [35] MCID (2014) Macedonian Committee on Infectious Diseases. Available from: http: //www.independent.mk/articles/7492/Dangerous+Bacteria+in+Macedonia+Three+People+Died+of+Listeria.
    [36] Whitworth J (2015) Public Health England reports Listeria rise. Available from: http: //www.foodqualitynews.com/Food-Outbreaks/Listeria-cases-increase-by-5.
    [37] CDC (2015) Multistate Outbreak of Listeriosis Linked to Commercially Produced, Prepackaged Caramel Apples.
    [38] CDC (2016) Multistate Outbreak of Listeriosis Linked to Packaged lettuce Salads.
    [39] Bhunia A (2008) Listeria monocytogenes. Foodborne Microbial Pathogens. pp. 165–182.
    [40] Adzitey F, Huda N (2010) Listeria monocytogenes in foods: incidences and possible control measures. Afr J Microbiol Res 4: 2848–2855.
    [41] Lomonaco S, Nucera D, Filipello V (2015) The evolution and epidemiology of Listeriamonocytogenes in Europe and the United States. Infect Genet Evol 35: 172–183. doi: 10.1016/j.meegid.2015.08.008
    [42] Bennett L (2000) “Listeria monocytogenes” in Mandell, Douglas, & Bennett’s Principles and Practice of Infectious diseases, Fifth Edition, Chap. 195, pp. 2208-14 In: Mandell, Bennett, and Dolan, 3 Eds.
    [43] CDC (2011) Centre for Disease Control, National Center for emerging and Zoonotic infectious diseases. Available from: http: //www.cdc.gov/ncezid/what-we-do/our-work-our-stories.html
    [44] Mead PS, Slutsker L, Dietz V, et al. (1999) Food-related illness and death in the United States. Emerg Infect Dis 5: 607. doi: 10.3201/eid0505.990502
    [45] Ireton K (2006) Listeria monocytogenes. In Bacterial Genomes and Infectious Diseases. 3 Eds., Totowa, NJ: Humana Press, pp. 125–149.
    [46] CDC (2014). Center for Disease Control and Prevention. Available from: http: //www.cdc.gov/outbreaknet/outbreaks.html.
    [47] Kemmeren JM, Mangen MJ, van Duynhoven YT, et al. (2006) Priority setting of foodborne pathogens. Disease burden and costs of selected enteric pathogens. Available from: http: //www.rivm.nl/bibliotheek/rapporten/330080001.pdf.
    [48] Ivanek R, Grohn YT, Tauer LW, et al. (2004) The cost and benefit of Listeria monocytogenes food safety measures. Crit Rev Food Sci 44: 513–23.
    [49] Thomas MK, Vriezen R, Farber JM, et al. (2015) Economic Cost of a Listeria monocytogenes Outbreak in Canada, 2008. Foodborne Pathog Dis 12: 966–971. doi: 10.1089/fpd.2015.1965
    [50] USDA/FSIS (2003) Quantitative assessment of relative risk to public health from foodborne Listeria monocytogenes among selected categories of ready-to-eat foods. Food and Drug Administration, United States Department of Agriculture, Centers for Disease Control and Prevention, p. 541. Available from: http: //www.fda.gov/Food/FoodScienceResearch/ RiskSafetyAssessment/ucm183966.htm.
    [51] Maskeroni C (2012) Deli Meat 101: What’s really in your sandwich? http: //www.builtlean.com/2012/04/03/deli-meat/.
    [52] Bohaychuk VM, Gensler GE, King RK, et al. (2006) Occurrence of pathogens in raw and ready-to-eat meat and poultry products collected from the retail marketplace in Edmonton, Alberta, Canada J Food Prot 69: 2176–2182.
    [53] Yang S, Pei X, Wang G, et al. (2016) Prevalence of food-borne pathogens in ready-to-eat meat products in seven different Chinese regions. Food Control 65: 92–98. doi: 10.1016/j.foodcont.2016.01.009
    [54] Dominguez C, Gomez I, Zumalacarregui J (2001) Prevalence and contamination levels of Listeria monocytogenes in smoked fish and pâté sold in Spain. J Food Prot 64: 2075–2077.
    [55] Fantelli K, Stephan R (2001) Prevalence and characteristics of shigatoxin-producing Escherichia coli and Listeria monocytogenes strains isolated from minced meat in Switzerland. Int J Food Microbiol 70: 63–69. doi: 10.1016/S0168-1605(01)00515-3
    [56] Uyttendaele M, Busschaert P, Valero A, et al. (2009) Prevalence and challenge tests of Listeria monocytogenes in Belgian produced and retailed mayonnaise-based deli-salads, cooked meat products and smoked fish between 2005 and 2007. Intl J Food Microbiol 133: 94–104. doi: 10.1016/j.ijfoodmicro.2009.05.002
    [57] Lambertz ST, Nilsson C, Brådenmark A, et al. (2012) Prevalence and level of Listeriamonocytogenes in ready-to-eat foods in Sweden 2010. Intl J Food Microbiol 160: 24–31. doi: 10.1016/j.ijfoodmicro.2012.09.010
    [58] Garrido V, Vitas AI, García-Jalón I (2009) Survey of Listeria monocytogenes in ready-to-eat products: prevalence by brands and retail establishments for exposure assessment of listeriosis in Northern Spain. Food Control 20: 986–991.
    [59] Kramarenko T, Roasto M, Meremäe K, et al. (2013) Listeria monocytogenes prevalence and serotype diversity in various foods. Food Control 30: 24–29. doi: 10.1016/j.foodcont.2012.06.047
    [60] Little CL, Sagoo SK, Gillespie IA, et al. (2009) Prevalence and level of Listeria monocytogenes and other Listeria species in selected retail ready-to-eat foods in the United Kingdom. J Food Protect 72: 1869–1877.
    [61] Cabedo L, Picart I, Barrot L, et al. (2008) Prevalence of Listeria monocytogenes and Salmonella in ready-to-eat food in Catalonia, Spain. J Food Protect 71: 855–859.
    [62] Di Pinto A, Novello L, Montemurro F, et al. (2010) Occurrence of Listeria monocytogenes in ready-to-eat foods from supermarkets in Southern Italy. New Microbiologica 33: 249–252.
    [63] Yu T, Jiang X (2014) Prevalence and characterization of Listeria monocytogenes isolated from retail food in Henan, China. Food Control 37: 228–231. doi: 10.1016/j.foodcont.2013.09.047
    [64] Mataragas M, Zwietering MH, Skandamis PN, et al. (2010) Quantitative microbiological risk assessment as a tool to obtain useful information for risk managers—specific application to Listeria monocytogenes and ready-to-eat meat products. Intl J Food Microbiol 141: S170–S179. doi: 10.1016/j.ijfoodmicro.2010.01.005
    [65] Pradhan AK, Ivanek R, Gröhn YT, et al. (2011) Comparison of public health impact of Listeria monocytogenes product-to-product and environment-to-product contamination of deli meats at retail. J Food Protect 74: 1860–1868. doi: 10.4315/0362-028X.JFP-10-351
    [66] Syne SM, Ramsubhag A, Adesiyun AA (2011) Occurrence and genetic relatedness of Listeria spp. in two brands of locally processed ready-to-eat meats in Trinidad. Epidemiol Infect 139: 718–727.
    [67] Cho KM, Kambiranda DM, Kim SW, et al. (2008) Simultaneous Detection of Food-borne Pathogenic Bacteria in Ready-to-eat Kimbab Using Multiplex PCR Method. Food Sci Biotechnol 17: 1240–1245.
    [68] Castañeda-Ruelas GM, Castro-del Campo N, Félix JL, et al. (2013) Prevalence, levels, and relatedness of Listeria monocytogenes isolated from raw and ready-to-eat foods at retail markets in Culiacan, Sinaloa, Mexico. J Microbiol Res 3: 92–98.
    [69] Olsen SJ, Patrick M, Hunter SB, et al. (2005) Multistate outbreak of Listeriamonocytogenes infection linked to delicatessen turkey meat. Clin Infect Dis 40: 962–967. doi: 10.1086/428575
    [70] Gibbons IS, Adesiyun A, Seepersadsingh N, et al. (2006) Investigation for possible sources of contamination of ready-to-eat meat products with Listeria spp. and other pathogens in a meat processing plant in Trinidad. Food Microbiol 23: 359–366.
    [71] USDA/FSIS (2010) Comparative risk assessment for Listeria monocytogenes in RTE meat and poultry deli meats. Available from: http: //www.fsis.usda.gov/shared/PDF/Comparative_ RA_Lm_Report_May2010.pdf
    [72] CDC (2016) Retail Deli Slicer Cleaning Frequency—Six Selected Sites, United States, 2012. MMWR-Morbid Mortal W 65: 306–310. doi: 10.15585/mmwr.mm6512a2
    [73] Chatelard-Chauvin C, Pelissier F, Hulin S, et al. (2015) Behaviour of Listeria monocytogenes in raw milk Cantal type cheeses during cheese making, ripening and storage in different packaging conditions. Food Control 54: 53–65. doi: 10.1016/j.foodcont.2015.01.007
    [74] Brooks JC, Martinez B, Stratton J, et al. (2012) Survey of raw milk cheeses for microbiological quality and prevalence of foodborne pathogens. Food Microbiology 31: 154–158. doi: 10.1016/j.fm.2012.03.013
    [75] Gebretsadik S, Kassa T, Alemayehu H, et al. (2011) Isolation and characterization of Listeria monocytogenes and other Listeria species in foods of animal origin in Addis Ababa, Ethiopia. J Infect Public Heal 4: 22–29. doi: 10.1016/j.jiph.2010.10.002
    [76] Pintado CMBS, Oliveira A, Pampulha ME, et al. (2005) Prevalence and characterization of Listeria monocytogenes isolated from soft cheese. Food Microbiol 22: 79–85. doi: 10.1016/j.fm.2004.04.004
    [77] Guerra MM, McLauchlin J, Bernardo FA (2001) Listeria in ready-to-eat and unprocessed foods produced in Portugal. Food Microbiol 18: 423–429. doi: 10.1006/fmic.2001.0421
    [78] Vitas AI, AguadoV, Garcia-Jalon I (2004) Occurrence of Listeria monocytogenes in fresh and processed foods in Navarra (Spain). Int J Food Microbiol 90: 349–356. doi: 10.1016/S0168-1605(03)00314-3
    [79] Akpolat NO, Elci S, Atmaca S, et al. (2004) Listeria monocytogenes in products of animal origin in Turkey. Vet Res Commun 28: 561–567. doi: 10.1023/B:VERC.0000042872.07616.18
    [80] Colak H, Hampikyan H, Bingol EB, et al. (2007) Prevalence of L. monocytogenes and Salmonella spp. in tulum cheese. Food Control 18: 576–579.
    [81] Abrahão WM, Abrahão PRDS, Monteiro CLB, et al. (2008) Occurrence of Listeria monocytogenes in cheese and ice cream produced in the State of Paraná, Brazil. Revista Brasileira de Ciências Farmacêuticas 44: 289–296. doi: 10.1590/S1516-93322008000200014
    [82] Arslan S, Özdemir F (2008) Prevalence and antimicrobial resistance of Listeria spp. in homemade white cheese. Food Control 19: 360–363.
    [83] Moreno-Enriquez RI, Garcia-Galaz A, Acedo-Felix E, et al. (2007) Prevalence, types, and geographical distribution of Listeria monocytogenes from a survey of retail queso fresco and associated cheese processing plants and dairy farms in Sonora, Mexico. J Food Protect 70: 2596–2601.
    [84] Aygun O, Pehlivanlar S (2006) Listeria spp. in the raw milk and dairy products in Antakya, Turkey. Food Control 17: 676–679.
    [85] Derra FA, Kalsmose S, Monga DP, et al. (2013) Occurrence of Listeria spp. in retail meat and dairy products in the area of Addis Ababa, Ethiopia. Foodborne Path Dis 10: 577–579.
    [86] Gombas DE, Chen Y, Clavero RS, et al. (2003) Survey of Listeria monocytogenes in ready-to-eat foods. J Food Protect 66: 559–569.
    [87] Seeliger HPR, Jones D (1986) Genus Listeria. In: Sneath, P. H. A., N. S. Mair, M. E. Sharpe, J. G. Holt (eds.). Bergey’s Manual of Systematic Bacteriology Vol. 2. Williams and Wilkins, Baltimore, USA. p. 1235–1245.
    [88] Bille J, Catimel B, Bannerman E, et al. (1992) API Listeria, a new and promising one-day system to identify Listeria isolates. Appl Environ Microbiol 58: 1857–1860
    [89] Valimaa AL, Tilsala-Timisjarvi A, Virtanen E (2015) Rapid detection and identification methods for Listeria monocytogenes in the food chain—A review. Food Control 55: 103–114 doi: 10.1016/j.foodcont.2015.02.037
    [90] Huang YT, Ko WC, Chan YJ, et al. (2015) Disease Burden of Invasive Listeriosis and Molecular Characterization of Clinical Isolates in Taiwan, 2000–2013. PLoS ONE 10: p.e0141241.
    [91] Chenal-Francisque V, Lopez J, Cantinelli T, et al. (2011) Worldwide distribution of major clones of Listeria monocytogenes. Emerg Infect Dis 17: 1110–1112.
    [92] EFSA Biohaz Panel (2014)EFSA Panelon Biological Hazards. Scientific opinion on the evaluation of molecular typing methods for major food-borne microbiological hazards and their use for attribution modelling, outbreak investigation and scanning surveillance: part 2 (surveillance and data management activities). EFSA J 12: 3784.
    [93] Pauletto M, Carraro L, Babbucci M, et al. (2016) Extending RAD tag analysis to microbial ecology: a comparison between MultiLocus Sequence Typing and 2b-RAD to investigate Listeria monocytogenes genetic structure. Mol Ecol Resour 16: 823–835.
    [94] Haase JK, Didelot X, Lecuit M, et al. (2014) The ubiquitous nature of Listeria monocytogenes clones: a large-scale Multilocus Sequence Typing study. Environ Microbiol 16: 405–416. doi: 10.1111/1462-2920.12342
    [95] Nightingale KK, Windham K, Martin KE, et al. (2005) Select Listeria monocytogenes subtypes commonly found in foods carry distinct nonsense mutations in inlA leading to expression of truncated and secreted internalin A and are associated with a reduced invasion phenotype for human intestinal epithelial cells. Appl Environ Microbiol 71: 8764–8772. doi: 10.1128/AEM.71.12.8764-8772.2005
    [96] Van Stelten A, Simpson JM, Ward TJ, et al. (2010) Revelation by single-nucleotide polymorphism genotyping that mutations leading to a premature stop codon in inlA are common among Listeria monocytogenes isolates from ready-to-eat foods but not human listeriosis cases. Appl Environ Microbiol 76: 2783–2790. doi: 10.1128/AEM.02651-09
    [97] Ward TJ, Evans P, Wiedmann M, et al. (2010) Molecular and phenotypic characterization of Listeria monocytogenes from US Department of Agriculture Food Safety and Inspection Service surveillance of ready-to-eat foods and processing facilities. J Food Protect 73: 861–869.
    [98] Lecuit M, Ohayon H, Braun L, et al. (1997) Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect Immun 65: 5309–5319.
    [99] Loman NJ, Constantinidou C, Chan JZ, et al. (2012) High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 10: 599–606.
    [100] CDC (2015) Center for Disease Control and Prevention. Available from: http: //www.cdc.gov/Listeria/pdf/whole-genome-sequencing-and-Listeria-508c.pdf.
    [101] FDA/FSIS (2003) Available from: ftp: //ftp.fao.org/docrep/fao/010/y5394e/y5394e.pdf.
    [102] Giaouris E, Heir E, Desvaux M, et al. (2015) Intra-and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol 6: 841.
    [103] Dzeciol M, Schornsteiner E, Muhterem-Uyar M, et al. (2016) Bacterial diversity of floor drain biofilms and drain waters in a Listeria monocytogenes contaminated food processing environment. Intl J Food Microbiol 223: 33–40 doi: 10.1016/j.ijfoodmicro.2016.02.004
    [104] Sasahara K C, Zottola EA (1993) Biofilm formation by Listeria monocytogenes utilizes a primary colonizing microorganism in flowing system. J. Food Prot 56: 1022–1028.
    [105] Buchanan RL, Bagi LK (1999) Microbial competition: effect of Psueodomonas fluorescens on the growth of Listeria monocytogenes. Food Microbiol 16: 523–529. doi: 10.1006/fmic.1998.0264
    [106] Bremer P J, Monk I, Osborne CM (2001) Survival of Listeria monocytogenes attached to stainless steel surfaces in the presence or absence of Flavobacterium spp. J Food Prot 64, 1369–1376.
    [107] Leriche V, Carpentier B (2000) Limitation of adhesion and growth of Listeria monocytogenes on stainless steel surfaces by Staphylococcus sciuri biofilms. J Appl Microbiol 88: 594–605.
    [108] Norwood DE, Gilmour A (2001) The differential adherence capabilities of two Listeria monocytogenes strains in monoculture and multispecies biofilms as a function of temperature. Lett Appl Microbiol 33: 320–324. doi: 10.1046/j.1472-765X.2001.01004.x
    [109] Wang JI, Ray AJ, Hammons SR, et al. (2015) Persistent and transient Listeria monocytogenes strains from retail deli environments vary in their ability to adhere and form biofilms and rarely have inlA premature stop codons. Foodborne Pathog Dis 12: 151–158. doi: 10.1089/fpd.2014.1837
    [110] FST (2016) Food Safety Tech eNewsletter. Innovative Publishing Company, USA. Available from: www.foodsafetytech.com.
    [111] Chmielewski R, Frank JF (2003) Biofilm formation and control in food processing facilities. Comp Rev Food Sci 2: 22–32. doi: 10.1111/j.1541-4337.2003.tb00012.x
    [112] USDA/FSIS (2014) Compliance Guideline: Controlling Listeria monocytogenes in Post-lethality Exposed Ready-to -Eat Meat and Poultry Products. Available from: http: //www.fsis.usda.gov/wps/wcm/connect/d3373299-50e6-47d6a577e74a1e549fde/Controlling-Lm-RTE-Guideline.pdf?MOD=AJPERES
    [113] Paparella A, Serio A, Chaves-López C, et al. (2013) Plant-based intervention strategies for Listeria monocytogenes control in foods. Microbial pathogens and strategies for combating them: Science, technology and education, 2, pp.1230–1246.
    [114] Koutchma T (2008) UV light for processing foods. Ozone: Science and Engineering 30: 93–98. doi: 10.1080/01919510701816346
    [115] Ganan M, Hierro E, Hospital XF, et al. (2013) Use of pulsed light to increase the safety of ready-to-eat cured meat products. Food Control 32: 512–517. doi: 10.1016/j.foodcont.2013.01.022
    [116] Huq T, Vu KD, Riedl B, et al. (2015) Synergistic effect of gamma (γ)-irradiation and microencapsulated antimicrobials against Listeria monocytogenes on ready-to-eat (RTE) meat. Food Microbiol 46: 507–514. doi: 10.1016/j.fm.2014.09.013
    [117] Kudra LL, Sebranek JG, Dickson JS, et al. (2012) Control of Listeria monocytogenes on Frankfurters and Cooked Pork Chops by Irradiation Combined with Modified Atmosphere Packaging. J Food Protect 75: 1063–1070. doi: 10.4315/0362-028X.JFP-11-528
    [118] Jin T, Liu L, Sommers CH, et al. (2009) Radiation sensitization and postirradiation proliferation of Listeria monocytogenes on ready-to-eat deli meat in the presence of pectin-nisin films. J Food Protect 72: 644–649.
    [119] Rajkovic A, Tomasevic I, Smigic N, et al. (2010) Pulsed UV light as an intervention strategy against Listeria monocytogenes and Escherichia coli O157: H7 on the surface of a meat slicing knife. J Food Eng 100: 446–451. doi: 10.1016/j.jfoodeng.2010.04.029
    [120] Myers K, Cannon J, Montoya D, et al. (2013) Effects of high hydrostatic pressure and varying concentrations of sodium nitrite from traditional and vegetable-based sources on the growth of Listeria monocytogenes on ready-to-eat (RTE) sliced ham. Meat Sci 94: 69–76. doi: 10.1016/j.meatsci.2012.12.019
    [121] Tomasula PM, Renye JA, Van Hekken DL, et al. (2014) Effect of high-pressure processing on reduction of Listeria monocytogenes in packaged Queso Fresco. J Dairy Sci 97: 1281–1295. doi: 10.3168/jds.2013-7538
    [122] Malley TJ, Butts J, Wiedmann M (2015) Seek and destroy process: Listeria monocytogenes process controls in the ready-to-eat meat and poultry industry. J Food Protect 78: 436–445. doi: 10.4315/0362-028X.JFP-13-507
    [123] FDA (2008) Guidance for Industry: Control of Listeria monocytogenes in Refrigerated or Frozen Ready-To-Eat Foods; Draft Guidance. US Food and Drug Administration. Available from: www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ FoodProcessingHACCP/ucm073110.htm.
    [124] Fabrizio KA, Cutter CN (2005) Application of electrolyzed oxidizing water to reduce Listeria monocytogenes on ready-to-eat meats. Meat Sci 71: 327–333. doi: 10.1016/j.meatsci.2005.04.012
    [125] Saini JK, Barrios MA, Marsden JL, et al. (2013) Efficacy of antimicrobial lauric arginate against Listeria monocytogenes on stainless steel coupons. Adv Microbiol 3: 29119.
    [126] Burt S (2014) Essential oils: their antibacterial properties and potential applications in foods – a review. Intl J Food Microbiol 94: 223–253.
    [127] Lv F, Liang H, Yuan Q, et al. (2011) In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Res Int 44: 3057–3064. doi: 10.1016/j.foodres.2011.07.030
    [128] Dhayakaran R, Neethirajan S, Weng X, et al. (2016) Investigation of the antimicrobial activity of soy peptides by developing a high throughput drug screening assay. Biochem Biophys Rep 6: 149–157.
    [129] Lui W, Hansen N (1990) Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis. Appl Environ Microbiol 56: 2551–2558.
    [130] Zhou H, Fang J, Tian Y, et al. (2014) Mechanisms of nisin resistance in Gram-positive bacteria. Ann Microbiol 64: 413–420. doi: 10.1007/s13213-013-0679-9
    [131] Chen X, Zhang X, Meng R, et al. (2016) Efficacy of a combination of nisin and p-Anisaldehyde against Listeria monocytogenes. Food Control 66: 100–106. doi: 10.1016/j.foodcont.2016.01.025
    [132] Campos CA, Castro MP, Gliemmo MF, et al. (2011). Use of natural antimicrobials for the control of Listeria monocytogenes in foods. Science against microbial pathogens: Communicating current research and technological advances. Formatex, Badajoz, pp.1112–1123.
    [133] Murphy RY, Hanson RE, Johnson NR, et al. (2006) Combining organic acid treatment with steam pasteurization to eliminate Listeria monocytogenes on fully cooked frankfurters. J Food Protect 69: 47–52.
    [134] Trinetta V, Floros JD, Cutter CN (2010) Sakacin A- containing pullulan film: an active packaging system to control epidemic clones of Listeria monocytogenes in ready-to-eat foods. J Food Safety 30: 366–381. doi: 10.1111/j.1745-4565.2010.00213.x
  • This article has been cited by:

    1. Rui Wang, Haiqiang Li, Chen Hu, Xiao-Jun Wu, Yingfang Bao, Deep Grassmannian multiview subspace clustering with contrastive learning, 2024, 32, 2688-1594, 5424, 10.3934/era.2024252
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9471) PDF downloads(1725) Cited by(18)

Figures and Tables

Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog